Comparison of the Power Extraction Performance of an Oscillating Hydrofoil Turbine with Different Deflector Designs
Abstract
:1. Introduction
2. Numerical Methodology
3. Results and Discussion
3.1. Comparison of Hydrofoil’s Power Extraction Efficiency at Various Deflector Positions
3.2. Performance Comparison of an Upstream-Deflector Hydrofoil with a Conventional Hydrofoil
3.3. Effect of Number of Upstream Deflectors N on the Hydrofoil’s Performance
3.4. Effect of Deflector-Hydrofoil Spacing J* on the Hydrofoil’s Performance
3.5. Effect of Tilt Angle β of the Upstream Deflector on the Hydrofoil’s Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badescu, V.; Lazaroiu, G.C.; Barelli, L. Power Engineering: Advances and Challenges Part B: Electrical Power; CRC Press: Boca Raton, FL, USA, 2018; p. 436. [Google Scholar]
- Bhatia, S.C. Advanced Renewable Energy Systems (Part 1 and 2), 1st ed.; WPI Publishing: New Delhi, India, 2014; p. 775. [Google Scholar]
- Ribeiro, B.L.R.; Frank, S.L.; Franck, J.A. High Reynolds Number Effects of an Oscillating Hydrofoil for Energy Harvesting. arXiv 2018, arXiv:1802.05328. [Google Scholar]
- Xiao, Q.; Zhu, Q. A review on flow energy harvesters based on flapping foils. J. Fluids Struct. 2014, 46, 174–191. [Google Scholar] [CrossRef]
- Young, J.; Lai, J.C.; Platzer, M.F. A review of progress and challenges in flapping foil power generation. Prog. Aerosp. Sci. 2014, 67, 2–28. [Google Scholar] [CrossRef]
- Kinsey, T.; Dumas, G. Parametric study of an oscillating airfoil in a power extraction regime. AIAA J. 2008, 46, 1318–1330. [Google Scholar] [CrossRef]
- Zhu, Q. Optimal frequency for flow energy harvesting of a flapping foil. J. Fluid Mech. 2011, 675, 495–517. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Huang, D.; Zheng, Z. Numerical investigation on energy extraction of flapping hydrofoils with different series foil shapes. Energy 2016, 112, 1153–1168. [Google Scholar] [CrossRef]
- Xiao, Q.; Liao, W.; Yang, S.; Peng, Y. How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil? Renew. Energy 2012, 37, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Xie, Y.; Zhang, D. Non sinusoidal motion effects on energy extraction performance of a flapping foil. Renew. Energy 2014, 64, 283–293. [Google Scholar] [CrossRef]
- Lu, K.; Xie, Y.; Zhang, D.; Xie, G. Systematic investigation of the flow evolution and energy extraction performance of a flapping-airfoil power generator. Energy 2015, 89, 138–147. [Google Scholar] [CrossRef]
- Veilleux, J.C.; Dumas, G. Numerical optimization of a fully-passive flapping-airfoil turbine. J. Fluids Struct. 2017, 70, 102–130. [Google Scholar] [CrossRef]
- Ma, P.; Yang, Z.; Wang, Y.; Liu, H.; Xie, Y. Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device. Renew. Energy 2017, 113, 648–659. [Google Scholar] [CrossRef]
- Sitorus, P.E.; Ko, J.H. Power extraction performance of three types of flapping hydrofoils at a Reynolds number of 1.7E6. Renew. Energy 2019, 132, 106–118. [Google Scholar] [CrossRef]
- Kinsey, T.; Dumas, G. Optimal tandem configuration for oscillating-foils hydrokinetic turbine. J. Fluid Eng. 2012, 134, 031103. [Google Scholar] [CrossRef]
- Picard-Deland, M.; Olivier, M.; Dumas, G.; Kinsey, T. Oscillating-foil turbine operating at large heaving amplitudes. AIAA J. 2019, 57, 5104–5113. [Google Scholar] [CrossRef]
- Oshkai, P.; Iverson, D.; Lee, W.; Dumas, G. Reliability study of a fully-passive oscillating foil turbine operating in a periodically-perturbed inflow. J. Fluids Struct. 2022, 113, 103630. [Google Scholar] [CrossRef]
- Xie, Y.H.; Jiang, W.; Lu, K.; Zhang, D. Numerical investigation into energy extraction of flapping airfoil with Gurney flaps. Energy 2016, 109, 694–702. [Google Scholar] [CrossRef]
