A Review of Gas Capture and Liquid Separation Technologies by CO2 Gas Hydrate
Abstract
:1. Introduction
2. Combating the Warming by Reducing Anthropogenic Emissions and CO2 Separation
3. The Use of Gas Hydrates Containing Carbon Dioxide
3.1. The Gas Separation Using Gas Hydrates Containing CO2
3.2. The Use of Promoters to Increase the Efficiency of the Growth of Gas Hydrates
3.3. Desalination of Water and Release of Harmful Impurities Using a Gas Hydrate Containing Carbon Dioxide
3.4. Dissociation of CO2 Hydrate at Temperatures below the Melting Point of Ice
4. Conclusions
- (i)
- Gas extraction from gas hydrate deposits may lead to the strength loss and subsidence of the seabed. To avoid severe negative consequences and natural hazards, a non-destructive method of extracting methane with carbon dioxide supply for the formation of CO2 hydrate is used.
- (ii)
- The use of gas hydrates for the CO2 capture and sequestration significantly increases the technology’s efficiency by enhancing transportation and long-term storage of gas hydrates.
- (iii)
- High equilibrium pressure at the formation of hydrates with carbon dioxide leads to a noticeable increase in the cost of CO2 capture technology. To reduce the cost, the equilibrium temperature is increased and the equilibrium pressure is reduced using various promoters. The applied promoters can substantially slow down the induction time of gas hydrate formation. In this article, various types of promoters were considered.
- (iv)
- The development of technologies for the purification and desalination of reservoir and seawater based on gas hydrates requires further research aiming at significant increase in the growth rate of CO2 hydrate and concomitant reduction of energy costs.
- (v)
- To increase the duration of CO2 hydrate storage, it is advisable to apply the phenomenon of self-preservation (abnormally low dissociation rates), which is realized at a temperature of 230–267 K. The half-life of the gas hydrate in this temperature range can reach several weeks or months. The diameter of the synthesized gas hydrate particles which is the most optimal for its long-term storage is 1–2 mm.
- (vi)
- Analysis of the results of experiments, mathematical modeling, bench-scale and industrial tests indicates that enhancement of the efficiency of the CO2 hydrate use requires additional studies on the effect on the kinetics of hydrate formation and dissociation at negative temperatures: porosity, particle size, self-preservation, thermobaric conditions, as well as the joint influence of several promoters.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sloan, E.D., Jr.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Istomin, V.A.; Yakushev, V.S. Gas Hydrates in Nature; Nedra: Moscow, Russia, 1992. [Google Scholar]
- Sum, A.K.; Koh, C.A.; Sloan, E.D. Clathrate Hydrates: From Laboratory Science to Engineering Practice. Ind. Eng. Chem. Res. 2009, 48, 7457–7465. [Google Scholar] [CrossRef]
- Das, S.; Tadepalli, K.M.; Roy, S.; Kumar, R. A review of clathrate hydrate nucleation, growth and decomposition studied using molecular dynamics simulation. J. Mol. Liq. 2022, 348, 118025. [Google Scholar] [CrossRef]
- Sloan, E.D., Jr. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353–359. [Google Scholar] [CrossRef]
- Lorenson, T.D.; Collett, T.S. Gas content and composition of gas hydrate from sediments of the southeastern North American continental margin. Proc. Ocean Drill. Progr. Sci. Results 2000, 164, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Seo, Y.T.; Lee, J.W.; Moudrakovski, I.; Ripmeester, J.A.; Chapman, N.R.; Coffin, R.B.; Gardner, G.; Pohlman, J. Complex gas hydrate from the Cascadia margin. Nature 2007, 445, 303–306. [Google Scholar] [CrossRef]
- MacDonald, G.J. Role of methane clathrates in past and future climates. Clim. Chang. 1990, 16, 247–281. [Google Scholar] [CrossRef]
- You, K.; Flemings, P.B.; Malinverno, A.; Collett, T.S.; Darnell, K. Mechanisms of Methane Hydrate Formation in Geological Systems. Rev. Geophys. 2019, 57, 1146–1196. [Google Scholar] [CrossRef]
- Chen, X.; Lu, H.; Zhang, J.; Ye, J.; Xie, W. Economic Critical Resources for the Industrial Exploitation of Natural Gas Hydrate. Acta Geol. Sin. 2022, 96, 663–673. [Google Scholar] [CrossRef]
- Pang, X.Q.; Chen, Z.H.; Jia, C.Z.; Wang, E.Z.; Shi, H.S.; Wu, Z.Y.; Hu, T.; Liu, K.Y.; Zhao, Z.F.; Pang, B.; et al. Evaluation and re-understanding of the global natural gas hydrate resources. Pet. Sci. 2021, 18, 323–338. [Google Scholar] [CrossRef]
- Milkov, A.V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth Sci. Rev. 2004, 66, 183–197. [Google Scholar] [CrossRef]
- Milkov, A.V.; Sassen, R. Economic geology of offshore gas hydrate accumulations and provinces. Mar. Petrol. Geol. 2002, 19, 1–11. [Google Scholar] [CrossRef]
- Buffett, B.; Archer, D. Global inventory of methane clathrate: Sensitivity to changes in the deep ocean. Earth Planet. Sci. Lett. 2004, 227, 185–199. [Google Scholar] [CrossRef]
- Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. (Eds.) Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Liggins, F.; Betts, R.A.; McGuire, B. Projected future climate changes in the context of geological and geomorphological hazards. Philos. Trans. R. Soc. A 2010, 368, 2347–2367. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Kosmach, D.; Bel’cheva, N. Methane release on the Arctic East Siberian shelf. Geophys. Res. Abst. 2007, 9, 01071. [Google Scholar]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Kosmach, D. Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? EGU General Assembly 2008. Geophys. Res. Abstr. 2008, 10, 01526. [Google Scholar]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Vusupov, V.; Kosmach, D.; Gustafsson, O. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef]
- Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties. J. Geophys. Res. 1999, 104, 22985–23003. [Google Scholar] [CrossRef]
- Henry, P.; Thomas, M.; Clennell, M.B. Formation of natural gas hydrates in marine sediments. 2. Thermodynamic calculations of stability conditions in porous sediments. J. Geophys. Res. 1999, 104, 23005–23022. [Google Scholar] [CrossRef] [Green Version]
