Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions
Abstract
:1. Introduction
1.1. Motivations
1.2. Related Work
1.3. Research Gaps and Contributions
1.4. Outline
2. IoT Overview
2.1. IoT Definition
- Definition I: Things that are interconnected and actively involved in what can be referred to as the future internet [22].
- Definition II: There are two terms in this expression: Things refers to all devices interconnected to a network relying on identical protocols, whereas the Internet is described as the global network of many networks [5].
- Definition III: The IoT concept is any device that is always available to be accessed by anyone, at any moment, from any location, via any application, and over any network [23].
2.2. The IoT Functional Building Elements
3. The IoT Architecture
3.1. IoT Stack Architecture
3.2. Cloud Computing
3.3. Edge and Fog Computing
4. IoT Application Layer Protocols
4.1. Message Queue Telemetry Transport (MQTT)
4.2. Constrained Application Protocol (CoAP)
4.3. Advanced Message Queuing Protocol (AMQP)
4.4. HTTP
4.5. Extensible Messaging and Presence Protocol (XMPP)
5. IoT Communication Technologies
5.1. ZigBee
5.2. BLE
5.2.1. BLE Mesh
5.2.2. Beacon Technology (iBeacon)
5.3. Z-Wave
5.4. Wi-Fi
5.5. 6LoWPAN
5.6. Wi-SUN
5.7. LoRa
5.8. LoRaWAN
5.9. NB-IoT
5.10. Wired Communication Protocols
5.10.1. PLC
5.10.2. Ethernet
5.11. Hybrid Technology
G3-PLC Hybrid PLC and RF Profile
6. IoT Hardware Platforms
7. IoT Simulation Tools
7.1. OpenDSS
7.2. NS-2/NS-3
7.3. OMNET++
7.4. GridLab-D
7.5. MATLAB/Simulink
7.6. GloMoSiM
8. IoT Challenges
9. IoT Future Directions
10. Discussion
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3G | Third Generation |
3GPP | Third Generation Partnership Project |
4G | Fourth Generation |
5G | Fifth Generation |
6G | Sixth Generation |
6LoWPAN | IPv6 over Low-power Wireless Personal Area Networks |
A/V | Audio/Video |
AC | Alternative Current |
AES | Advanced Encryption Standard |
AI | Artificial Intelligence |
AMI | Advanced Metering Infrastructure |
AMP | Alternative |
AMQP | Advanced Message Queuing Protocol |
AP | Access Point |
APF | Application Framework |
APS | Application Sublayer |
BLE | Bluetooth Low Energy |
BR | Bluetooth Basic Rate |
BPSK | Binary Phase-Shift Keying |
CA | Collision Avoidance |
CoAP | Constrained Application Protocol |
CPU | Central Processing Unit |
CSMA | Carrier Sense Multiple Access |
DC | Direct Current |
DODAG | Destination Oriented Directed Acyclic Graph |
DPSK | Differential Phase Shift Keying |
FAN | Field Area Network |
EDR | Enhanced Data Rate |
FPGAs | Field Programmable Gate Arrays |
FSK | Frequency Shift Keying |
GFSK | Gaussian Frequency Shift Keying |
GPS | Global Positioning System |
HARQ | Hybrid Automatic Repeat Request |
HAN | Home Area Network |
HS | High Speed |
HSTRN | Hybrid Satellite–Terrestrial Relay Network |
HTTP | Hypertext Transfer Protocol |
I/O | Input/Output |
IDC | International Data Corporation |
IEEE | Institute of Electrical and Electronics Engineers |
IEC | International Electrotechnical Commission |
IETF | Internet Engineering Task Force |
IIoT | Industrial Internet of Things |
IoT | Internet of Things |
IoTDs | IoT devices |
IPv6 | Internet Protocol version 6 |
IT | Information Technology |
ISM | Industrial, Scientific, and Medical |
ISO | International Organization for Standardization |
JUTA | Japan Utility Telemetering Association |
LAN | Local Area Network |
LAPS | Low Altitude Platform Station |
LE | Low energy |
LEDL | Light Emitting Diode |
LL-AC | Low-Latency Access Category |
LOADng | On-demand Ad hoc Distance-vector Routing Protocol–Next Generation |
LoRa | Long Range |
LoRaWAN | Long Range Wide Area Network |
LPWAN | Low-Power Wide Area Network |
LTE | Long-Term Evolution |
HAPS | High Altitude Platform Station |
MAC | Media Access layer |
ML | Machine Learning |
M2M | Machine-to-machine |
MQTT | Message Queue Telemetry Transpor |
MU-MIMO | Multi-User, Multiple-Input, Multiple-Output technology |
NB-IoT | NarrowBand-Internet of Things |
NB-PLC | Narrowband PLC |
NFC | Near Field Communication |
NGMA | Next-Generation Multiple Access |
NOMA | Non-Orthogonal Multiple Access |
OFDMA | Orthogonal Frequency Division Multiple Access |
OMA | Orthogonal multiple access |
OSI | Open Systems Interconnection |
PAN | Personal Area Network |
PHY | Physical layer |
PAM | Pulse Amplitude Modulation |
PLC | Power Line Communication |
PRIME | Powerline Intelligent Metering Evolution |
QoS | Quality of Service |
QR | Quick Response |
QAM | Quadrature Amplitude Modulation |
RA | Random Access |
RF | Radio frequency |
RFID | Radio Frequency Identification |
RIS | Re-configurable Intelligent Surface |
RLMM | Resource-Limited Monitoring and Management |
RPL | Routing Protocol |
RSMA | Rate-Splitting Multiple Access |
SAIN | Satellite and Aerial-Integrated Network |
SIG | Special Interest Group |
SiP | systems-in-package |
SoC | Systems-on-Chip |
SSL | Secure Sockets Layer |
UAVs | Unmanned Aerial Vehicles |
SUN | Smart Utility Network |
TCP | Transmission Control Protocol |
TLS | Transport Layer Security |
TSN | Time-Sensitive Networking |
TX | Transmission |
TXOP | Transmission Opportunity |
WAN | Wide Area Network |
WGs | Working Groups |
Wi-Fi | Wireless Fidelity |
Wi-SUN | Wireless Smart Utility Network |
WLANs | Wireless LANs |
WSN | Wireless Sensor Network |
VR | Virtual Reality |
XML | eXtensible Markup Language |
XMPP | Extensible Messaging and Presence Protocol |
ZCL | Zigbee Cluster Library |
ZDO | Zigbee Device Object |
References
- Khorov, E.; Lyakhov, A.; Krotov, A.; Guschin, A. A survey on IEEE 802.11ah: An enabling networking technology for smart cities. Comput. Commun. 2015, 58, 53–69. [Google Scholar] [CrossRef]
- Darabkh, K.A.; Alfawares, M.G.; Althunibat, S. MDRMA: Multi-data rate mobility-aware AODV-based protocol for flying ad-hoc networks. Veh. Commun. 2019, 18, 100163. [Google Scholar] [CrossRef]
- Michalski, A.; Watral, Z. Problems of Powering End Devices in Wireless Networks of the Internet of Things. Energies 2021, 14, 2417. [Google Scholar] [CrossRef]
- Alhasanat, M.; Althunibat, S.; Darabkh, K.A.; Alhasanat, A.; Alsafasfeh, M. A physical-layer key distribution mechanism for IoT networks. Mob. Netw. Appl. 2020, 25, 173–178. [Google Scholar] [CrossRef]
- Hendriks, S. Internet of Things: How the World Will Be Connected in 2025. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2016. [Google Scholar]