- Zhu, B.; Huang, Y.; Zhang, Y. Energy harvesting properties of a flapping wing with an adaptive Gurney flap. Energy 2018, 152, 119–128. [Google Scholar] [CrossRef]
- Sun, G.; Wang, Y.; Xie, Y.; Lv, K.; Sheng, R. Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil. Energy 2021, 225, 120206. [Google Scholar] [CrossRef]
- Sun, G.; Wang, Y.; Xie, Y.; Ma, P.; Zhang, Y. Hydrodynamic and energy extraction properties of oscillating hydrofoils with a trailing edge flap. Appl. Ocean Res. 2021, 110, 102530. [Google Scholar] [CrossRef]
- Zhou, D.; Cao, Y.; Sun, X. Numerical study on energy-extraction performance of a flapping hydrofoil with a trailing-edge flap. Ocean Eng. 2021, 224, 108756. [Google Scholar] [CrossRef]
- Jiang, W.; Mei, Z.Y.; Wu, F.; Han, A.; Xie, Y.H.; Xie, D.M. Effect of shroud on the energy extraction performance of oscillating foil. Energy 2022, 239, 122387. [Google Scholar] [CrossRef]
- Xu, B.; Ma, Q.; Huang, D. Research on energy harvesting properties of a diffuser-augmented flapping wing. Renew. Energy 2021, 180, 271–280. [Google Scholar] [CrossRef]
- Dahmani, F.; Sohn, C.H. Effect of convergent duct geometry on the energy extraction performance of tandem oscillating hydrofoils system. J. Fluids Struct. 2020, 95, 102949. [Google Scholar] [CrossRef]
- Le, T.Q.; Ko, J.H.; Byun, D. Morphological effect of a scallop shell on a flapping-type tidal stream generator. Bioinspir. Biomim. 2013, 8, 036009. [Google Scholar] [CrossRef] [PubMed]
- Karbasian, H.R.; Esfahani, J.A.; Barati, E. Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation. Renew. Energy 2015, 81, 816–824. [Google Scholar] [CrossRef]
- Zhu, J.; Tian, T. The time asymmetric pitching effects on the energy extraction performance of a semi-active flapping wing power generator. Eur. J. Mech. B Fluids 2017, 66, 92–101. [Google Scholar] [CrossRef]
- Chen, Y.; Nan, J.; Wu, J. Wake effect on a semi-active flapping foil based energy harvester by a rotating foil. Comput. Fluids 2018, 160, 51–63. [Google Scholar] [CrossRef]
- Teng, L.; Deng, J.; Pan, D.; Shao, X. Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil. Renew. Energy 2016, 85, 810–818. [Google Scholar] [CrossRef]
- Wong, K.H.; Chong, W.T.; Sukiman, N.L.; Shiah, Y.C.; Poh, S.C.; Sopian, K.; Wang, W.C. Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine. Energy Convers. Manag. 2018, 160, 109–125. [Google Scholar] [CrossRef]
- Zhao, P.; Jiang, Y.; Liu, S.; Stoesser, T.; Zou, L.; Wang, K. Investigation of fundamental mechanism leading to the performance improvement of vertical axis wind turbines by deflector. Energy Convers. Manag. 2021, 247, 114680. [Google Scholar] [CrossRef]
- Golecha, K.; Eldho, T.I.; Prabhu, S.V. Influence of the deflector plate on the performance of modified Savonius water turbine. Appl. Energy 2011, 88, 3207–3217. [Google Scholar] [CrossRef]
- Tian, W.; Bian, J.; Yang, G.; Ni, X.; Mao, Z. Influence of a passive upstream deflector on the performance of the Savonius wind turbine. Energy Rep. 2022, 8, 7488–7499. [Google Scholar] [CrossRef]
- Chong, W.T.; Muzammil, W.K.; Ong, H.C.; Sopian, K.; Gwani, M.; Fazlizan, A.; Poh, S.C. Performance analysis of the deflector integrated cross axis wind turbine. Renew. Energy 2019, 138, 675–690. [Google Scholar] [CrossRef]
- Kang, C.; Zhao, H.; Zhang, Y.; Ding, K. Effects of upstream deflector on flow characteristics and startup performance of a drag-type hydrokinetic rotor. Renew. Energy 2021, 172, 290–303. [Google Scholar] [CrossRef]