- Archer, D. Methane hydrate stability and anthropogenic climate change. Biogeosciences 2007, 4, 521–544. [Google Scholar] [CrossRef] [Green Version]
- Archer, D.; Buffett, B.; Brovkin, V. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc. Natl. Acad. Sci. USA 2009, 106, 20596–20601. [Google Scholar] [CrossRef] [Green Version]
- Gough, C.; Mander, S.; Haszeldine, S. A roadmap for carbon capture and storage in the UK. Int. J. Greenh. Gas Control 2010, 4, 1–12. [Google Scholar] [CrossRef]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon dioxide capture: Prospects for new materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef] [Green Version]
- Aaron, D.; Tsouris, C. Separation of CO2 from Flue Gas: A Review. Sep. Sci. Technol. 2005, 40, 321–348. [Google Scholar] [CrossRef]
- Constable, S.; Stern, L.A. Monitoring Offshore CO2 Sequestration Using Marine CSEM Methods; Constraints Inferred from Field- and Laboratory-Based Gas Hydrate Studies. Energies 2022, 15, 7411. [Google Scholar] [CrossRef]
- Glew, D.N.; Rath, N.S. Variable composition of chlorine and ethylene oxide clathrate hydrates. J. Chem. Phys. 1966, 44, 1710. [Google Scholar] [CrossRef]
- Happel, J. New vistas for gas hydrate research and technology. Int. Conf. Nat. Gas Hydrates 1994, 715, 564–569. [Google Scholar] [CrossRef]
- Spencer, B.F. Civil engineering applications of smart damping technology. In Proceedings of the 5th International Conference on Vibration Engineering, Nanjing, China, 18–20 September 2002; pp. 771–782. [Google Scholar]
- Linga, P.; Adeyemo, A.; Englezos, P. Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide. Environ. Sci. Technol. 2008, 42, 315–320. [Google Scholar] [CrossRef]
- Kang, S.P.; Lee, H.; Lee, C.S.; Sung, W.M. Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran. Fluid Phase Equilib. 2001, 185, 101–109. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci. USA 1999, 96, 3420–3426. [Google Scholar] [CrossRef] [Green Version]
- Koh, D.Y.; Kang, H.; Lee, J.W.; Park, Y.; Kim, S.J.; Lee, J.; Lee, J.Y.; Lee, H. Energy-efficient natural gas hydrate production using gas exchange. Appl. Energy 2016, 162, 114–130. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, F.G.; Xu, Y.X.; Sun, C.Y.; Pan, H.; Liu, B.; Yang, L.Y.; Chen, G.J.; Li, Q.P. Elastic properties of hydrate-bearing sandy sediment during CH4–CO2 replacement. Energy Convers. Manag. 2015, 99, 274–281. [Google Scholar] [CrossRef]
- Ersland, G.; Husebø, J.; Graue, A.; Baldwin, B.A.; Howard, J.; Stevens, J. Measuring gas hydrate formation and exchange with CO2 in Bentheim sandstone using MRI tomography. Chem. Eng. J. 2010, 158, 25–31. [Google Scholar] [CrossRef]
- Lee, H.; Seo, Y.; Seo, Y.T.; Moudrakovski, I.L.; Ripmeester, J.A. Recovering methane from solid methane hydrate with carbon dioxide. Angew. Chem. Int. Ed. 2003, 42, 5048–5051. [Google Scholar] [CrossRef]
- Xu, C.G.; Cai, J.; Lin, F.H.; Chen, Z.Y.; Li, X.S. Raman analysis on methane production from natural gas hydrate by carbon dioxide–methane replacement. Energy 2015, 79, 111–116. [Google Scholar] [CrossRef]
- Baldwin, B.A.; Stevens, J.; Howard, J.J.; Graue, A.; Kvamme, B.; Aspenes, E.; Ersland, G.; Husebø, J.; Zornes, D.R. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media. Magn. Reson. Imaging 2009, 27, 720–726. [Google Scholar] [CrossRef]
- Ota, M.; Morohashi, K.; Abe, Y.; Watanabe, M.; Smith, J.R.L.; Inomata, H. Replacement of CH4 in the hydrate by use of liquid CO2. Energy Convers. Manag. 2005, 46, 1680–1691. [Google Scholar] [CrossRef]
- Park, Y.; Kim, D.Y.; Lee, J.W.; Huh, D.G.; Park, K.P.; Lee, J.; Lee, H. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proc. Natl. Acad. Sci. USA 2006, 103, 12690–12694. [Google Scholar] [CrossRef] [Green Version]
- Cha, M.; Shin, K.; Lee, H.; Moudrakovski, I.L.; Ripmeester, J.A.; Seo, Y. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy. Environ. Sci. Technol. 2015, 49, 1964–1971. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kim, Y.; Lee, J.; Lee, H.; Seo, Y. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter. Appl. Energy 2015, 150, 120–127. [Google Scholar] [CrossRef]
- Lee, B.R.; Koh, C.A.; Sum, A.K. Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2. Phys. Chem. Chem. Phys. 2014, 16, 14922–14927. [Google Scholar] [CrossRef]
- Anderson, B.; Boswell, R.; Collett, T.S.; Farrell, H.; Ohtsuki, S.; White, M.; Zyrianova, M. Review of the findings of the Ignik Sikumi CO2-CH4 gas hydrate exchange field trial. In Proceedings of the 8th International Conference on Gas Hydrates, Bejing, China, 28 July–1 August 2014. [Google Scholar]
- Zhang, L.; Yang, L.; Wang, J.; Zhao, J.; Dong, H.; Yang, M.; Liu, Y.; Song, Y. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate. Chem. Eng. J. 2017, 308, 40–49. [Google Scholar] [CrossRef]
- Shin, K.; Park, Y.; Cha, M.; Park, K.P.; Huh, D.G.; Lee, J.; Kim, S.J.; Lee, H. Swapping phenomena occurring in deep-sea gas hydrates. Energy Fuels 2008, 22, 3160–3163. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, Y.; Seo, Y. Enhanced CH4 recovery induced via structural transformation in the CH4/CO2 replacement that occurs in sH hydrates. Environ. Sci. Technol. 2015, 49, 8899–8906. [Google Scholar] [CrossRef]
- Chibura, P.E.; Zhang, W.; Luo, A.; Wang, J. A review on gas hydrate production feasibility for permafrost and marine hydrates. J. Nat. Gas Sci. Eng. 2022, 100, 104441. [Google Scholar] [CrossRef]
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Sun, J.; Hao, X.; Li, C.; Wu, N.; Chen, Q.; Liu, C.; Li, Y.; Meng, Q.; Huang, L.; Bu, Q. Experimental Study on the Distribution Characteristics of CO2 in Methane Hydrate-Bearing Sediment during CH4/CO2 Replacement. Energies 2022, 15, 5634. [Google Scholar] [CrossRef]
- Cai, W.; Huang, X.; Lu, H. Instrumental Methods for Cage Occupancy Estimation of Gas Hydrate. Energies 2022, 15, 485. [Google Scholar] [CrossRef]
- Gajanayake, S.M.; Gamage, R.P.; Li, X.S.; Huppert, H. Natural gas hydrates—Insights into a paradigm-shifting energy resource. Energy Rev. 2023, 2, 100013. [Google Scholar] [CrossRef]
- Gajanayake, S.; Gamage, R.P.; Wanniarachchige, P.; Zhang, D. Quantification of CO2 replacement in methane gas hydrates: A molecular dynamics perspective. J. Nat. Gas Sci. Eng. 2022, 98, 104396. [Google Scholar] [CrossRef]