- Milić, D.C.; Tolić, I.H.; Peko, M. Internet of Things (IoT) solutions in smart transportation management. In Proceedings of the Business Logistics in Modern Management, Osijek, Croatia, 5–6 October 2020. [Google Scholar]
- Wytrębowicz, J.; Cabaj, K.; Krawiec, J. Messaging Protocols for IoT Systems—A Pragmatic Comparison. Sensors 2021, 21, 6904. [Google Scholar] [CrossRef]
- Sadeghi-Niaraki, A. Internet of Thing (IoT) review of review: Bibliometric overview since its foundation. Future Gener. Comput. Syst. 2023, 143, 361–377. [Google Scholar] [CrossRef]
- Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research challenges. Ad Hoc Networks 2012, 10, 1497–1516. [Google Scholar] [CrossRef] [Green Version]
- Said, O.; Masud, M. Towards internet of things: Survey and future vision. Int. J. Comput. Networks 2013, 5, 1–17. [Google Scholar]
- Guth, J.; Breitenbücher, U.; Falkenthal, M.; Fremantle, P.; Kopp, O.; Leymann, F.; Reinfurt, L. A Detailed Analysis of IoT Platform Architectures: Concepts, Similarities, and Differences. In Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives; Di Martino, B., Li, K.C., Yang, L.T., Esposito, A., Eds.; Springer: Singapore, 2018; pp. 81–101. [Google Scholar] [CrossRef]
- Čolaković, A.; Hadžialić, M. Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Comput. Networks 2018, 144, 17–39. [Google Scholar] [CrossRef]
- Gerodimos, A.; Maglaras, L.; Ferrag, M.A.; Ayres, N.; Kantzavelou, I. IoT: Communication protocols and security threats. Internet Things Cyber-Phys. Syst. 2023, 3, 1–13. [Google Scholar] [CrossRef]
- Domínguez-Bolaño, T.; Campos, O.; Barral, V.; Escudero, C.J.; García-Naya, J.A. An overview of IoT architectures, technologies, and existing open-source projects. Internet Things 2022, 20, 100626. [Google Scholar] [CrossRef]
- Elkhodr, M.; Shahrestani, S.; Cheung, H. Emerging Wireless Technologies in the Internet of Things: A Comparative Study. Int. J. Wirel. Mob. Networks 2016, 8, 67–82. [Google Scholar] [CrossRef]
- Al-Sarawi, S.; Anbar, M.; Alieyan, K.; Alzubaidi, M. Internet of Things (IoT) communication protocols. In Proceedings of the 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, 17–18 May 2017; pp. 685–690. [Google Scholar]
- Burhan, M.; Rehman, R.A.; Khan, B.; Kim, B.S. IoT Elements, Layered Architectures and Security Issues: A Comprehensive Survey. Sensors 2018, 18, 2796. [Google Scholar] [CrossRef] [Green Version]
- Salman, T.; Jain, R. A Survey of Protocols and Standards for Internet of Things. arXiv 2017, arXiv:1903.11549. [Google Scholar] [CrossRef]
- Bayılmış, C.; Ebleme, M.A.; Çavuşoğlu, Ü.; Küçük, K.; Sevin, A. A survey on communication protocols and performance evaluations for Internet of Things. Digit. Commun. Networks 2022, 8, 1094–1104. [Google Scholar] [CrossRef]
- Florea, I.; Rughinis, R.; Ruse, L.; Dragomir, D. Survey of Standardized Protocols for the Internet of Things. In Proceedings of the 2017 21st International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 19–31 May 2017; pp. 190–196. [Google Scholar] [CrossRef]
- Mehta, R.; Sahni, J.; Khanna, K. Internet of things: Vision, applications and challenges. Procedia Comput. Sci. 2018, 132, 1263–1269. [Google Scholar] [CrossRef]
- Bonetto, R.; Bui, N.; Lakkundi, V.; Olivereau, A.; Serbanati, A.; Rossi, M. Secure communication for smart IoT objects: Protocol stacks, use cases and practical examples. In Proceedings of the 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), San Francisco, CA, USA, 25–28 June 2012; pp. 1–7. [Google Scholar]
- Ray, P.P. A survey on Internet of Things architectures. J. King Saud Univ.-Comput. Inf. Sci. 2018, 30, 291–319. [Google Scholar] [CrossRef] [Green Version]
- Rose, K.; Eldridge, S.; Chapin, L. The internet of things: An overview. Internet Soc. 2015, 80, 1–50. [Google Scholar]
- Goulart, A.; Chennamaneni, A.; Torre, D.; Hur, B.; Al-Aboosi, F.Y. On Wide-Area IoT Networks, Lightweight Security and Their Applications—A Practical Review. Electronics 2022, 11, 1762. [Google Scholar] [CrossRef]
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Qiu, T.; Chen, N.; Li, K.; Atiquzzaman, M.; Zhao, W. How Can Heterogeneous Internet of Things Build Our Future: A Survey. IEEE Commun. Surv. Tutorials 2018, 20, 2011–2027. [Google Scholar] [CrossRef]
- Mashal, I.; Alsaryrah, O.; Chung, T.Y.; Yang, C.Z.; Kuo, W.H.; Agrawal, D.P. Choices for interaction with things on Internet and underlying issues. Ad Hoc Netw. 2015, 28, 68–90. [Google Scholar] [CrossRef]
- Abdmeziem, M.R.; Tandjaoui, D.; Romdhani, I. Architecting the internet of things: State of the art. In Robots and Sensor Clouds; Springer: Berlin/Heidelberg, Germany, 2016; pp. 55–75. [Google Scholar]
- Verma, D.; Singh, K.R.; Yadav, A.K.; Nayak, V.; Singh, J.; Solanki, P.R.; Singh, R.P. Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosens. Bioelectron. X 2022, 11, 100153. [Google Scholar] [CrossRef]
- Oliveira, L.; Rodrigues, J.J.; Kozlov, S.A.; Rabêlo, R.A.; de Albuquerque, V.H.C. MAC layer protocols for internet of things: A survey. Future Internet 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.U.; Waseem, M.; Mazhar, S.; Khairi, A.; Kamal, T. A review on internet of things (IoT). Int. J. Comput. Appl. 2015, 113, 1–7. [Google Scholar]
- Vashi, S.; Ram, J.; Modi, J.; Verma, S.; Prakash, C. Internet of Things (IoT): A vision, architectural elements, and security issues. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 492–496. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, A.; Shankar, G. Cloud Computing: Services, Deployment Models and Security Challenges. In Proceedings of the 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 7–9 October 2021; pp. 414–418. [Google Scholar] [CrossRef]
- Alotaibi, A.; Barnawi, A. Securing massive IoT in 6G: Recent solutions, architectures, future directions. Internet Things 2023, 22, 100715. [Google Scholar] [CrossRef]
- Sethi, P.; Sarangi, S.R. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017, 2017, 9324035. [Google Scholar] [CrossRef] [Green Version]
- Munir, A.; Kansakar, P.; Khan, S.U. IFCIoT: Integrated Fog Cloud IoT: A novel architectural paradigm for the future Internet of Things. IEEE Consum. Electron. Mag. 2017, 6, 74–82. [Google Scholar] [CrossRef]
- Singh, R.; Kovacs, J.; Kiss, T. To offload or not? an analysis of big data offloading strategies from edge to cloud. In Proceedings of the 2022 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 6–9 June 2022; pp. 46–52. [Google Scholar]
- Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Commun. Surv. Tutorials 2020, 22, 869–904. [Google Scholar] [CrossRef] [Green Version]
