A Unified Analysis of DC–DC Converters’ Current Stress
Abstract
:1. Introduction
2. Signal Analysis
2.1. Classifying Converter Cells Based on Terminals’ Current Signals and Key Signals Generated by Converter Cells
2.2. Unified Analysis of DC–DC Converters Based on Cell 1-1
The Average, RMS, and Ripple RMS Values for Current Signals from DC–DC Converters Based on Cell 1-1
2.3. Unified Analysis of DC–DC Converters Based on Cell 1-4
The Average, RMS, and Signal Ripple Content
3. Generalized Signal Analysis
3.1. Generalized Analysis of Various Types of Pulses
3.1.1. Analyzing Converters Employing a Type-3 BBB
Current Stress in Converters 2-3.1 and 3-3.1
3.1.2. Converter Cells with Type-2 BBBs
3.2. Generalized Analysis to Cater for Different Types of Signals and Hence a Broad Range of Converters
4. Analytical Validation
4.1. Analytical Validation of Derivations
Converter Cell 1-1.w Family of Converters
4.2. Analysis Applicable to Different Types of Converters
4.2.1. CCM Operation of Converter 2-3.1
4.2.2. CCM Operation of Converter 3-3.1
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, F.; Zhong, R.; Xie, W.; He, J.; Xia, Y.; Xue, F. Research on AC-DC hybrid power supply system in industrial park. In Proceedings of the 16th IET International Conference on AC and DC Power Transmission, Online, 2–3 July 2020. [Google Scholar]
- Ji, H.; Wang, D.; Xu, Q.; Yuan, S.; Cai, Y.; Lei, X. DC power distribution system and its protection configuration. In Proceedings of the 2021 6th international Conference on Power and Renewable Energy (ICPRRE), Shanghai, China, 17–20 September 2021; pp. 582–587. [Google Scholar]
- Zhao, X.; Yang, G.; Bai, X.; Yang, Z.; Yang, G. Construction of low voltage DC smart buildings with generation-storage-distribution-utilization. In Proceedings of the 2021 IEEE Sustainable Power and Energy Conference, Nanjing, China, 22–25 December 2021; pp. 2140–2143. [Google Scholar]
- Zhang, W.; Liu, Y.; Cui, Y.; Zhao, M.; Wei, T.; Chen, Q. Research on typical power supply mode of DC distribution and consumption system. In Proceedings of the 2020 IEEE Sustainable Power and Energy Conference, Chengdu, China, 23–25 November 2020; pp. 491–496. [Google Scholar]
- Cho, J.; Cho, Y.; Kim, H.; Kim, H.; Kim, J.; Kim, H. A new protection scheme using an AC-DC converter for a LVDC distribution system. In Proceedings of the IEEE 3rd International Conference on DC microgrids (ICDCM), Matsue, Japan, 20–23 May 2019. [Google Scholar]
- Xie, W.; Zhong, R.; Xia, Y.; Xue, F.; He, W. Study on grounding method of DC system in an AC and DC hybrid power system of industrial park. In Proceedings of the 2020 IEEE Asia Energy and Electrical Engineering Symposium, Chengdu, China, 29–31 May 2020; pp. 285–290. [Google Scholar]
- Li, J.; Ertao, L.; Kai, M.A.; Zhenpeng, L.; Hua, H.; Hao, Y. Comparative analysis of DC distribution schemes for low-voltage control at the end of the grid. In Proceedings of the 2021 IEEE Sustainable Power and Energy Conference, Nanjing, China, 22–25 December 2021; pp. 2840–2845. [Google Scholar]
- Kolar, J.W.; Wolbank, T.M.; Schrodl, M. Analytical calculation of RMS current stress on the DC-link capacitor of voltage DC link PWM converter system. In Proceedings of the 9th International Conference on Electrical Machines and Drives, Canterbury, UK, 1–3 September 1999; pp. 81–89. [Google Scholar]
- Gohil, G.; Bede, L.; Teodorescu, R.; Blaabjerg, F. Analytical method to calculate the DC link current stress in voltage source converters. In Proceedings of the 2014 IEEE PEDES Conference Proceedings, Mumbai, India, 16–19 December 2014. [Google Scholar]
- Ahmad, S.S.; Narayanan, G. Evaluation of DC-link capacitor RMS current in switched reluctance motor drives. IEEE Trans. Ind. Appl. 2021, 57, 1459–1471. [Google Scholar] [CrossRef]