- Fan, S.; Yu, W.; Yu, C.; Wang, Y.; Lang, X.; Wang, S.; Li, G.; Huang, H. Investigation of enhanced exploitation of natural gas hydrate and CO2 sequestration combined gradual heat stimulation with CO2 replacement in sediments. J. Nat. Gas Sci. Eng. 2022, 104, 104686. [Google Scholar] [CrossRef]
- Li, Q.; Li, S.; Ding, S.; Yin, Z.; Liu, L.; Li, S. Numerical Simulation of Gas Production and Reservoir Stability during CO2 Exchange in Natural Gas Hydrate Reservoir. Energies 2022, 15, 8968. [Google Scholar] [CrossRef]
- Tian, H.; Yu, Z.; Xu, T.; Xiao, T.; Shang, S. Evaluating the recovery potential of CH4 by injecting CO2 mixture into marine hydrate-bearing reservoirs with a new multi-gas hydrate simulator. J. Clean. Prod. 2022, 361, 132270. [Google Scholar] [CrossRef]
- Pandey, G.; Poothia, T.; Kumar, A. Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization. Appl. Energy 2022, 326, 119900. [Google Scholar] [CrossRef]
- Bian, J.; Wang, H.; Yang, K.; Chen, J.; Cao, X. Spatial differences in pressure and heat transfer characteristics of CO2 hydrate with dissociation for geological CO2 storage. Energy 2022, 240, 122508. [Google Scholar] [CrossRef]
- Bajpai, S.; Shreyash, N.; Singh, S.; Memon, A.R.; Sonker, M.; Tiwary, S.K.; Biswas, S. Opportunities, challenges and the way ahead for carbon capture, utilization and sequestration (CCUS) by the hydrocarbon industry: Towards a sustainable future. Energy Rep. 2022, 8, 15595–15616. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, Y.J.; Zheng, T.; Yuan, Q.; Sun, C.Y.; Yang, L.Y.; Chen, G.J. Replacement in CH4-CO2 hydrate below freezing point based on abnormal self-preservation differences of CH4 hydrate. Chem. Eng. J. 2021, 403, 126283. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, W.; Shin, K.; Seo, Y. CH4-CO2 replacement occurring in sII natural gas hydrates for CH4 recovery and CO2 sequestration. Energy Convers. Manag. 2017, 150, 356–364. [Google Scholar] [CrossRef]
- Ndlovu, P.; Babaee, S.; Naidoo, P. Review on CH4-CO2 replacement for CO2 sequestration and CH4/CO2 hydrate formation in porous media. Fuel 2022, 320, 123795. [Google Scholar] [CrossRef]
- Choi, W.; Mok, J.; Lee, J.; Lee, Y.; Lee, J.; Sum, A.K.; Seo, Y. Effective CH4 production and novel CO2 storage through depressurization-assisted replacement in natural gas hydrate-bearing sediment. Appl. Energy 2022, 326, 119971. [Google Scholar] [CrossRef]
- Bruant, R.; Guswa, A.; Celia, M.; Peters, C. Safe storage of CO2 in deep saline aquifers. Environ. Sci. 2002, 36, 240A–245A. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Lu, C.; Wu, M.; Peng, Y.; Yao, Y.; Luo, W. Review of exploration and production technology of natural gas hydrate. Adv. Geo-Energy Res. 2018, 2, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Manakov, A.Y.; Stoporev, A.S. Physical chemistry and technological applications of gas hydrates: Topica aspects. Russ. Chem. Rev. 2021, 90, 566. [Google Scholar] [CrossRef]
- Yan, C.; Li, Y.; Cheng, Y.; Wei, J.; Tian, W.; Li, S.; Wang, Z. Multifield coupling mechanism in formations around a wellbore during the exploitation of methane hydrate with CO2 replacement. Energy 2022, 245, 123283. [Google Scholar] [CrossRef]
- Wei, W.N.; Li, B.; Gan, Q.; Li, Y.L. Research progress of natural gas hydrate exploitation with CO2 replacement: A review. Fuel 2022, 312, 122873. [Google Scholar] [CrossRef]
- Sun, Y.F.; Cao, B.J.; Zhong, J.R.; Kan, J.Y.; Li, R.; Niu, J.S.; Chen, H.N.; Chen, G.J.; Wu, G.Z.; Sun, C.Y.; et al. Gas production from unsealed hydrate-bearing sediments after reservoir reformation in a large-scale simulator. Fuel 2022, 308, 121957. [Google Scholar] [CrossRef]
- Giovannetti, R.; Gambelli, A.M.; Rossi, A.; Castellani, B.; Minicucci, M.; Zannotti, M.; Nicolini, A.; Rossi, F. Thermodynamic assessment and microscale Raman spectroscopy of binary CO2/CH4 hydrates produced during replacement applications in natural reservoirs. J. Mol. Liq. 2022, 368, 120739. [Google Scholar] [CrossRef]
- Nizami, M.; Nugroho, R.I.; Milati, K.H.; Pratama, Y.W.; Purwanto, W.W. Process and levelized cost assessment of high CO2-content natural gas for LNG production using membrane and CFZ CO2 separation integrated with CO2 sequestration. Sustain. Energy Technol. Assess. 2022, 49, 101744. [Google Scholar] [CrossRef]
- Li, B.; Xu, T.; Zhang, G.; Guo, W.; Liu, H.; Wang, Q.; Qu, L.; Sun, Y. An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N2 replacement. Energy Convers. Manag. 2018, 165, 738–747. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, J.C.; Li, X.S.; Zhan, L.; Li, X.Y. Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling depressurization scheme. Energy 2018, 160, 835–844. [Google Scholar] [CrossRef]
- Li, B.; Liu, S.D.; Liang, Y.P.; Liu, H. The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media. Appl. Energy 2018, 227, 694–702. [Google Scholar] [CrossRef]
- Wang, P.; Teng, Y.; Zhu, J.; Bao, W.; Han, S.; Li, Y.; Zhao, Y.; Xie, H. Review on the synergistic effect between metal–organic frameworks and gas hydrates for CH4 storage and CO2 separation applications. Renew. Sustain. Energy Rev. 2022, 167, 112807. [Google Scholar] [CrossRef]
- Pandey, J.S.; von Solms, N. Metal–organic frameworks and gas hydrate synergy: A pandora’s box of unanswered questions and revelations. Energies 2023, 16, 111. [Google Scholar] [CrossRef]
- Rossi, F.; Gambelli, A.M.; Sharma, D.K.; Castellani, B.; Nicolini, A.; Castaldi, M.J. Experiments on methane hydrates formation in seabed deposits and gas recovery adopting carbon dioxide replacement strategies. Appl. Therm. Eng. 2019, 148, 371–381. [Google Scholar] [CrossRef]
- Sun, Y.F.; Zhong, J.R.; Li, R.; Zhu, T.; Cao, X.Y.; Chen, G.J.; Wang, X.H.; Yang, L.Y.; Sun, C.Y. Natural gas hydrate exploitation by CO2/H2 continuous Injection—Production mode. Appl. Energy 2018, 226, 10–21. [Google Scholar] [CrossRef]
- Cao, B.J.; Sun, Y.F.; Chen, H.N.; Zhong, J.R.; Wang, M.L.; Niu, M.Y.; Kan, J.Y.; Sun, C.Y.; Chen, D.Y.; Chen, G.J. An approach to the high efficient exploitation of nature gas hydrate and carbon sequestration via injecting CO2/H2 gas mixture with varying composition. Chem. Eng. J. 2023, 455, 140634. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, Y.J.; Cheng, L.W.; Zheng, T.; Zhong, J.R.; Xiao, P.; Sun, C.Y.; Chen, G.J.; Feng, J.C. The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation. Energy 2023, 262, 125461. [Google Scholar] [CrossRef]