- Pujol, V.C.; Dustdar, S. Fog robotics—Understanding the research challenges. IEEE Internet Comput. 2021, 25, 10–17. [Google Scholar] [CrossRef]
- Kumar, P.; Gupta, G.P.; Tripathi, R. A distributed ensemble design based intrusion detection system using fog computing to protect the internet of things networks. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 9555–9572. [Google Scholar] [CrossRef]
- Abouaomar, A.; Cherkaoui, S.; Mlika, Z.; Kobbane, A. Resource Provisioning in Edge Computing for Latency-Sensitive Applications. IEEE Internet Things J. 2021, 8, 11088–11099. [Google Scholar] [CrossRef]
- Laroui, M.; Nour, B.; Moungla, H.; Cherif, M.A.; Afifi, H.; Guizani, M. Edge and fog computing for IoT: A survey on current research activities & future directions. Comput. Commun. 2021, 180, 210–231. [Google Scholar] [CrossRef]
- Iftikhar, S.; Gill, S.S.; Song, C.; Xu, M.; Aslanpour, M.S.; Toosi, A.N.; Du, J.; Wu, H.; Ghosh, S.; Chowdhury, D.; et al. AI-based fog and edge computing: A systematic review, taxonomy and future directions. Internet Things 2023, 21, 100674. [Google Scholar] [CrossRef]
- Shakarami, A.; Shakarami, H.; Ghobaei-Arani, M.; Nikougoftar, E.; Faraji-Mehmandar, M. Resource provisioning in edge/fog computing: A Comprehensive and Systematic Review. J. Syst. Archit. 2022, 122, 102362. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, Z.; Jin, J.; Zheng, X.; Tagami, A.; Cao, X. Achieving Democracy in Edge Intelligence: A Fog-Based Collaborative Learning Scheme. IEEE Internet Things J. 2021, 8, 2751–2761. [Google Scholar] [CrossRef]
- McEnroe, P.; Wang, S.; Liyanage, M. A survey on the convergence of edge computing and AI for UAVs: Opportunities and challenges. IEEE Internet Things J. 2022, 9, 15435–15459. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Zhou, W.; Man, M. Application and Research of IoT Architecture for End-Net-Cloud Edge Computing. Electronics 2023, 12, 1. [Google Scholar] [CrossRef]
- Singh, R.; Gill, S.S. Edge AI: A survey. Internet Things-Cyber-Phys. Syst. 2023, 3, 71–92. [Google Scholar] [CrossRef]
- Manowska, A.; Wycisk, A.; Nowrot, A.; Pielot, J. The Use of the MQTT Protocol in Measurement, Monitoring and Control Systems as Part of the Implementation of Energy Management Systems. Electronics 2023, 12, 17. [Google Scholar] [CrossRef]
- Yassein, M.B.; Shatnawi, M.Q.; Aljwarneh, S.; Al-Hatmi, R. Internet of Things: Survey and open issues of MQTT protocol. In Proceedings of the 2017 International Conference on engineering & MIS (ICEMIS), Monastir, Tunisia, 8–10 May 2017; pp. 1–6. [Google Scholar]
- Arvind, S.; Narayanan, V.A. An overview of security in CoAP: Attack and analysis. In Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 655–660. [Google Scholar]
- Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–7. [Google Scholar]
- Yokotani, T.; Sasaki, Y. Comparison with HTTP and MQTT on required network resources for IoT. In Proceedings of the 2016 International Conference on Control, Electronics, Rrenewable Energy and Ccommunications (ICCEREC), Bandung, Indonesia, 13–15 September 2016; pp. 1–6. [Google Scholar]
- Nikolov, N. Research of MQTT, CoAP, HTTP and XMPP IoT Communication protocols for Embedded Systems. In Proceedings of the 2020 XXIX International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 16–18 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Y.; Cheng, Q.; Zhu, B.; Chen, C.; Hou, X. Communication Application of Distributed Energy Resources Monitoring System Based on XMPP. In Proceedings of the 2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), Shanghai, China, 21–29 August 2021; pp. 66–70. [Google Scholar] [CrossRef]
- Hofer-Schmitz, K.; Stojanović, B. Towards formal verification of IoT protocols: A Review. Comput. Networks 2020, 174, 107233. [Google Scholar] [CrossRef]
- Deniz, E.; Samet, R. A New Model for Secure Joining to ZigBee 3.0 Networks in the Internet of Things. In Proceedings of the 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), Ankara, Turkey, 3–4 December 2018; pp. 102–106. [Google Scholar] [CrossRef]
- Adi, P.D.P.; Sihombing, V.; Siregar, V.M.M.; Yanris, G.J.; Sianturi, F.A.; Purba, W.; Tamba, S.P.; Simatupang, J.; Arifuddin, R.; Subairi; et al. A Performance Evaluation of ZigBee Mesh Communication on the Internet of Things (IoT). In Proceedings of the 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), Surabaya, Indonesia, 9–11 April 2021; pp. 7–13. [CrossRef]
- Gavra, V.D.; Pop, O.A. Usage of ZigBee and LoRa wireless technologies in IoT systems. In Proceedings of the 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME), Pitesti, Romania, 21–24 October 2020; pp. 221–224. [Google Scholar] [CrossRef]
- Cheruvu, S.; Kumar, A.; Smith, N.; Wheeler, D.M. Demystifying Internet of Things SECURITY: Successful Iot Device/Edge and Platform Security Deployment; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Zeadally, S.; Siddiqui, F.; Baig, Z. 25 Years of Bluetooth Technology. Future Internet 2019, 11, 194. [Google Scholar] [CrossRef] [Green Version]
- Fatihah, S.N.; Dewa, G.R.R.; Park, C.; Sohn, I. Self-Optimizing Bluetooth Low Energy Networks for Industrial IoT Applications. IEEE Commun. Lett. 2023, 27, 386–390. [Google Scholar] [CrossRef]
- Ortiz, J.C.G.; Silvestre-Blanes, J.; Sempere-Payá, V.M.; Frau, D.C. Evaluation of improvements in BLE Mesh through CODED PHY. In Proceedings of the 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vasteras, Sweden, 7–10 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Pallavi, S.; Narayanan, V.A. An Overview of Practical Attacks on BLE Based IOT Devices and Their Security. In Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 694–698. [Google Scholar] [CrossRef]
- Chadha, S.S.; Singh, M.; Pardeshi, S.K. Bluetooth technology: Principle, applications and current status. Int. J. Comput. Sci. Commun. 2013, 4, 16–30. [Google Scholar]
- Cao, S.; Chen, X.; Yuan, B. Overview of Short-range Wireless Communication Protocol. In Proceedings of the 2022 7th International Conference on Computer and Communication Systems (ICCCS), Wuhan, China, 22–25 April 2022; pp. 519–523. [Google Scholar]
- Kalanandhini, G.; Aravind, A.; Vijayalakshmi, G.; Gayathri, J.; Senthilkumar, K. Bluetooth technology on IoT using the architecture of Piconet and Scatternet. AIP Conf. Proc. 2022, 2393, 020121. [Google Scholar]
- Woolley, M. The Bluetooth Low Energy Primer. Bluetooth Blog 2022, 15, 2022. Available online: https://www.bluetooth.com/blog/introducing-the-bluetooth-low-energy-primer/ (accessed on 11 April 2023).