- Ippisch, M.; Gerling, D. Calculation of active and passive components stress of multiphase inverters with single-frequency output. In Proceedings of the IEEE Transportation Electrification Conference and Expo, Chicago, IL, USA, 23–26 June 2020; pp. 420–426. [Google Scholar]
- Mazumder, S. Complete mathematical analysis of ripple current as a function of the modulation index for direct-indirect and bus clamped space vector modulation techniques. In Proceedings of the IEEE International Electric Machines and Drives Conference Record, Milwaukee, WI, USA, 18–21 May 1997. [Google Scholar]
- Chen, B.; Su, H. Current stress analysis of passive devices and switching devices of quasi-Z-source inverters. In Proceedings of the IEEE 2021 6th Asia Conference on Power and Electrical Engineering, Chongqing, China, 8–11 April 2021; pp. 1461–1465. [Google Scholar]
- Nishizawa, K.; Itoh, J.-I.; Odaka, A.; Toba, A.; Umida, H.; Fujita, S. Current stress reduction for DC-link capacitors of three-phase VSI with carrier based continuous PWM. IEEE Trans. Ind. Appl. 2019, 55, 6061–6072. [Google Scholar] [CrossRef]
- Grbovic, P.J. Closed-form analysis of N-cell interleaved two-level DC-DC converters: The DC-bus capacitor current stress. In Proceedings of the IEEE ECCE Asia Downunder, Melbourne, VIC, Australia, 3–6 June 2013; pp. 122–129. [Google Scholar]
- Rudenko, Y. Analysis of DC-DC converters by averaging method based on Lagrange theorems. In Proceedings of the 2021 IEEE 2nd KhPI Week on Advanced Technology, Kharkiv, Ukraine, 13–17 September 2021; pp. 367–370. [Google Scholar]
- Zhuo, S.; Gaillard, A.; Li, Q.; Ma, R.; Paire, D.; Gao, F. Current ripple optimisation for four-phase floating interleaved DC-DC boost converter under switching fault. IEEE Trans. Ind. Appl. 2020, 56, 4214–4224. [Google Scholar] [CrossRef]
- Chang, C. Current ripple bounds in interleaved DC-DC power converters. In Proceedings of the IEEE International Conference on Power Electronics and Drive Systems, Singapore, 21–24 February 1995; pp. 738–743. [Google Scholar]
- Tymerski, R.; Li, D. Extended ripple analysis of PWM DC-DC converters. IEEE Trans. Power Electron. 1993, 8, 588–595. [Google Scholar] [CrossRef]
- Carlos, J.; Floriani, A. Generalised analysis of current ripple in PWM H-bridge converter with unipolar-bipolar switching. IEEE Power Electron. Lett. 2004, 2, 83–86. [Google Scholar]
- Dahono, P.A.; Riyadi, S.; Mudawari, A.; Haroen, Y. Output ripple analysis of multiphase DC-DC converters. In Proceedings of the Intenaional Conference on Power Electronics and Drive Systems (PEDS), Hong Kong, China, 27–29 July 1999; pp. 626–630. [Google Scholar]
- El Khateb, H.; Rahim, N.A.; Selvaraj, J.; Williams, B.W. DC-DC converter with low input current ripple for maximum photovoltaic power extraction. IEEE Trans. Ind. Electron. 2015, 62, 2246–2256. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.W. DC-DC converters with continuous input and output power. IEEE Trans. Power Electron. 2013, 28, 2307–2316. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, J.; Cao, W.; Xiao, W.; Li, P.; Finney, S.J.; Li, Y. Ultrahigh step-up DC-DC converter for distributed generation by three degrees of freedom approach. IEEE Trans. Power Electron. 2016, 31, 4930–4941. [Google Scholar]
- Mouli, G.R.C.; Schijffelen, J.H.; Bauer, P.; Zeman, M. Design and comparison of a 10-kW interleaved boost converter for PV application using Si and SiC devices. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 610–623. [Google Scholar] [CrossRef] [Green Version]
- EPCOS Aluminium Electrolytic Capacitors with Screw Terminals Series B43742, B42762, December 2019. Available online: https://www.tdk-electronics.tdk.com/en/529316/products/products-catalog/aluminium-electrolytic-capacitors/capacitors-with-screw-terminal (accessed on 10 December 2022).