- Wang, X.H.; Sun, Y.F.; Wang, Y.F.; Li, N.; Sun, C.Y.; Chen, G.J.; Liu, B.; Yang, L.Y. Gas production from hydrates by CH4-CO2/H2 replacement. Appl. Energy 2017, 188, 305–314. [Google Scholar] [CrossRef]
- Kang, S.P.; Lee, H. Recovery of CO2 from flue gas using gas hydrate: Thermodynamic verification through phase equilibrium measurements. Environ. Sci. Technol. 2000, 34, 4397–4400. [Google Scholar] [CrossRef]
- Linga, P.; Kumar, R.; Englezos, P. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide. J. Hazard. Mater. 2007, 149, 625–629. [Google Scholar] [CrossRef]
- Seo, Y.T.; Moudrakovski, I.L.; Ripmeester, J.A.; Lee, J.W.; Lee, H. Efficient Recovery of CO2 from Flue Gas by Clathrate Hydrate Formation in Porous Silica Gels. Environ. Sci. Technol. 2005, 39, 2315–2319. [Google Scholar] [CrossRef] [Green Version]
- Linga, P.; Kumar, R.; Englezos, P. Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chem. Eng. Sci. 2007, 62, 4268–4276. [Google Scholar] [CrossRef]
- Li, W.; Xu, H.; Ma, X.; Dong, Z.; Lei, G.; Qian, S.; Wei, X.; Pan, X. Molecular dynamics-based analysis of the factors influencing the CO2 replacement of methane hydrate. J. Mol. Graph. Model. 2023, 119, 108394. [Google Scholar] [CrossRef]
- Meng, Z.; Xu, J.; Hao, Y.; Chen, J.; Wang, B.; Zhang, X.; Zhang, J. Molecular study on the behavior of CO2 hydrate growth promoted by the electric field. J. Petrol. Sci. Eng. 2023, 221, 111261. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Huang, T.; Li, J.; Li, P.; Wu, Q.; Wang, Y.; Zhang, P. Research progress of molecular dynamics simulation on the formation-decomposition mechanism and stability of CO2 hydrate in porous media: A review. Renew. Sustain. Energy Rev. 2022, 167, 112820. [Google Scholar] [CrossRef]
- Lee, Y.; Go, W.; Kim, Y.; Lim, J.; Choi, W.; Seo, Y. Molecular guest exchange and subsequent structural transformation in CH4–CO2 replacement occurring in sH hydrates as revealed by 13C NMR spectroscopy and molecular dynamic simulations. Chem. Eng. J. 2023, 455, 140937. [Google Scholar] [CrossRef]
- Guo, Y.; Li, J.; Ahmed, R.; Shen, N.; Li, X. An enthalpy model of CO2-CH4-H2S-N2-brine systems applied in simulation of non-isothermal multiphase and multi-component flow with high pressure, temperature and salinity. J. CO2 Util. 2019, 31, 85–97. [Google Scholar] [CrossRef]
- Shagapov, V.S.; Khasanov, M.K.; Musakaev, N.G.; Duong, N.H. Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide. Int. J. Heat Mass Transf. 2017, 107, 347–357. [Google Scholar] [CrossRef]
- Khasanov, M.K.; Rafikova, G.R.; Musakaev, N.G. Mathematical model of carbon dioxide injection into a porous reservoir saturated with methane and its gas hydrate. Energies 2020, 13, 440. [Google Scholar] [CrossRef] [Green Version]
- Khasanov, M.K.; Stolpovsky, M.V.; Gimaltdinov, I.K. Mathematical model of injection of liquid carbon dioxide in a reservoir saturated with methane and its hydrate. Int. J. Heat Mass Transf. 2019, 132, 529–538. [Google Scholar] [CrossRef]
- Khasanov, M.K.; Stolpovsky, M.V.; Gimaltdinov, I.K. Mathematical model for carbon dioxide injection into porous medium saturated with methane and gas hydrate. Int. J. Heat Mass Transf. 2018, 127, 21–28. [Google Scholar] [CrossRef]
- Adamova, T.P.; Skiba, S.S.; Manakov, A.Y.; Misyura, S.Y. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface. Chin. J. Chem. Eng. 2002, 237, 383–387. [Google Scholar] [CrossRef]
- Vlasov, V.A. Diffusion-kinetic model of gas hydrate film growth along the gas–water interface. Heat Mass Transf. 2019, 55, 3537–3545. [Google Scholar] [CrossRef]
- Musakaev, N.G.; Borodin, S.L.; Gubaidullin, A.A. Methodology for the numerical study of the methane hydrate formation during gas injection into a porous medium. Lobachevskii J. Math. 2020, 41, 1272–1277. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Yin, S.; He, G.; Li, J.; Wu, Q. Research progress of the kinetics on natural gas hydrate replacement by CO2-containing mixed gas: A review. J. Nat. Gas Sci. Eng. 2022, 108, 104837. [Google Scholar] [CrossRef]
- Wang, T.; Sun, L.; Fan, Z.; Wei, R.; Li, Q.; Yao, H.; Dong, H.; Zhang, L.; Yang, L.; Zhao, J.; et al. Promoting CH4/CO2 replacement from hydrate with warm brine injection for synergistic energy harvest and carbon sequestration. Chem. Eng. J. 2023, 457, 141129. [Google Scholar] [CrossRef]
- Tang, J.; Zeng, D.; Wang, C.; Chen, Y.; He, L.; Cai, N. Study on the influence of SDS and THF on hydrate-based gas separation performance. Chem. Eng. Res. Des. 2013, 91, 1777–1782. [Google Scholar] [CrossRef]
- Oyama, H.; Shimada, W.; Ebinuma, T.; Kamata, Y.; Takeya, S.; Uchida, T.; Nagao, J.; Narita, H. Phase diagram, latent heat, and specific heat of TBAB semi-clathrate hydrate crystals. Fluid Phase Equilib. 2005, 234, 131–135. [Google Scholar] [CrossRef]
- Darbouret, M.; Cournil, M.; Herri, J.M. Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants. Int. J. Refrig. 2005, 28, 663–671. [Google Scholar] [CrossRef]
- Li, X.S.; Xia, Z.M.; Chen, Z.Y.; Yan, K.F.; Li, G.; Wu, H.J. Gas Hydrate Formation Process for Capture of Carbon Dioxide from Fuel Gas Mixture. Ind. Eng. Chem. Res. 2010, 49, 11614–11619. [Google Scholar] [CrossRef]
- Li, S.F.; Fan, S.S.; Wang, J.Q.; Lang, X.M.; Liang, D.Q. CO2 capture from binary mixture via forming hydrate with the help of tetra-n-butyl ammonium bromide. J. Nat. Gas Chem. 2009, 18, 15–20. [Google Scholar] [CrossRef]
- Li, X.S.; Xu, C.G.; Chen, Z.Y.; Wu, H.J. Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride. Energy 2010, 35, 3902–3908. [Google Scholar] [CrossRef]
- Tan, W.L.; Ahmad, A.L.; Leo, C.P.; Lam, S.S. A critical review to bridge the gaps between carbon capture, storage and use of CaCO3. J. CO2 Util. 2020, 42, 101333. [Google Scholar] [CrossRef]
- Ahmadloo, F.; Mali, G.; Chapoy, A.; Tohidi, B. Gas Separation and Storage using Semi-Clathrate Hydrates. In Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, BC, Canada, 6–10 July 2008. [Google Scholar]