- Badihi, B.; Ghavimi, F.; Jäntti, R. On the system-level performance evaluation of Bluetooth 5 in IoT: Open office case study. In Proceedings of the 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, 22–29 September 2019; pp. 485–489. [Google Scholar]
- Spörk, M.; Boano, C.A.; Römer, K. Performance and trade-offs of the new PHY modes of BLE 5. In Proceedings of the ACM MobiHoc Workshop on Pervasive Systems in the IoT Era, Catania, Italy, 2 July 2019; pp. 7–12. [Google Scholar]
- Raza, S.; Misra, P.; He, Z.; Voigt, T. Building the Internet of Things with bluetooth smart. Ad Hoc Networks 2017, 57, 19–31. [Google Scholar] [CrossRef]
- Darroudi, S.M.; Gomez, C. Bluetooth Low Energy Mesh Networks: A Survey. Sensors 2017, 17, 1467. [Google Scholar] [CrossRef] [Green Version]
- Alfiah, F.; Ningtyas, S.; Sudaryanti, T.; Astuti, R.; Gumelar, R.T. Increase Comfort and Security in a Smart Home Using a Prediction Algorithm and Z-Wave Protocol. Int. J. Eng. Tech. 2018, 4, 179–185. [Google Scholar]
- Yassein, M.B.; Mardini, W.; Khalil, A. Smart homes automation using Z-wave protocol. In Proceedings of the 2016 International Conference on Engineering & MIS (ICEMIS), Agadir, Morocco, 22–24 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Linh An, P.m.; Kim, T. A Study of the Z-Wave Protocol: Implementing Your Own Smart Home Gateway. In Proceedings of the 2018 3rd International Conference on Computer and Communication Systems (ICCCS), Nagoya, Japan, 27–30 April 2018; pp. 411–415. [Google Scholar] [CrossRef]
- Danbatta, S.J.; Varol, A. Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth Wireless Technologies Used in Home Automation. In Proceedings of the 2019 7th International Symposium on Digital Forensics and Security (ISDFS), Barcelos, Portugal, 10–12 June 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Algani, Y.M.; Balaji, S.; AlbertRaj, A.; Elangovan, G.; Sathish Kumar, P.J.; Agordzo, G.K.; Pentang, J.T.; Kiran Bala, B. Integration of Internet Protocol and Embedded System On IoT Device Automation. 2021. Available online: https://www.researchsquare.com/article/rs-947704/v1 (accessed on 11 April 2023).
- Pimple, N.; Salunke, T.; Pawar, U.; Sangoi, J. Wireless Security—An Approach Towards Secured Wi-Fi Connectivity. In Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020; pp. 872–876. [Google Scholar] [CrossRef]
- Fan, S.; Ge, Y.; Yu, X. Comparison Analysis and Prediction of Modern Wi-Fi Standards. In Proceedings of the 2022 International Conference on Big Data, Information and Computer Network (BDICN), Sanya, China, 20–22 January 2022; pp. 581–585. [Google Scholar] [CrossRef]
- Tian, L.; Santi, S.; Seferagić, A.; Lan, J.; Famaey, J. Wi-Fi HaLow for the Internet of Things: An up-to-date survey on IEEE 802.11ah research. J. Netw. Comput. Appl. 2021, 182, 103036. [Google Scholar] [CrossRef]
- Chakravarthi, V.S. M2M Communication in Constrained Devices. In Internet of Things and M2M Communication Technologies: Architecture and Practical Design Approach to IoT in Industry 4.0; Springer: Cham, Switzerland, 2021; pp. 191–206. [Google Scholar]
- Zhang, L.; Ma, M. FKR: An efficient authentication scheme for IEEE 802.11ah networks. Comput. Secur. 2020, 88, 101633. [Google Scholar] [CrossRef]
- Rochim, A.F.; Harijadi, B.; Purbanugraha, Y.P.; Fuad, S.; Nugroho, K.A. Performance comparison of wireless protocol IEEE 802.11ax vs. 802.11ac. In Proceedings of the 2020 International Conference on Smart Technology and Applications (ICoSTA), Surabaya, Indonesia, 20 February 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Yang, M.; Li, B.; Yan, Z. MAC Technology of IEEE 802.11ax: Progress and Tutorial. Mob. Networks Appl. 2020, 26, 1122–1136. [Google Scholar] [CrossRef]
- Avallone, S.; Imputato, P.; Redieteab, G.; Ghosh, C.; Roy, S. Will OFDMA Improve the Performance of 802.11 Wifi Networks? IEEE Wirel. Commun. 2021, 28, 100–107. [Google Scholar] [CrossRef]
- Bankov, D.; Khorov, E.; Lyakhov, A.; Sandal, M. Enabling real-time applications in Wi-Fi networks. Int. J. Distrib. Sens. Networks 2019, 15, 1550147719845312. [Google Scholar] [CrossRef]
- Gokhale, V.; Eid, M.; Kroep, K.; Prasad, R.V.; Rao, V.S. Toward Enabling High-Five Over WiFi: A Tactile Internet Paradigm. IEEE Commun. Mag. 2021, 59, 90–96. [Google Scholar] [CrossRef]
- 802.11ax-2021–IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks–Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency WLAN; IEEE: Washington, DC, USA, 2021; pp. 1–767. [CrossRef]
- Shukla, S.; Hassan, M.F.; Khan, M.K.; Jung, L.T.; Awang, A. An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment. PLoS ONE 2019, 14, e4934. [Google Scholar] [CrossRef] [Green Version]
- Qadri, Y.A.; Zulqarnain; Nauman, A.; Musaddiq, A.; Garcia-Villegas, E.; Kim, S.W. Preparing Wi-Fi 7 for Healthcare Internet-of-Things. Sensors 2022, 22, 6209. [Google Scholar] [CrossRef]
- Deng, C.; Fang, X.; Han, X.; Wang, X.; Yan, L.; He, R.; Long, Y.; Guo, Y. IEEE 802.11be Wi-Fi 7: New Challenges and Opportunities. IEEE Commun. Surv. Tutorials 2020, 22, 2136–2166. [Google Scholar] [CrossRef]
- Yang, Z.; Chang, C.H. 6LoWPAN Overview and Implementations. In Proceedings of the EWSN, Beijing, China, 25–27 February 2019; pp. 357–361. [Google Scholar]
- Kasinathan, P.; Pastrone, C.; Spirito, M.A.; Vinkovits, M. Denial-of-Service detection in 6LoWPAN based Internet of Things. In Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Lyon, France, 7–9 October 2013; pp. 600–607. [Google Scholar]
- Alkama, L.; Bouallouche-Medjkoune, L. IEEE 802.15.4 historical revolution versions: A survey. Computing 2021, 103, 99–131. [Google Scholar] [CrossRef]
- Musaddiq, A.; Zikria, Y.B.; Zulqarnain; Kim, S.W. Routing protocol for Low-Power and Lossy Networks for heterogeneous traffic network. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 21. [Google Scholar] [CrossRef] [Green Version]
- Ioulianou, P.P.; Vassilakis, V.G. Denial-of-service attacks and countermeasures in the RPL-based Internet of Things. In Computer Security; Springer: Berlin/Heidelberg, Germany, 2019; pp. 374–390. [Google Scholar]
- Zhao, L.; Wang, G. Research Status of 6LoWPAN in the Field of Internet of Things. In Proceedings of the 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, 19–20 September 2020; pp. 739–743. [Google Scholar] [CrossRef]