- CDM Cornell Dubilier DCMC Electrolytic Capacitors Datasheets. Available online: https://www.cde.com/capacitors/aluminium-electrolytic/screw-terminal (accessed on 10 December 2022).
- Jeffrey, A. Mathematics for Engineers and Scientists; English Language Book Society and Thomas Nelson and Sons Ltd.: London, UK, 1971. [Google Scholar]
- Shahir, F.M.; Babaei, E.; Aberoumandazar, M. New single-switch non-isolated boost DC-DC converter with free input current ripple. In Proceedings of the Power electronics, Drive Systems and Technologies (PEDSTC) Conference, Tabriz, Iran, 2–4 February 2021. [Google Scholar]
- Mohan, N.; Undland, T.M.; Robbins, W.P. Power Electronics: Converters, Applications and Design, 2nd ed.; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Erickson, R.W. Fundamentals of Power Electronics; Chapman and Hall: New York, NY, USA, 1997. [Google Scholar]
- Gitau, M.N.; Hofsajer, I.W. Analysis of 4-phase tapped-inductor DC-DC boost converter for high boost ratio wide voltage range applications. In Proceedings of the IEEE IECON Conference Proceedings, Dallas, TX, USA, 29 October–1 November 2014; pp. 5468–5474. [Google Scholar]
- Muchina, E.G.; Masike, L.; Gitau, M.N. High boost-ratio bidirectional converter for interfacing low-voltage battery energy storage system to a DC bus. IET Power Electron. 2019, 12, 2372–2381. [Google Scholar] [CrossRef]
- Hashmzadeh, S.M.; Marzang, V.; Pourjafar, S.; Hosseini, S.H. An ultra high step-up dual-input single ouput DC-DC converter based on coupled inductor. IEEE Trans. Ind. Electron. 2022, 69, 11023–11034. [Google Scholar] [CrossRef]
- Tymerski, R.; Vorperian, V. Generation and classification of PWM DC-DC converters. IEEE Trans. Aerosp. Electron. Syst. 1988, 24, 743–754. [Google Scholar] [CrossRef]
- Gitau, M.N.; Adams, G.P.; Masike, L.; Mbukani, M.K. Unified approach to synthesis and analysis of non-isolated DC-DC converters. IEEE Access 2021, 9, 120088–120109. [Google Scholar] [CrossRef]
Analytical values for converter 1-1.1 signal it1 | ||||
0.65 | 0.35 | |||
9.615 A | 10.92 A | 3.365 A | 5.986 A | 4.95 A |
Simulated values for converter 1-1.1 signal it1 | ||||
9.615 A | 11.35 A | 3.357 A | 6 A | 4.973 A |
Analytical values for converter 1-1.1 signal it2 | ||||
0.65 | 0.65 | |||
9.615 A | 10.92 A | 6.25 A | 8.158 A | 5.243 A |
Simulated values for converter 1-1.1 signal it2 | ||||
9.615 A | 11.35 A | 6.258 A | 8.212 A | 5.317 A |
Analytical values for converter 1-1.1 signal it3 | ||||
0.65 | 0.65 | 0.35 | ||
9.615 A | 10.92 A | 9.615 A | 10.12 A | 3.152 A |
Simulated values for converter 1-1.1 signal it3 | ||||
9.615 A | 11.35 A | 9.615 A | 10.17 A | 3.314 A |
Analytical values for converter 1-1.2 signal it1 | ||||
0.35 | 0.35 | |||
9.615 A | 10.92 A | 3.365 A | 5.986 A | 4.95 A |
Simulated values for converter 1-1.2 signal it1 | ||||
9.605 A | 10.923 A | 3.357 A | 5.974 A | 4.942 A |
Analytical values for converter 1-1.2 signal it2 | ||||
0.35 | 0.65 | |||
9.615 A | 10.92 A | 6.25 A | 8.158 A | 5.243 A |
Simulated values for converter 1-1.2 signal it2 | ||||
9.605 A | 10.923 A | 6.248 A | 8.156 A | 5.242 A |
Analytical values for converter 1-1.2 signal it3 | ||||
0.35 | 0.35 | 0.65 | ||