- Lahooti, M.; Kim, D. Multi-body interaction effect on the energy harvesting performance of a flapping hydrofoil. Renew. Energy 2019, 130, 460–473. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, F.B.; Young, J.; Lai, J.C. Flapping foil power generator performance enhanced with a spring-connected tail. Phys. Fluids 2017, 29, 123601. [Google Scholar] [CrossRef]
- Liu, Z.; Bhattacharjee, K.S.; Tian, F.B.; Young, J.; Ray, T.; Lai, J.C. Kinematic optimization of a flapping foil power generator using a multi-fidelity evolutionary algorithm. Renew. Energy 2019, 132, 543–557. [Google Scholar] [CrossRef]
- Xu, L.; Tian, F.B.; Young, J.; Lai, J.C. A novel geometry-adaptive Cartesian grid based immersed boundary–lattice Boltzmann method for fluid–structure interactions at moderate and high Reynolds numbers. J. Comput. Phys. 2018, 375, 22–56. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.Q.; Yan, Y.; Tian, F.B. Effects of pitching motion profile on energy harvesting performance of a semi-active flapping foil using immersed boundary method. Ocean Eng. 2018, 163, 94–106. [Google Scholar] [CrossRef]
- Wang, W.; Yan, Y.; Tian, F.B. Numerical study on hydrodynamics for a non-sinusoidal forced oscillating hydrofoil based on an immersed boundary method. Ocean Eng. 2018, 147, 606–620. [Google Scholar] [CrossRef]
- Filippas, E.S.; Belibassakis, K.A. A nonlinear time-domain BEM for the performance of 3D flapping-wing thrusters in directional waves. Ocean Eng. 2022, 245, 110157. [Google Scholar] [CrossRef]
- Anevlavi, D.E.; Filippas, E.S.; Karperaki, A.E.; Belibassakis, K.A. A non-linear BEM–FEM coupled scheme for the performance of flexible flapping-foil thrusters. J. Mar. Sci. Eng. 2020, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, E.; Kinsey, T.; Dumas, G. Rans versus scale-adaptive turbulence modeling for engineering prediction of oscillating-foils turbines. In Proceedings of the 21th Annual Conference of the CFD Society of Canada, Sherbrooke, QC, Canada, 6–9 May 2013; p. CFDSC2013-186. [Google Scholar]
- Badoe, C.E.; Xie, Z.T.; Sandham, N.D. Large Eddy simulation of a heaving wing on the Cusp of transition to turbulence. Comput. Fluids 2019, 184, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhang, X.; Tian, X.; Li, X.; Lu, W. A review on fluid dynamics of flapping foils. Ocean Eng. 2020, 195, 106712. [Google Scholar] [CrossRef]
- Li, G.; Xu, W.; Li, Y.; Wang, F. Univariate analysis of scaling effects on the aerodynamics of vertical axis wind turbines based on high-resolution numerical simulations: The Reynolds number effects. J. Wind. Eng. Ind. Aerodyn. 2022, 223, 104938. [Google Scholar] [CrossRef]
- Samadi, M.; Hassanabad, M.G.; Mozafari, S.B. Performance enhancement of low speed current Savonius tidal turbines through adding semi-cylindrical deflectors. Ocean Eng. 2022, 259, 111873. [Google Scholar] [CrossRef]
- Maldar, N.R.; Yee, N.C.; Oguz, E.; Krishna, S. Performance investigation of a drag-based hydrokinetic turbine considering the effect of deflector, flow velocity, and blade shape. Ocean Eng. 2022, 266, 112765. [Google Scholar] [CrossRef]
- Dabiri, J.O. Theoretical framework to surpass the Betz limit using unsteady fluid mechanics. Phys. Rev. Fluids 2020, 5, 022501. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. On the definition of the power coefficient of tidal current turbines and efficiency of tidal current turbine farms. Renew. Energy 2014, 68, 868–875. [Google Scholar] [CrossRef]
- Mo, W.; He, G.; Wang, J.; Zhang, Z.; Gao, Y.; Zhang, W.; Ghassemi, H. Hydrodynamic analysis of three oscillating hydrofoils with wing-in-ground effect on power extraction performance. Ocean Eng. 2022, 246, 110642. [Google Scholar] [CrossRef]
- Fluent ANSYS 14.5 Theory Guide; Ansys Inc.: Canonsburg, PA, USA, 2012.