- Oyama, H.; Ebinuma, T.; Nagao, J.; Narita, H.; Shimada, W. Phase behavior of TBAB semiclathrate hydrate crystal under several vapor components. In Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, BC, Canada, 6–10 July 2008. [Google Scholar]
- Fang, K.; Jiang, X.; Wang, C.; Wu, M.; Yan, Y. Properties of the nanoscale hydrophilic cationic pigment based on quaternary surfactant. J. Dispers. Sci. Technol. 2008, 29, 52–57. [Google Scholar] [CrossRef]
- Duc, N.H.; Chauvy, F.; Herri, J.M. CO2 capture by hydrate crystallization—A potential solution for gas emission of steelmaking industry. Energy Convers. Manag. 2007, 48, 1313–1322. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Presciutti, A.; Rossi, F. Review on the characteristics and advantages related to the use of flue-gas as CO2/N2 mixture for gas hydrate production. Fluid Phase Equilib. 2021, 541, 113077. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharjee, G.; Kulkarni, B.D.; Kumar, R. Role of surfactants in promoting gas hydrate formation. Ind. Eng. Chem. Res. 2015, 54, 12217–12232. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, Q.; Mu, C.; Chen, X. Nucleation mechanisms of CO2 hydrate reflected by gas solubility. Sci. Rep. 2018, 8, 10441–10452. [Google Scholar] [CrossRef] [Green Version]
- Molokitina, N.S.; Nesterov, A.N.; Podenko, L.S.; Reshetnikov, A.M. Carbon dioxide hydrate formation with SDS: Further insights into mechanism of gas hydrate growth in the presence of surfactant. Fuel 2019, 235, 1400–1411. [Google Scholar] [CrossRef]
- Lo, C.; Zhang, J.; Somasundaran, P.; Lee, J.W. Investigations of surfactant effects on gas hydrate formation via infrared spectroscopy. J. Colloid Interface Sci. 2012, 376, 173–176. [Google Scholar] [CrossRef]
- Pan, Z.; Wu, Y.; Shang, L.; Zhou, L.; Zhang, Z. Progress in use of surfactant in nearly static conditions in natural gas hydrate formation. Front. Energy 2020, 14, 463–481. [Google Scholar] [CrossRef]
- Tajima, H.; Kiyono, F.; Yamasaki, A. Direct observation of the effect of sodium dodecyl sulfate (SDS) on the gas hydrate formation process in a static mixer. Energy Fuels 2010, 24, 432–438. [Google Scholar] [CrossRef]
- Okutani, K.; Kuwabara, Y.; Mori, Y.H. Surfactant effects on hydrate formation in an unstirred gas/liquid system: Amendments to the previous study using HFC-32 and sodium dodecyl sulfate. Chem. Eng. Sci. 2007, 62, 3858–3860. [Google Scholar] [CrossRef]
- Asaoka, T.; Ikeda, K. Observation of the growth characteristics of gas hydrate in the quiescent-type formation method using surfactant. J. Cryst. Growth 2017, 478, 1–8. [Google Scholar] [CrossRef]
- Zhong, Y.; Rogers, R.E. Surfactant effects on gas hydrate formation. Chem. Eng. Sci. 2000, 55, 4175–4187. [Google Scholar] [CrossRef]
- Irvin, G.; Li, S.; Simmons, B.; John, V.; McPherson, G.; Max, M.; Pellenbarg, R. Control of gas hydrate formation using surfactant systems: Underlying concepts and new applications. Ann. N. Y. Acad. Sci. 2000, 912, 515–526. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Q.; Sun, D. Effect of surfactant Tween on induction time of gas hydrate formation. J. China Univ. Min. Technol. 2008, 18, 18–21. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Lipiński, W. Research progress and challenges in hydrate-based carbon dioxide capture applications. Appl. Energy 2020, 269, 114928. [Google Scholar] [CrossRef]
- Lee, Y.J.; Taro, K.; Yoshitaka, Y.; Yoon, J.H. Phase Equilibrium Studies of Tetrahydrofuran (THF) + CH4, THF + CO2, CH4 + CO2, and THF + CO2 + CH4 Hydrates. J. Chem. Eng. Data 2012, 57, 3543–3548. [Google Scholar] [CrossRef]
- Lino, K.; Takeya, S.; Ohmura, R. Characterization of clathrate hydrates formed with CH4 or CO2 plus tetrahydropyran. Fuel 2014, 122, 270–276. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Lipiński, W. Carbon dioxide hydrates for cold thermal energy storage: A review. Sol. Energy 2020, 211, 11–30. [Google Scholar] [CrossRef]
- Mooijer-van den Heuvel, M.M.; Witteman, R.; Peters, C.J. Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane. Fluid Phase Equilib. 2001, 182, 97–110. [Google Scholar] [CrossRef]
- Yu, Y.S.; Zhang, Q.Z.; Li, X.S.; Chen, C.; Zhou, S.D. Kinetics, compositions and structures of carbon dioxide/hydrogen hydrate formation in the presence of cyclopentane. Appl. Energy 2020, 265, 114808. [Google Scholar] [CrossRef]
- Hong, S.; Moon, S.; Lee, Y.; Lee, S.; Park, Y. Investigation of thermodynamic and kinetic effects of cyclopentane derivatives on CO2 hydrates for potential application to seawater desalination. Chem. Eng. J. 2019, 363, 99–106. [Google Scholar] [CrossRef]
- Pahlavanzadeh, H.; Mohammadi, A.H.; Jokandan, B.A.; Farhoudi, A. Clathrate hydrate formation of CO2 in the presence of water miscible (1,4-dioxane) and partially water miscible (cyclopentane) organic compounds: Experimental measurement and thermodynamic modeling. J. Petrol. Sci. Eng. 2019, 179, 465–473. [Google Scholar] [CrossRef]
- Torré, J.P.; Haillot, D.; Rigal, S.; de Souza Lima, R.; Dicharry, C.; Bedecarrats, J.P. 1,3 Dioxolane versus tetrahydrofuran as promoters for CO2-hydrate formation: Thermodynamics properties, and kinetics in presence of sodium dodecyl sulfate. Chem. Eng. Sci. 2015, 126, 688–697. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Wang, H.W.; Wu, Y.P.; Tsai, J.C.; Chen, Y.P. Experimental Measurements for Equilibrium Conditions of Carbon Dioxide Hydrate Mixtures with Each Additive of 1,3-Dioxane, Acetamide, Cyclopentanol, Cyclopentanone, or 1,3,5-Trioxane. J. Chem. Eng. Data 2022, 67, 2954–2962. [Google Scholar] [CrossRef]
- Babu, P.; Datta, S.; Kumar, R.; Linga, P. Impact of experimental pressure and temperature on semiclathrate hydrate formation for pre-combustion capture of CO2 using tetra-n-butyl ammonium nitrate. Energy 2014, 78, 458–464. [Google Scholar] [CrossRef]
- Zhang, P.; Ye, N.; Zhu, H.; Xiao, X. Hydrate Equilibrium Conditions of Tetra-n-butylphosphonium Bromide + Carbon Dioxide and the Crystal Morphologies. J. Chem. Eng. Data 2013, 58, 1781–1786. [Google Scholar] [CrossRef]
- Deng, X.Y.; Deng, X.Y.; Deng, X.Y.; Yang, Y.; Zhong, D.L.; Li, X.Y.; Ge, B.B.; Yan, J. New Insights into the Kinetics and Morphology of CO2 Hydrate Formation in the Presence of Sodium Dodecyl Sulfate. Energy Fuels 2021, 35, 13877–13888. [Google Scholar] [CrossRef]