9.615 A | 10.92 A | 9.615 A | 10.12 A | 3.152 A |
Simulated values for converter 1-1.2 signal it3 | ||||
9.605 A | 10.923 A | 9.605 A | 10.11 A | 3.152 A |
Analytical values for DC–DC converter 2-3.1 signal it1 | ||||
22.11 A | 12.74 A | 14.372 A | 18.07 A | 10.955 A |
Simulated values for DC–DC converter 2-3.1 signal it1 | ||||
22.04 A | 12.726 A | 14.326 A | 18.023 A | 10.936 A |
Analytical values for DC–DC converter 2-3.1 signal it2 | ||||
11.905 A | 11.83 A | 4.167 A | 7.327 A | 6.027 A |
Simulated values for DC–DC converter 2-3.1 signal it2 | ||||
11.864 A | 11.911 A | 4.172 A | 7.34 A | 6.039 A |
Analytical values for DC–DC converter 2-3.1 signal it3 | ||||
27.01 A | 10.206 A | 17.21 A | 0.15 | 0.35 |
10.205 A | 14.17 A | 9.827 A | −2.94A | −18.69 A |
Simulated values for DC–DC converter 2-3.1 signal it3 | ||||
26.985 A | 10.113 A | 17.041A | 0.15 | 0.35 |
10.154 A | 14.129 A | 9.825 A | −2.79 A | −18.755 A |
Analytical values for DC–DC converter 2-3.1 signal ic | ||||
−10.205 A | 7.356 A | 16.456 A | 0.35 | 0.15 |
0 | 9.8 A | 9.8 A | 19.11 A | −2.73 A |
Simulated values for DC–DC converter 2-3.1 signal ic | ||||
−10.258 A | 7.259 A | 16.432 A | 0.35 | 0.15 |
0 | 9.808 A | 9.808 A | 19.046 A | −2.22 A |
Analytical values for DC–DC converter 3-3.1 signal it1 | ||||
12.115 A | 12.115 A | 9.1 A | 9.1 A | 0.35 |
0.35 | 0.65 | 12.115 A | 12.4 A | 2.627 A |
Simulated values for DC–DC converter 3-3.1 signal it1 | ||||
12.233 A | 12.233 A | 9.232 A | 9.232 A | 0.35 |
0.35 | 0.65 | 12.233 A | 12.523 A | 2.679 A |
Analytical values for DC–DC converter 3-3.1 signal it2 | ||||
22.5 A | 22.5 A | 14.56 A | 14.56 A | 0.35 |
0.35 | 0.65 | 22.5 A | 22.89 A | 4.203 A |
Simulated values for DC–DC converter 3-3.1 signal it2 | ||||
22.662 A | 22.662 A | 14.811 A | 14.811 A | 0.35 |
0.35 | 0.65 | 22.662 A | 23.065 A | 4.293 A |
Analytical values for DC–DC converter 3-3.1 signal it3 | ||||
10.723 A | 20.235 A | 10.4 A | 0.9575 A | 0.15 |
10.571 A | 12.72 A | 7.072 A | 0.15 | 0.15 |
Simulated values for DC–DC converter 3-3.1 signal it3 | ||||
10.425 A | 19.693 A | 10.387 A | 1.118 A | 0.15 |
10.429 A | 12.452 A | 6.804 A | 0.15 | 0.15 |
Analytical values for DC–DC converter 3-3.1 signal ic | ||||
−10.384 A | 8.616 A | 15.616 A | 0.35 | 0.15 |
0 | 9.829 A | 9.83 A | −19.46 A | −2.1 A |
Simulated values for DC–DC converter 3-3.1 signal ic | ||||
−10.509 A | 8.633 A | 15.826 A | 0.35 | 0.15 |
0 | 9.973 A | 9.973 A | −19.7 A | 2.028 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gitau, M.N.; Masike, L.; Adams, G.P. A Unified Analysis of DC–DC Converters’ Current Stress. Energies 2023, 16, 3370. https://doi.org/10.3390/en16083370
Gitau MN, Masike L, Adams GP. A Unified Analysis of DC–DC Converters’ Current Stress. Energies. 2023; 16(8):3370. https://doi.org/10.3390/en16083370
Chicago/Turabian StyleGitau, Michael Njoroge, Lebogang Masike, and Grain P. Adams. 2023. "A Unified Analysis of DC–DC Converters’ Current Stress" Energies 16, no. 8: 3370. https://doi.org/10.3390/en16083370
APA StyleGitau, M. N., Masike, L., & Adams, G. P. (2023). A Unified Analysis of DC–DC Converters’ Current Stress. Energies, 16(8), 3370. https://doi.org/10.3390/en16083370