- Okumura, R.; Mizutani, K.; Harada, H. A broadcast protocol for IEEE 802.15. 4e RIT based Wi-SUN systems. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–8 June 2017; pp. 1–5. [Google Scholar]
- Anani, W.; Ouda, A.; Hamou, A. A Survey Of Wireless Communications for IoT Echo-Systems. In Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Harada, H.; Mizutani, K.; Fujiwara, J.; Mochizuki, K.; Obata, K.; Okumura, R. IEEE 802.15. 4g based Wi-SUN communication systems. IEICE Trans. Commun. 2017, 100, 1032–1043. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, R.; Okumura, R.; Mizutani, K.; Harada, H. A Novel Routing Method with Load-Balancing in Wi-SUN FAN Network. In Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14–31 June 2021; pp. 362–367. [Google Scholar] [CrossRef]
- Kashiwagi, Y.; Harada, H.; Masaki, H.; Osumi, K. Development of Evaluation Systems for Large-Scale Wi-SUN FAN-Based IoT Applications. In Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Virtual, 15–20 September 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Raychowdhury, A.; Pramanik, A. Survey on LoRa technology: Solution for internet of things. In Intelligent Systems, Technologies and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 259–271. [Google Scholar]
- Sinha, R.S.; Wei, Y.H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [Google Scholar] [CrossRef]
- Şenyuva, R.V. Comparison of LoRa-Based Modulations. In Proceedings of the 2022 30th Signal Processing and Communications Applications Conference (SIU), Safranbolu, Turkey, 16–18 May 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, J.; Jiao, L.; Shi, J.; Wang, S. A Novel Physical Layer Encryption Algorithm for LoRa. IEEE Commun. Lett. 2021, 25, 2512–2516. [Google Scholar] [CrossRef]
- Rama, Y.; Özpmar, M.A. A comparison of long-range licensed and unlicensed LPWAN technologies according to their geolocation services and commercial opportunities. In Proceedings of the 2018 18th Mediterranean Microwave Symposium (MMS), Istanbul, Turkey, 31 October–2 November 2018; pp. 398–403. [Google Scholar]
- Nikoukar, A.; Raza, S.; Poole, A.; Güneş, M.; Dezfouli, B. Low-power wireless for the internet of things: Standards and applications. IEEE Access 2018, 6, 67893–67926. [Google Scholar] [CrossRef]
- Locatelli, P.; Spadaccino, P.; Cuomo, F. Ruling Out IoT Devices in LoRaWAN. In Proceedings of the IEEE INFOCOM 2022—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Virtual, 2–5 May 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Dangana, M.; Ansari, S.; Abbasi, Q.H.; Hussain, S.; Imran, M.A. Suitability of NB-IoT for indoor industrial environment: A survey and insights. Sensors 2021, 21, 5284. [Google Scholar] [CrossRef] [PubMed]
- Medina-Acosta, G.; Zhang, L.; Chen, J.; Uesaka, K.; Wang, Y.; Lundqvist, O.; Bergman, J. 3GPP Release-17 Physical Layer Enhancements for LTE-M and NB-IoT. IEEE Commun. Stand. Mag. 2022, 6, 80–86. [Google Scholar] [CrossRef]
- Ugwuanyi, S.; Paul, G.; Irvine, J. Survey of IoT for developing countries: Performance analysis of LoRaWAN and cellular nb-IoT networks. Electronics 2021, 10, 2224. [Google Scholar] [CrossRef]
- Sanchez-Gomez, J.; Carrillo, D.G.; Sanchez-Iborra, R.; Hernández-Ramos, J.L.; Granjal, J.; Marin-Perez, R.; Zamora-Izquierdo, M.A. Integrating LPWAN Technologies in the 5G Ecosystem: A Survey on Security Challenges and Solutions. IEEE Access 2020, 8, 216437–216460. [Google Scholar] [CrossRef]
- Wang, Y.P.E.; Lin, X.; Adhikary, A.; Grovlen, A.; Sui, Y.; Blankenship, Y.; Bergman, J.; Razaghi, H.S. A primer on 3GPP narrowband Internet of Things. IEEE Commun. Mag. 2017, 55, 117–123. [Google Scholar] [CrossRef]
- Ali, M.S.; Li, Y.; Jewel, M.K.H.; Famoriji, O.J.; Lin, F. Channel Estimation and Peak-to-Average Power Ratio Analysis of Narrowband Internet of Things Uplink Systems. Wirel. Commun. Mob. Comput. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Mahbub, M. NB-IoT: Applications and future prospects in perspective of Bangladesh. Int. J. Inf. Technol. 2020, 12, 1183–1193. [Google Scholar] [CrossRef]
- Abrahamsen, F.E.; Ai, Y.; Cheffena, M. Communication technologies for smart grid: A comprehensive survey. Sensors 2021, 21, 8087. [Google Scholar] [CrossRef]
- Tonello, A.M.; De Piante, M. Exploring Joint Voltage and Impedance Modulation in Wired Networks. In Proceedings of the 2020 IEEE International Symposium on Power Line Communications and its Applications (ISPLC), Malaga, Spain, 11–13 May 2020; pp. 1–6. [Google Scholar]
- Ndolo, A.; Çavdar, İ.H. Current state of communication systems based on electrical power transmission lines. J. Electr. Syst. Inf. Technol. 2021, 8, 1–10. [Google Scholar] [CrossRef]
- Noura, H.N.; Melki, R.; Chehab, A.; Fernandez, J.H. Efficient and robust data availability solution for hybrid PLC/RF systems. Comput. Netw. 2021, 185, 107675. [Google Scholar] [CrossRef]
- Zhilenkov, A.A.; Gilyazov, D.D.; Matveev, I.I.; Krishtal, Y.V. Power line communication in IoT-systems. In Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, Russia, 1–3 June 2017; pp. 242–245. [Google Scholar] [CrossRef]
- Saleem, M.S. Development of PLC based communication architecture for battery management system. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Fazio, A.; Erseghe, T.; Ghiani, E.; Murroni, M.; Siano, P.; Silvestro, F. Integration of renewable energy sources, energy storage systems, and electrical vehicles with smart power distribution networks. J. Ambient. Intell. Humaniz. Comput. 2013, 4, 663–671. [Google Scholar] [CrossRef]
- Masood, B.; Baig, S. Channel modeling of NB-PLC for Smart Grid. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC), Washington, DC, USA, 6–9 July 2015; pp. 745–750. [Google Scholar]
- Sadowski, Z. Comparison of PLC-PRIME and PLC-G3 protocols. In Proceedings of the 2015 International School on Nonsinusoidal Currents and Compensation (ISNCC), Lagow, Poland, 25–28 June 2015; pp. 1–6. [Google Scholar]
- Razazian, K.; Umari, M.; Kamalizad, A.; Loginov, V.; Navid, M. G3-PLC specification for powerline communication: Overview, system simulation and field trial results. In Proceedings of the ISPLC2010, Rio de Janeiro, Brazil, 28–31 March 2010; pp. 313–318. [Google Scholar]
- Kenny, J.P.; Wilke, J.J.; Ulmer, C.D.; Baker, G.M.; Knight, S.; Friesen, J.A. An Evaluation of Ethernet Performance for Scientific Workloads. In Proceedings of the 2020 IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS), Atlanta, GA, USA, 12 November 2020; pp. 57–67. [Google Scholar] [CrossRef]