- Zheng, X.; Pröbsting, S.; Wang, H.; Li, Y. Characteristics of vortex shedding from a sinusoidally pitching hydrofoil at high Reynolds number. Phys. Rev. Fluids 2021, 6, 084702. [Google Scholar] [CrossRef]
- Simpson, B.J. Experimental Studies of Flapping Foils for Energy Extraction. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2009. [Google Scholar]
Case | Ncell × 10−3 | Δt | |||
---|---|---|---|---|---|
M1: medium | 45 | T/1000 | 0.791549 | 2.118 | 2.674 |
M2: fine | 90 | T/500 | 0.762676 | 2.027 | 2.582 |
90 | T/1000 | 0.808451 | 2.163 | 2.728 | |
90 | T/2000 | 0.816901 | 2.194 | 2.765 | |
M3: refined | 135 | T/1000 | 0.811268 | 2.165 | 2.730 |
# | N | H* | I1* | I2* | J1* | J2* | β1° | β2° | # | N | H* | I1* | I2* | J1* | J2* | β1° | β2° |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1/4 | 0 | 32 | 2 | 1 | 1 | 1 | 0 | 50 | |||||
2 | 1 | 1 | 1 | −2 | 33 | 2 | 1 | 1 | 1 | 0 | 60 | ||||||
3 | 1 | 1 | 1 | −5 | 34 | 2 | 1 | 1 | 1 | 0 | 70 | ||||||
4 | 1 | 1 | 1 | −10 | 35 | 2 | 1 | 1 | 1 | 1/2 | 1 | 0 | 0 | ||||
5 | 1 | 1 | 1 | −20 | 36 | 1 | 1 | 1 | 3/4 | 0 | |||||||
6 | 1 | 1 | 1 | 2 | 37 | 1 | 1 | 1 | −1 | ||||||||
7 | 1 | 1 | 1 | 5 | 38 | 1 | 1 | 1 | −2 | ||||||||
8 | 1 | 1 | 1 | 10 | 39 | 1 | 1 | 1 | −3 | ||||||||
9 | 1 | 1 | 1 | 20 | 40 | 1 | 1 | 1 | −4 | ||||||||
10 | 2 | 1 | 1 | 1 | 1/4 | 1/4 | 0 | 0 | 41 | 1 | 1 | 1 | −5 | ||||
11 | 2 | 1 | 1 | 1 | 0 | 10 | 42 | 1 | 1 | 1 | −7.5 | ||||||
12 | 2 | 1 | 1 | 1 | 0 | 20 | 43 | 1 | 1 | 1 | −10 | ||||||
13 | 2 | 1 | 1 | 1 | 0 | 30 | 44 | 1 | 1 | 1 | −15 | ||||||
14 | 2 | 1 | 1 | 1 | 0 | 40 | 45 | 1 | 1 | 1 | −20 | ||||||
15 | 2 | 1 | 1 | 1 | 0 | 50 | 46 | 1 | 1 | 1 | −30 | ||||||
16 | 2 | 1 | 1 | 1 | 0 | 60 | 47 | 1 | 1 | 1 | −40 | ||||||
17 | 2 | 1 | 1 | 1 | 0 | 70 | 48 | 1 | 1 | 1 | −50 | ||||||
18 | 1 | 1 | 1 | 1/2 | 0 | 49 | 1 | 1 | 1 | −60 | |||||||
19 | 1 | 1 | 1 | −2 | 50 | 1 | 1 | 1 | 2 | ||||||||
20 | 1 | 1 | 1 | −5 | 51 | 1 | 1 | 1 | 5 | ||||||||
21 | 1 | 1 | 1 | −10 | 52 | 1 | 1 | 1 | 10 | ||||||||
22 | 1 | 1 | 1 | −20 | 53 | 1 | 1 | 1 | 1 | 0 | |||||||
23 | 1 | 1 | 1 | 2 | 54 | 1 | 1 | 1 | −2 | ||||||||