- Kumar, A.; Sakpal, T.; Linga, P.; Kumar, R. Influence of contact medium and surfactants on carbon dioxide clathrate hydrate kinetics. Fuel 2013, 105, 664–671. [Google Scholar] [CrossRef]
- Sinehbaghizadeh, S.; Saptoro, A.; Mohammadi, A.H. CO2 hydrate properties and applications: A state of the art. Prog. Energy Combust. Sci. 2022, 93, 101026. [Google Scholar] [CrossRef]
- Ndlovu, P.; Babaee, S.; Naidoo, P. Experimental Study of CH4-CO2 Replacement in Gas Hydrates in the presence of nitrogen and graphene nanoplatelets. J. Mol. Liq. 2023, 371, 121109. [Google Scholar] [CrossRef]
- Wu, W.; Hao, B.; Guo, Y.; Yang, J.; Du, M.; Zheng, Q.; Bai, Z. Application of monocyclic compounds as natural gas hydrate promoters: A review. Chem. Eng. Res. Des. 2023, 190, 66–90. [Google Scholar] [CrossRef]
- Deng, Z.; Fan, S.; Wang, Y.; Lang, X.; Li, G.; Liu, F.; Li, M. High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes. Energy 2023, 264, 126045. [Google Scholar] [CrossRef]
- Tee, P.F.; Abdullah, M.O.; Tan, I.A.W.; Rashid, N.K.A.; Amin, M.A.M.; Nolasco-Hipolito, C.; Bujang, K. Review on hybrid energy systems for wastewater treatment and bio-energy production. Renew. Sustain. Energy Rev. 2016, 54, 235–246. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Pires, J.C.M.; Simões, M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017, 24, 403–415. [Google Scholar] [CrossRef]
- Azetsu-Scott, K.; Yeats, P.; Wohlgeschaffen, G.; Dalziel, J.; Niven, S.; Lee, K. Precipitation of heavy metals in produced water: Influence on contaminant transport and toxicity. Mar. Environ. Res. 2007, 63, 146–167. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Liu, Z.F. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef]
- Srivastava, N.K.; Majumder, C.B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 2008, 151, 1–8. [Google Scholar] [CrossRef]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Joshi, M.K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Sharma, A.; Mangla, D.; Shehnaz; Chaudhry, S.A. Recent advances in magnetic composites as adsorbents for wastewater remediation. J. Environ. Manag. 2022, 306, 114483. [Google Scholar] [CrossRef]
- Quero, G.M.; Cassin, D.; Botter, M.; Perini, L.; Luna, G.M. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Front. Microb. 2015, 6, 1053. [Google Scholar] [CrossRef]
- Gupta, V.K.; Suhas. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
- Finizio, A.; Azimonti, G.; Villa, S. Occurrence of pesticides in surface water bodies: A critical analysis of the Italian national pesticide survey programs. J. Environ. Monit. 2011, 13, 49–57. [Google Scholar] [CrossRef]
- Ngah, W.S.W.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Khan, N.A.; Ahmed, S.; Farooqi, I.H.; Ali, I.; Vambol, V.; Changani, F.; Khan, A.H. Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: A critical review. TrAC Trends Anal. Chem. 2020, 129, 115921. [Google Scholar] [CrossRef]
- Buchanan, B.B. Removing Salt from Sea Water. U.S. Patent No. 3,027,320, 27 March 1962. [Google Scholar]
- Walton, P.R. Continuous Saline Water Purification. U.S. Patent No. 3,132,096, 5 May 1964. [Google Scholar]
- Klass, D. Hydrate Forming in Water Desalination. U.S. Patent No. 3,856,492, 24 December 1974. [Google Scholar]
- McCormack, R.A. Clathrate Freeze Desalination Apparatus and Method. U.S. Patent No. 5,553,456, 10 September 1996. [Google Scholar]
- Max, M.D.; Pellenbarg, R.E. Desalination through Methane Hydrate. U.S. Patent No. 5,873,262, 23 February 1999. [Google Scholar]
- Heinemann, R.F.; Huang, D.D.T.; Long, J.; Saeger, R.B. Process for Making Gas Hydrates. U.S. Patent No. 6,028,234, 22 February 2000. [Google Scholar]
- Max, M.D.; Korsgaard, J. Hydrate-Based Desalination with Hydrate-Elevating Density-Driven Circulation. U.S. Patent No. 6,969,467, 10 November 2005. [Google Scholar]
- Simmons, B.A.; Bradshaw, R.W.; Dedrick, D.E.; Anderson, D.W. Complex Admixtures of Clathrate Hydrates in a Water Desalination Method. U.S. Patent No. 7560028B1, 14 July 2009. [Google Scholar]
- Phelps, T.J.; Tsouris, C.; Palumbo, A.V.; Riestenberg, D.E.; McCallum, S.D. Method for Excluding Salt and Other Soluble Materials from ProducedWater. U.S. Patent No. 7,569,737, 4 August 2009. [Google Scholar]
- Katyal, A.A. System and Method for Hydrate-Based Desalination. U.S. Patent No. 9,643,860, 9 May 2017. [Google Scholar]
- Parker, A. Potable water from sea-water. Nature 1942, 149, 184–186. [Google Scholar] [CrossRef]
- Aghigh, A.; Alizadeh, V.; Wong, H.Y.; Islam, M.S.; Amin, N.; Zaman, M. Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination 2015, 365, 389–397. [Google Scholar] [CrossRef]
- Sahu, P. Clathrate hydrate technology for water reclamation: Present status and future prospects. J. Water Process Eng. 2021, 41, 102058. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Mao, N.; He, T. Progress and prospect of hydrate-based desalination technology. Front. Energy 2022, 16, 445–459. [Google Scholar] [CrossRef]
- Nallakukkala, S.; Rehman, A.; Zaini, D.B.; Lal, B. Gas hydrate-based heavy metal ion removal from industrial wastewater: A review. Water 2022, 14, 1171. [Google Scholar] [CrossRef]
- Montazeri, S.M.; Kolliopoulos, G. Hydrate based desalination for sustainable water treatment: A review. Desalination 2022, 537, 115855. [Google Scholar] [CrossRef]
- Chong, Z.R.; He, T.; Babu, P.; Zheng, J.; Linga, P. Economic evaluation of energy efficient hydrate-based desalination utilizing cold energy from liquefied natural gas (LNG). Desalination 2019, 463, 69–80. [Google Scholar] [CrossRef]
- He, T.; Chong, Z.R.; Zheng, J.; Ju, Y.; Linga, P. LNG cold energy utilization: Prospects and challenges. Energy 2019, 170, 557–568. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, M. Experimental investigation on novel desalination system via gas hydrate. Desalination 2020, 478, 114284. [Google Scholar] [CrossRef]
- Sarshar, M.; Sharafi, A.H. Simultaneous water desalination and CO2 capturing by hydrate formation. Water Treat. 2011, 28, 59–64. [Google Scholar] [CrossRef]
- Park, K.; Hong, S.Y.; Lee, J.W.; Kang, K.C.; Lee, Y.C.; Ha, M.G.; Lee, J.D. A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+). Desalination 2011, 274, 91–96. [Google Scholar] [CrossRef]