- Conti, M.; Donadel, D.; Turrin, F. A survey on industrial control system testbeds and datasets for security research. IEEE Commun. Surv. Tutorials 2021, 23, 2248–2294. [Google Scholar] [CrossRef]
- Min, J.; Park, Y. Performance Enhancement of In-Vehicle 10BASE-T1S Ethernet Using Node Prioritization and Packet Segmentation. IEEE Access 2022, 10, 103286–103295. [Google Scholar] [CrossRef]
- Sanz, A.; Ibar, J.C.; Lacasa, L. PLC-RF hybrid communication systems, model and simulation. In Proceedings of the 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aachen, Germany, 25–28 October 2021; pp. 158–163. [Google Scholar]
- Lavenu, C.; Chauvenet, C.; Treffiletti, P.; Varesio, M.; Hueske, K. Standardization Challenges, Opportunities and Recent Evolutions for the G3-PLC Technology. Energies 2021, 14, 1937. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, J. An Overview of the Development of Antenna-in-Package Technology for Highly Integrated Wireless Devices. Proc. IEEE 2019, 107, 2265–2280. [Google Scholar] [CrossRef]
- Zandberg, K.; Schleiser, K.; Acosta, F.; Tschofenig, H.; Baccelli, E. Secure Firmware Updates for Constrained IoT Devices Using Open Standards: A Reality Check. IEEE Access 2019, 7, 71907–71920. [Google Scholar] [CrossRef]
- Bansal, S.; Kumar, D. IoT ecosystem: A survey on devices, gateways, operating systems, middleware and communication. Int. J. Wirel. Inf. Netw. 2020, 27, 340–364. [Google Scholar] [CrossRef]
- Baccelli, E.; Gündoğan, C.; Hahm, O.; Kietzmann, P.; Lenders, M.S.; Petersen, H.; Schleiser, K.; Schmidt, T.C.; Wählisch, M. RIOT: An open source operating system for low-end embedded devices in the IoT. IEEE Internet Things J. 2018, 5, 4428–4440. [Google Scholar] [CrossRef]
- Živković, M.; Nikolić, B.; Protić, J.; Popović, R. A survey and classification of wireless sensor networks simulators based on the domain of use. Adhoc Sens. Wirel. Netw. 2014, 20, 245–287. [Google Scholar]
- Troiano, G.O.; Ferreira, H.S.; Trindade, F.C.; Ochoa, L.F. Co-simulator of power and communication networks using OpenDSS and OMNeT++. In Proceedings of the 2016 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia) IEEE, Melbourne, Australia, 28 November–1 December 2016; pp. 1094–1099. [Google Scholar]
- Kumar, S.; Bansal, A. Performance investigation of topology-based routing protocols in flying ad-hoc networks using NS-2. In IoT and Cloud Computing Advancements in Vehicular Ad-Hoc Networks; IGI Global: Hershey, PA, USA, 2020; pp. 243–267. [Google Scholar]
- Kim, B.S.; Sung, T.E.; Kim, K.I. An ns-3 implementation and experimental performance analysis of ieee 802.15. 6 standard under different deployment scenarios. Int. J. Environ. Res. Public Health 2020, 17, 4007. [Google Scholar] [CrossRef]
- Keramidas, G.; Voros, N.; Hübner, M. Components and Services for IoT Platforms; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bautista, P.A.B.; Urquiza-Aguiar, L.F.; Cárdenas, L.L.; Igartua, M.A. Large-scale simulations manager tool for OMNeT++: Expediting simulations and post-processing analysis. IEEE Access 2020, 8, 159291–159306. [Google Scholar] [CrossRef]
- Le, T.D.; Anwar, A.; Beuran, R.; Loke, S.W. Smart grid co-simulation tools: Review and cybersecurity case study. In Proceedings of the 2019 7th International Conference on Smart Grid (icSmartGrid) IEEE, Newcastle, Australia, 9–11 December 2019; pp. 39–45. [Google Scholar]
- Nasiakou, A.; Alamaniotis, M.; Tsoukalas, L.H. MatGridGUI—A toolbox for GridLAB-D simulation platform. In Proceedings of the 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA) IEEE, Patras, Greece, 11–16 June 2016; pp. 1–5. [Google Scholar]
- Chaturvedi, D.K. Modeling and Simulation of Systems Using MATLAB® and Simulink®; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Klee, H.; Allen, R. Simulation of Dynamic Systems with MATLAB® and Simulink®; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Patel, R.L.; Pathak, M.J.; Nayak, A.J. Survey on network simulators. Int. J. Comput. Appl. 2018, 182, 23–30. [Google Scholar] [CrossRef]
- Lohiya, R.; Thakkar, A. Application Domains, Evaluation Data Sets, and Research Challenges of IoT: A Systematic Review. IEEE Internet Things J. 2021, 8, 8774–8798. [Google Scholar] [CrossRef]
- Shah, S.W.H.; Mian, A.N.; Aijaz, A.; Qadir, J.; Crowcroft, J. Energy-Efficient MAC for Cellular IoT: State-of-the-Art, Challenges, and Standardization. IEEE Trans. Green Commun. Netw. 2021, 5, 587–599. [Google Scholar] [CrossRef]
- Rana, M.M.; Dahotre, N. IoT-Based Cyber-Physical Additive Manufacturing Systems: A Secure Communication Architecture, Research Challenges and Directions. In Proceedings of the 2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 January 2021; pp. 216–219. [Google Scholar] [CrossRef]
- Dave, M.; Doshi, J.; Arolkar, H. MQTT- CoAP Interconnector: IoT Interoperability Solution for Application Layer Protocols. In Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 7–9 October 2020; pp. 122–127. [Google Scholar] [CrossRef]
- Ishaq, M.; Afzal, M.H.; Tahir, S.; Ullah, K. A Compact Study of Recent Trends of Challenges and Opportunities in Integrating Internet of Things (IoT) and Cloud Computing. In Proceedings of the 2021 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), Quetta, Pakistan, 11–12 April 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Mustafa, J.; Sandström, K.; Ericsson, N.; Rizvanovic, L. Analyzing availability and QoS of service-oriented cloud for industrial IoT applications. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1403–1406. [Google Scholar] [CrossRef]
- Djonov, M.; Galabov, M.; Georgieva-Trifonova, T. Solving IoT Security and Scalability Challenges with Blockchain. In Proceedings of the 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 21–23 October 2021; pp. 52–56. [Google Scholar] [CrossRef]
- Razzaq, A. Microservices Architecture for IoT Applications in the Ocean: Microservices Architecture based Framework for Reducing the Complexity and Increasing the Scalability of IoT Applications in the Ocean. In Proceedings of the 2020 20th International Conference on Computational Science and Its Applications (ICCSA), Cagliari, Italy, 1–4 July 2020; pp. 87–90. [Google Scholar] [CrossRef]