24 | 1 | 1 | 1 | 5 | 55 | 1 | 1 | 1 | −7.5 | ||||||||
25 | 1 | 1 | 1 | 10 | 56 | 1 | 1 | 1 | −10 | ||||||||
26 | 1 | 1 | 1 | 20 | 57 | 1 | 1 | 1 | −20 | ||||||||
27 | 2 | 1 | 1 | 1 | 1/2 | 1/2 | 0 | 0 | 58 | 1 | 1 | 1 | −30 | ||||
28 | 2 | 1 | 1 | 1 | 0 | 10 | 59 | 1 | 1 | 1 | −40 | ||||||
29 | 2 | 1 | 1 | 1 | 0 | 20 | 60 | 1 | 1 | 1 | −50 | ||||||
30 | 2 | 1 | 1 | 1 | 0 | 30 | 61 | 1 | 1 | 1 | −60 | ||||||
31 | 2 | 1 | 1 | 1 | 0 | 40 |
Case | N | J1 * | J2 * | β1 * | β2 * | Vortex Type | Role of Deflector–Hydrofoil Vortex Interaction | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1P | LEV | Pronation | Down | Up | Supination | |||||||
18 | 1 | 1/2 | 0 | R | ✓ | ✓ | C | C | X | D | ||
27 | 2 | 1/2 | 1/2 | 0 | 0 | I | ✓ | ✓ | D | C | C | D |
35 | 2 | 1/2 | 1 | 0 | 0 | I | ✓ | ✓ | D | C | C | D |
3 | 1 | 1/4 | −5 | I | ✓ | ✓ | C | C | X | D | ||
20 | 1 | 1/2 | −5 | R | ✓ | ✓ | D | C | X | X | ||
41 | 1 | 3/4 | −5 | I | ✓ | ✓ | C | X | C | X | ||
40 | 1 | 3/4 | −4 | I | ✓ | ✓ | C | X | C | X | ||
42 | 1 | 3/4 | −7.5 | I | ✓ | ✓ | C | X | C | X | ||
52 | 1 | 3/4 | 10 | I | ✓ | ✓ | C | X | X | D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmugam, A.R.; Park, K.S.; Sohn, C.H. Comparison of the Power Extraction Performance of an Oscillating Hydrofoil Turbine with Different Deflector Designs. Energies 2023, 16, 3420. https://doi.org/10.3390/en16083420
Shanmugam AR, Park KS, Sohn CH. Comparison of the Power Extraction Performance of an Oscillating Hydrofoil Turbine with Different Deflector Designs. Energies. 2023; 16(8):3420. https://doi.org/10.3390/en16083420
Chicago/Turabian StyleShanmugam, Arun Raj, Ki Sun Park, and Chang Hyun Sohn. 2023. "Comparison of the Power Extraction Performance of an Oscillating Hydrofoil Turbine with Different Deflector Designs" Energies 16, no. 8: 3420. https://doi.org/10.3390/en16083420
APA StyleShanmugam, A. R., Park, K. S., & Sohn, C. H. (2023). Comparison of the Power Extraction Performance of an Oscillating Hydrofoil Turbine with Different Deflector Designs. Energies, 16(8), 3420. https://doi.org/10.3390/en16083420