- Cha, J.H.; Seol, Y. Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests. ACS Sustain. Chem. Eng. 2013, 1, 1218–1224. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, J.; Liu, W.; Liu, Y.; Song, Y. Effects of C3H8 on hydrate formation and dissociation for integrated CO2 capture and desalination technology. Energy 2015, 93, 1971–1979. [Google Scholar] [CrossRef]
- Yang, M.; Song, Y.; Jiang, L.; Liu, W.; Dou, B.; Jing, W. Effects of operating mode and pressure on hydrate-based desalination and CO2 capture in porous media. Appl. Energy 2014, 135, 504–511. [Google Scholar] [CrossRef]
- Sun, S.C.; Liu, C.L.; Ye, Y.G. Phase equilibrium condition of marine carbon dioxide hydrate. J. Chem. Thermodyn. 2013, 57, 256–260. [Google Scholar] [CrossRef]
- Yang, M.; Song, Y.; Liu, Y.; Lam, W.H.; Li, Q. Equilibrium conditions for CO2 hydrate in porous medium. J. Chem. Thermodyn. 2011, 43, 334–338. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, M.; Liu, Y.; Wang, D.; Song, Y. Effects of cyclopentane on CO2 hydrate formation and dissociation as a co-guest molecule for desalination. J. Chem. Thermodyn. 2017, 104, 9–15. [Google Scholar] [CrossRef]
- Koh, C.A.; Wisbey, R.P.; Wu, X.; Westacott, R.E. Water ordering around methane during hydrate formation. J. Chem. Phys. 2000, 113, 6390–6397. [Google Scholar] [CrossRef]
- Wu, Y.; He, Y.; Tang, T.; Zhai, M. Molecular dynamic simulations of methane hydrate formation between solid surfaces: Implications for methane storage. Energy 2023, 262, 12551. [Google Scholar] [CrossRef]
- Nakate, P.; Ghosh, B.; Das, S.; Roy, S.; Kumar, R. Molecular dynamics study on growth of carbon dioxide and methane hydrate from a seed crystal. Chin. J. Chem. Eng. 2019, 27, 2074–2080. [Google Scholar] [CrossRef]
- Tung, Y.T.; Chen, L.J.; Chen, Y.P.; Lin, S.T. The growth of structure I methane hydrate from molecular dynamics simulations. J. Phys. Chem. B 2010, 114, 10804–10813. [Google Scholar] [CrossRef]
- English, N.J.; MacElroy, J.M.D. Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges. Chem. Eng. Sci. 2015, 121, 133–156. [Google Scholar] [CrossRef]
- Bai, D.; Zhang, X.; Chen, G.; Wang, W. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations. Energy Environ. Sci. 2012, 5, 7033–7041. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, J.; Hong, C. Molecular dynamics simulations on dissociation of CO2 hydrate in the presence of inhibitor. Chem. Phys. 2020, 538, 110894. [Google Scholar] [CrossRef]
- Nallakukkala, S.; Lal, B.; Shariff, M.A. Influence of water volume on CO2 hydrate-based desalination of brine solution. Mater. Today Proc. 2022, 56, 2172–2177. [Google Scholar] [CrossRef]
- Rehman, A.N.; Lal, B.; Pendyala, R.; Yusoff, M.H.M. Unusual CO2 hydrate formation in porous media: Implications on geo-CO2 storage laboratory testing methods. Mater. Today Proc. 2022, 57, 1363–1368. [Google Scholar] [CrossRef]
- Falahieh, M.M.; Bonyadi, M.; Lashanizadegan, A. A new hybrid desalination method based on the CO2 gas hydrate and capacitive deionization processes. Desalination 2021, 502, 114932. [Google Scholar] [CrossRef]
- Gautam, R.; Kumar, S.; Sahai, M.; Kumar, A. Solid CO2 hydrates for sustainable environment: Application in carbon capture and desalination. Mater. Today Proc. 2022, 67, 609–615. [Google Scholar] [CrossRef]
- Franks, F. Water. A Comprehensive Treatise; Plenum Press: New York, NY, USA, 1975. [Google Scholar]
- Ahuja, A.; Zylyftari, G.; Morris, J.F. Yield stress measurements of cyclopentane hydrate slurry. J. Nonnewton. Fluid. Mech. 2015, 220, 116–125. [Google Scholar] [CrossRef]
- Aman, Z.M.; Olcott, K.; Pfeiffer, K.; Sloan, E.D.; Sum, A.K.; Koh, C.A. Surfactant adsorption and interfacial tension investigations on cyclopentane hydrate. Langmuir 2013, 29, 2676–2682. [Google Scholar] [CrossRef]
- Corak, D.; Barth, T.; Høiland, S.; Skodvin, T.; Larsen, R.; Skjetne, T. Effect of subcooling and amount of hydrate former on formation of cyclopentane hydrates in brine. Desalination 2011, 278, 268–274. [Google Scholar] [CrossRef]
- Lim, Y.A.; Babu, P.; Kumar, R.; Linga, P. Morphology of carbon dioxide–hydrogen–cyclopentane hydrates with or without sodium dodecyl sulfate. Cryst. Growth. Des. 2013, 13, 2047–2059. [Google Scholar] [CrossRef]
- Lv, Y.N.; Wang, S.S.; Sun, C.Y.; Gong, J.; Chen, G.J. Desalination by forming hydrate from brine in cyclopentane dispersion system. Desalination 2017, 413, 217–222. [Google Scholar] [CrossRef]
- Nakajima, M.; Ohmura, R.; Mori, Y.H. Clathrate hydrate formation from cyclo-pentane-in-water emulsions. Ind. Eng. Chem. Res. 2008, 47, 8933–8939. [Google Scholar] [CrossRef]
- Sefidroodi, H.; Abrahamsen, E.; Kelland, M.A. Investigation into the strength and source of the memory effect for cyclopentane hydrate. Chem. Eng. Sci. 2013, 87, 133–140. [Google Scholar] [CrossRef]
- Taylor, C.J.; Miller, K.T.; Koh, C.A.; Sloan, E.D., Jr. Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface. Chem. Eng. Sci. 2007, 62, 6524–6533. [Google Scholar] [CrossRef] [Green Version]
- Leea, J.; Kimb, K.S.; Seoa, Y. Thermodynamic, structural, and kinetic studies of cyclopentane + CO2 hydrates: Applications for desalination and CO2 capture. Chem. Eng. J. 2019, 375, 121974. [Google Scholar] [CrossRef]
- Serikkali, A.; Van, H.N.; Pham, T.K.; Le, Q.D.; Douzet, J.; Herri, J.M.; Bouillot, B. Phase equilibrium and dissociation enthalpies of CO2/cyclopentane hydrates in presence of salts for water treatment and CO2 capture: New experimental data and modeling. Fluid Phase Equilib. 2022, 556, 113410. [Google Scholar] [CrossRef]
- Ershov, E.D.; Lebedenko, Y.P.; Chuvilin, E.M.; Istomin, V.A.; Yakushev, V.S. Problems of Hydrate Formation in the Cryolithozone. Geocryological Research; MGU: Moscow, Russia, 1989. [Google Scholar]
- Romanovsky, N.N. Cryolithozone and the Zone of Hydrates of Natural Gases (the Problem of Relationship and Interaction). Problems of Geocryology; MGU: Moscow, Russia, 1988. [Google Scholar]
- Falenty, A.; Kuhs, W.F. Self-preservation of CO2 gas hydrates-surface microstructure and ice perfection. J. Phys. Chem. B 2009, 113, 15975–15988. [Google Scholar] [CrossRef]