- Bansal, S.; Tomar, V. Challenges & Security Threats in IoT with Solution Architectures. In Proceedings of the 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, 21–22 January 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Yassein, M.B.; Hmeidi, I.; Meqdadi, O.; Alghazo, F.; Odat, B.; AlZoubi, O.; Smairat, A. Challenges and Techniques of Constrained Application Protocol (CoAP) for Efficient Energy Consumption. In Proceedings of the 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 7–9 April 2020; pp. 373–377. [Google Scholar] [CrossRef]
- Foukalas, F.; Tziouvaras, A. Edge Artificial Intelligence for Industrial Internet of Things Applications: An Industrial Edge Intelligence Solution. IEEE Ind. Electron. Mag. 2021, 15, 28–36. [Google Scholar] [CrossRef]
- Sun, W.; Liu, J.; Yue, Y. AI-Enhanced Offloading in Edge Computing: When Machine Learning Meets Industrial IoT. IEEE Network 2019, 33, 68–74. [Google Scholar] [CrossRef]
- Georgiana Dorobantu, O.; Halunga, S. Security threats in IoT. In Proceedings of the 2020 International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 5–6 November 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Bonkra, A.; Dhiman, P. IoT Security Challenges in Cloud Environment. In Proceedings of the 2021 2nd International Conference on Computational Methods in Science & Technology (ICCMST), Mohali, India, 17–18 December 2021; pp. 30–34. [Google Scholar] [CrossRef]
- Abdul Sattar, K.; Al-Omary, A. A survey: Security issues in IoT environment and IoT architecture. In Proceedings of the 3rd Smart Cities Symposium (SCS 2020), Virtual, 21–23 September 2020; Volume 2020, pp. 96–102. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Landum, M.; Moura, M.; Reis, L. ICT Good Practices in alignment with Green IT. In Proceedings of the 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), Sevilla, Spain, 17–20 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zong, B.; Fan, C.; Wang, X.; Duan, X.; Wang, B.; Wang, J. 6G Technologies: Key Drivers, Core Requirements, System Architectures, and Enabling Technologies. IEEE Veh. Technol. Mag. 2019, 14, 18–27. [Google Scholar] [CrossRef]
- Ye, N.; Yu, J.; Wang, A.; Zhang, R. Help from space: Grant-free massive access for satellite-based IoT in the 6G era. Digit. Commun. Networks 2022, 8, 215–224. [Google Scholar] [CrossRef]
- Bankey, V.; Upadhyay, P.K. Physical Layer Security of Multiuser Multirelay Hybrid Satellite-Terrestrial Relay Networks. IEEE Trans. Veh. Technol. 2019, 68, 2488–2501. [Google Scholar] [CrossRef]
- Niu, H.; Lin, Z.; Chu, Z.; Zhu, Z.; Xiao, P.; Nguyen, H.X.; Lee, I.; Al-Dhahir, N. Joint Beamforming Design for Secure RIS-Assisted IoT Networks. IEEE Internet Things J. 2023, 10, 1628–1641. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G Networks: Use Cases and Technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Qadir, Z.; Le, K.N.; Saeed, N.; Munawar, H.S. Towards 6G Internet of Things: Recent advances, use cases, and open challenges. ICT Express 2022. [Google Scholar] [CrossRef]
- Kök, İ.; Okay, F.Y.; Özdemir, S. FogAI: An AI-supported fog controller for Next Generation IoT. Internet Things 2022, 19, 100572. [Google Scholar] [CrossRef]
- Tegos, S.A.; Diamantoulakis, P.D.; Lioumpas, A.S.; Sarigiannidis, P.G.; Karagiannidis, G.K. Slotted ALOHA with NOMA for the next generation IoT. IEEE Trans. Commun. 2020, 68, 6289–6301. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; de Cola, T.; Wang, J.B.; Zhu, W.P.; Cheng, J. Supporting IoT With Rate-Splitting Multiple Access in Satellite and Aerial-Integrated Networks. IEEE Internet Things J. 2021, 8, 11123–11134. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Wang, J.B.; de Cola, T.; Wang, J. Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks With Non-Orthogonal Multiple Access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Li, F.Y.; Martinez-Bauset, J. Revealing the Benefits of Rate-Splitting Multiple Access for Uplink IoT Traffic. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 111–116. [Google Scholar] [CrossRef]
- Liu, H.; Tsiftsis, T.A.; Kim, K.J.; Kwak, K.S.; Poor, H.V. Rate splitting for uplink NOMA with enhanced fairness and outage performance. IEEE Trans. Wirel. Commun. 2020, 19, 4657–4670. [Google Scholar] [CrossRef]
- Agrawal, N.; Bansal, A.; Singh, K.; Li, C.P.; Mumtaz, S. Finite Block Length Analysis of RIS-Assisted UAV-Based Multiuser IoT Communication System With Non-Linear EH. IEEE Trans. Commun. 2022, 70, 3542–3557. [Google Scholar] [CrossRef]
- Bansal, A.; Singh, K.; Li, C.P. Analysis of hierarchical rate splitting for intelligent reflecting surfaces-aided downlink multiuser MISO communications. IEEE Open J. Commun. Soc. 2021, 2, 785–798. [Google Scholar] [CrossRef]
- Li, B.; Fei, Z.; Zhang, Y. UAV Communications for 5G and Beyond: Recent Advances and Future Trends. IEEE Internet Things J. 2019, 6, 2241–2263. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.; Li, Y.; Zhang, R.; Cheng, W.; Liu, C. Cooperative Resource Management for Cognitive Satellite-Aerial-Terrestrial Integrated Networks Towards IoT. IEEE Access 2020, 8, 35759–35769. [Google Scholar] [CrossRef]
- Zhou, D.; Gao, S.; Liu, R.; Gao, F.; Guizani, M. Overview of development and regulatory aspects of high altitude platform system. Intell. Converg. Networks 2020, 1, 58–78. [Google Scholar] [CrossRef]
- Qin, P.; Zhu, Y.; Zhao, X.; Feng, X.; Liu, J.; Zhou, Z. Joint 3D-Location Planning and Resource Allocation for XAPS-Enabled C-NOMA in 6G Heterogeneous Internet of Things. IEEE Trans. Veh. Technol. 2021, 70, 10594–10609. [Google Scholar] [CrossRef]
- Zare, M.; Elmi Sola, Y.; Hasanpour, H. Towards distributed and autonomous IoT service placement in fog computing using asynchronous advantage actor-critic algorithm. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 368–381. [Google Scholar] [CrossRef]
- Gomes, E.; Costa, F.; De Rolt, C.; Plentz, P.; Dantas, M. A Survey from Real-Time to Near Real-Time Applications in Fog Computing Environments. Telecom 2021, 2, 489–517. [Google Scholar] [CrossRef]
- Alghamdi, I.; Anagnostopoulos, C.; Pezaros, D.P. Data quality-aware task offloading in Mobile Edge Computing: An Optimal Stopping Theory approach. Future Gener. Comput. Syst. 2021, 117, 462–479. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Gan, X.; Jin, H.; Fu, L.; Wang, X. Learning-aided computation offloading for trusted collaborative mobile edge computing. IEEE Trans. Mob. Comput. 2019, 19, 2833–2849. [Google Scholar] [CrossRef]