- Kuhs, W.F.; Genov, G.; Staykova, D.K.; Hansen, T. Ice perfection and onset of anomalous preservation of gas hydrates. Phys. Chem. Chem. Phys. 2004, 6, 4917–4920. [Google Scholar] [CrossRef]
- Shimada, W.; Takeya, S.; Kamata, Y.; Uchida, T.; Nagao, J.; Ebinuma, T.; Narita, H. Texture change of ice on anomalously preserved methane clathrate hydrate. J. Phys. Chem. B 2005, 109, 5802–5807. [Google Scholar] [CrossRef]
- Takeya, S.; Ripmeester, J.A. Anomalous preservation of CH4 hydrate and its dependence on the morphology of ice. Chem. Phys. Chem. 2010, 11, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Gaidukova, O.; Misyura, S.; Morozov, V.; Strizhak, P. Gas Hydrates: Applications and Advantages. Energies 2023, 16, 2866. [Google Scholar] [CrossRef]
- Circone, S.; Stern, L.A.; Kirby, H. The effect of elevated methane pressure on methane hydrate dissociation. Am. Mineral. 2004, 89, 1192–1201. [Google Scholar] [CrossRef]
- Prasad, P.S.R.; Chari, V.D. Preservation of methane gas in the form of hydrates: Use of mixed hydrates. J. Nat. Gas Sci. Eng. 2015, 25, 10–14. [Google Scholar] [CrossRef]
- Misyura, S.Y. Developing the environmentally friendly technologies of combustion of gas hydrates. Reducing harmful emissions during combustion. Environ. Pollut. 2020, 265, 114871. [Google Scholar] [CrossRef]
- Misyura, S.Y.; Manakov, A.Y.; Morozov, V.S.; Nyashina, G.S.; Gaidukova, O.S.; Skiba, S.S.; Volkov, R.S.; Voytkov, I.S. The influence of key parameters on combustion of double gas hydrate. J. Nat. Gas Sci. Eng. 2020, 80, 103396. [Google Scholar] [CrossRef]
- Misyura, S.Y. Dissociation of various gas hydrates (methane hydrate, double gas hydrates of methane-propane and methane-isopropanol) during combustion: Assessing the combustion efficiency. Energy 2020, 206, 118120. [Google Scholar] [CrossRef]
- Misyura, S.Y. Dissociation and combustion of gas hydrates. J. Engin. Thermophys. 2022, 31, 573–579. [Google Scholar] [CrossRef]
- Takeya, S.; Yoneyama, A.; Ueda, K.; Mimachi, H.; Takahashi, M.; Sano, K.; Hyodo, K.; Takeda, T.; Gotoh, Y. Anomalously preserved clathrate hydrate of natural gas in pellet form at 253 K. J. Phys. Chem. C 2012, 116, 13842–13848. [Google Scholar] [CrossRef]
- Misyura, S.Y.; Donskoy, I.G. Dissociation of gas hydrate for a single particle and for a thick layer of particles: The effect of self-preservation on the dissociation kinetics of the gas hydrate layer. Fuel 2022, 314, 122759. [Google Scholar] [CrossRef]
- Mimachi, H. Natural gas storage and transportation within gas hydrate of smaller particle: Size dependence of self-preservation phenomenon of natural gas hydrate. Chem. Eng. Sci. 2014, 118, 208–213. [Google Scholar] [CrossRef]
- Misyura, S.Y.; Donskoy, I.G. Dissociation of a powder layer of methane gas hydrate in a wide range of temperatures and heat fluxes. Powder Technol. 2022, 117017, 10–14. [Google Scholar] [CrossRef]
- Xu, J.; Bu, Z.; Li, H.; Wang, X.; Liu, S. Permeability models of hydrate-bearing sediments: A comprehensive review with focus on normalized permeability. Energies 2022, 15, 4524. [Google Scholar] [CrossRef]
- Misyura, S.Y.; Donskoy, I.G. Improving the efficiency of storage of natural and artificial methane hydrates. J. Nat. Gas Sci. Eng. 2022, 97, 104324. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Zhang, S.; Yang, H.; Li, J.; Wu, Q. Experimental study on the effect of decomposition induction on the replacement process of CO2–CH4 hydrate in hydrate-bearing sediments below the freezing point. Fluid Phase Equilib. 2022, 562, 113562. [Google Scholar] [CrossRef]
- Misyura, S.Y.; Donskoy, I.G. Ways to improve the efficiency of carbon dioxide utilization and gas hydrate storage at low temperatures. J. CO2 Util. 2019, 34, 313–324. [Google Scholar] [CrossRef]
- Gaidukova, O.; Misyura, S.; Strizhak, P. Key areas of gas hydrates study: Review. Energies 2022, 15, 1799. [Google Scholar] [CrossRef]
- Misyura, S.Y.; Donskoy, I.G. Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition. Fuel 2020, 262, 116614. [Google Scholar] [CrossRef]
- Gaidukova, O.; Misyura, S.; Donskoy, I.; Morozov, V.; Volkov, R. Pool fire suppression using CO2 Hydrate. Energies 2022, 15, 9585. [Google Scholar] [CrossRef]
Classes Promoters | Action Principle | Some Types of Promoters |
---|---|---|
thermodynamic | Reduces the pressure or increases the temperature of hydrate formation. | Tetrahydrofuran (THF) [101,124,125] |
Tetrahydropyran (THP) [126,127,128] | ||
Cyclopentane (CP) [127,129,130,131] | ||
Cyclobutanone [128] | ||
Cyclohexane (CH) [128] | ||
1,3 Dioxolane [132] | ||
1,3,5 Trioxane [133] | ||
Tetra-n-butylphosphonium acetate (TBP-Ace) [127] | ||
Tetra-n-butyl ammonium bromide (TBAB) [102,103,104,105,106] | ||
Tetra-n-butyl ammonium nitrate (TBANO3) [134] | ||
Tetra-n-butylphosphonium bromide (TBPB) [135] | ||
Tetra-n-butyl phosphonium chloride (TBPC) [135] | ||
kinetic | Enhances the kinetics of hydrate formation without affecting the thermodynamics | Sodium dodecyl sulfate (SDS) [115,136] |
Tween [137] | ||
Dodecyltrimethylammonium chloride (DTACl) [137] | ||
l-methionine [127,138] | ||
l-norvaline [127,138] | ||
l-norleucine [127,138] | ||
l-glycine [127,138] | ||
l-tryptophan [127,138] | ||
Metal particles and metal oxides [138] | ||
Nanotubes [138] | ||
Graphene [138,139,141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misyura, S.; Strizhak, P.; Meleshkin, A.; Morozov, V.; Gaidukova, O.; Shlegel, N.; Shkola, M. A Review of Gas Capture and Liquid Separation Technologies by CO2 Gas Hydrate. Energies 2023, 16, 3318. https://doi.org/10.3390/en16083318
Misyura S, Strizhak P, Meleshkin A, Morozov V, Gaidukova O, Shlegel N, Shkola M. A Review of Gas Capture and Liquid Separation Technologies by CO2 Gas Hydrate. Energies. 2023; 16(8):3318. https://doi.org/10.3390/en16083318
Chicago/Turabian StyleMisyura, Sergey, Pavel Strizhak, Anton Meleshkin, Vladimir Morozov, Olga Gaidukova, Nikita Shlegel, and Maria Shkola. 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO2 Gas Hydrate" Energies 16, no. 8: 3318. https://doi.org/10.3390/en16083318
APA StyleMisyura, S., Strizhak, P., Meleshkin, A., Morozov, V., Gaidukova, O., Shlegel, N., & Shkola, M. (2023). A Review of Gas Capture and Liquid Separation Technologies by CO2 Gas Hydrate. Energies, 16(8), 3318. https://doi.org/10.3390/en16083318