- Baek, J.; Kaddoum, G. Online partial offloading and task scheduling in SDN-Fog networks with deep recurrent reinforcement learning. IEEE Internet Things J. 2021, 9, 11578–11589. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Wang, C.; Zhang, H.; Qiu, C.; Wang, X. Multitask offloading strategy optimization based on directed acyclic graphs for edge computing. IEEE Internet Things J. 2021, 9, 9367–9378. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, W.; He, H.; Yang, P.; Lyu, F.; Cheng, N.; Shen, X. Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in SAGIN. IEEE Trans. Wirel. Commun. 2021, 20, 911–925. [Google Scholar] [CrossRef]
- Qin, P.; Fu, Y.; Zhao, X.; Wu, K.; Liu, J.; Wang, M. Optimal Task Offloading and Resource Allocation for C-NOMA Heterogeneous Air-Ground Integrated Power Internet of Things Networks. IEEE Trans. Wirel. Commun. 2022, 21, 9276–9292. [Google Scholar] [CrossRef]
- Tang, F.; Hofner, H.; Kato, N.; Kaneko, K.; Yamashita, Y.; Hangai, M. A Deep Reinforcement Learning-Based Dynamic Traffic Offloading in Space-Air-Ground Integrated Networks (SAGIN). IEEE J. Sel. Areas Commun. 2022, 40, 276–289. [Google Scholar] [CrossRef]
- Al Ridhawi, I.; Otoum, S. Supporting Next-Generation Network Management with Intelligent Moving Devices. IEEE Network 2022, 36, 8–15. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, X.; Qin, P.; Geng, S.; Meng, S. Joint Dynamic Task Offloading and Resource Scheduling for WPT Enabled Space-Air-Ground Power Internet of Things. IEEE Trans. Netw. Sci. Eng. 2022, 9, 660–677. [Google Scholar] [CrossRef]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutorials 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Tournier, J.; Lesueur, F.; Mouël, F.L.; Guyon, L.; Ben-Hassine, H. A survey of IoT protocols and their security issues through the lens of a generic IoT stack. Internet Things 2021, 16, 100264. [Google Scholar] [CrossRef]
- Mahbub, M. Progressive researches on IoT security: An exhaustive analysis from the perspective of protocols, vulnerabilities, and preemptive architectonics. J. Netw. Comput. Appl. 2020, 168, 102761. [Google Scholar] [CrossRef]
- Kassab, W.; Darabkh, K.A. A–Z survey of Internet of Things: Architectures, protocols, applications, recent advances, future directions and recommendations. J. Netw. Comput. Appl. 2020, 163, 102663. [Google Scholar] [CrossRef]
Specifications | Bluetooth Classic BR/EDR | BLE | |
---|---|---|---|
Bluetooth 4.x | Bluetooth 5 | ||
Radio freq. (MHz) | 2400 to 2483.5 | 2400 to 2483.5 | 2400 to 2483.5 |
Channels | 79 (1 MHz) | 40 (2 MHz) | 40 (2 MHz) |
Distance (m) | Up to 100 | Up to 100 | Up to 200 |
Latency (ms) | 100 | <6 | <6 |
Data rate (Mbps) | 1, 2, 3 | 1 | 0.5, 0.125, 1, 2 |
Max active nodes | 8 | Unlimited | |
Massage size (bytes) | Up to 358 | 31 | 255 |
Max payload (bytes) | 1021 | 37,255 | 255 |
Peak current (mA) | <30 | <15 | <15 |
Amendment | Naming Convention | Year | Operating Band | Max Bandwidth | Max Data Rate | PHY | MAC |
---|---|---|---|---|---|---|---|
802.11b | Wi-Fi 1 | 1999 | 5 GHz | 22 MHz | 11 Mbps | DSSS | DCF 1 |
802.11a | Wi-Fi 2 | 1999 | 2.4 GHz | 20 MHz | 54 Mbps | OFDM | DCF |
802.11g | Wi-Fi 3 | 2003 | 2.4 GHz | 20 MHz | 54 Mbps | MIMO-OFDM | DCF |
802.11n | Wi-Fi 4 | 2008 | 2.4/5 GHz | 40 MHz | 600 Mbps | OFDM | DCF + EDCA 2, frame aggregation, BA 3 |
802.11ac | Wi-Fi 5 | 2014 | 5 GHz | 40 MHz | 6.39 Gbps | 256-QAM, OFDM, DL MIMO, channel bounding | DCF + EDCA, frame aggregation, BA |
802.11ah | Wi-Fi HaLow | 2017 | sub-1 GHz | 16 MHz | 347 Mbps | OFDM, DL-MU MIMO | EDCA, TWT, RAW 4 |
802.11ax | Wi-Fi 6 | 2019 2020 (6E) | 2.4/5 GHz, 6 GHz for Wi-Fi 6E | 160 MHz | 9.6 Gbps | OFDMA, UL/DL MIMO, channel bounding | DCF + EDCA, frame aggregation, BA, TWT 5, MU channel access |
802.11be | Wi-Fi 7 | 2024 | 2.4/5/6 GHz | 320 MHz | 40 Gbps | 4096-QAM, Coordinated OFDMA, UL/DL MIMO | HARQ 6 multi-link aggregation, Multi link operation, … |
Standard | Data Rate | Frequency Range |
---|---|---|
X-10 | - | 95–125 kHz |
KONNEX EN50056-1 | 1.2–2.4 kbps | 125–140 kHz |
IEC61334 | 2.4 kbps | 3–95 kHz |
ISO/IEC 14,908–1 | 3.6–5.4 Kpbs | 86–131 kHz |
G3-PLC | 5.6–46 kbps | 3–490 kHz |
PRIME | 130 Kpbs | 3–95 kHz |
IEEE P1901.2 | 500 kbps | 9–500 kHz |
ITU-T G.hnem | 1 Mpbs | up to 500 kHz |
Vendor | Hardware Model | Supported Wireless Technologies | Sensitivity [dBm] | Transmit Current [mA] | Receive Current [mA] |
---|---|---|---|---|---|
Texas Instruments | CC2651R3SIPA | BLE, 802.15.4 | −104 | 7.1 | 6.8 |
Texas Instruments | CC2652PSIP | BLE, 802.15.4 | −103 | 7.9 | 7.3 |
Texas Instruments | CC2651P3 | BLE, 802.15.4 | −104 | 7.1 | 6.4 |
Texas Instruments | CC2652RSIP | BLE, 802.15.4 | −99 | 7.5 | 7.3 |
Nordic | nRF5340 | BLE 5.3, 802.15.4 | −98 | 3.4 | 2.7 |
Nordic | nRF52840 | BLE 5.3, 802.15.4 | −103 for BLE 5.3, −100 for 802.15.4 | 6.40 | 6.26 |
NXP | K32W041AM-A | BLE, 802.15.4 | 100 | 12.1 | 4.3 |
Infineon | CYW20736S | BLE (SiP) | −94 | 24–28 | 24–28 |
STMicroelectronics | STM32WB30CE | 802.15.4 | −100 | 8.8 | 7.9 |
STMicroelectronics | STM32WB35CC | 802.15.4 | −100 | 5.2 | 4.5 |
Texas Instruments | CC3230S | 802.11b/g/n | −96 dBm at 1 DSSS, −74.5 dBm at 54 OFDM | 223 | 59 |
Texas Instruments | CC3235MODAS | 802.11a/b/g/n | −94.5 dBm at 1 DSSS, −89 dBm at 6 OFDM | 223 | 59 |
Texas Instruments | CC1352P7 | Wi-SUN | −121 | 21 at +10 dBm at 2.4 GHz | 6.4 at 2.4 GHz |
Texas Instruments | CC1312R7 | Wi-SUN, 6LoWPAN | −121 | 24.9 TX at +14 dBm at 868 MHz | 5.4 RX at 868 MHz |
Texas Instruments | CC1352X | Wi-SUN, 6LoWPAN, BLE 5.2, ZigBee | −121 | 8.0 at 868 MHz | 5.8 at 868 MHz) |
STMicroelectronics | SPIRIT1 | 6LoWPAN | −120 | 54 | 9 |
ROHM Semiconductor | BP35C0-J11 | Wi-SUN | −103 | 47 | 27 |
STMicroelectronics | S2-LP | Wi-SUN, 6LoWPAN | −130 | 10 | 7 |
Nordic | nRF9160 | LTE, NB-IoT | −114 | 0.009 | – |
STMicroelectronics | ST87M01 | NB-IoT | N/A | N/A | N/A |
Silicon Labs | ZGM130S | Z-Wave | −103.9 dBm | 13.3 at 0 dBm | 9.8 |
Silicon Labs | ZGM230S | Z-Wave | −109.8 dBm | 10.7 at 0 dBm | 4.1 |
Microchip | PL360 | PLC | N/A | N/A | N/A |
Renesas | R9A06G037 | PLC | N/A | N/A | N/A |
Renesas | PL3120 | PLC | N/A | N/A | N/A |
STMicroelectronics | STM32WL54CC | LoRaWAN | −148 | 15 at 10 dBm | 4.82 |
STMicroelectronics | STM32WL54JC | LoRaWAN | −148 | 15 at 10 dBm | 4.82 |
PLC | ||||||||
---|---|---|---|---|---|---|---|---|
Characteristics | Bluetooth LE | Z-Wave | ZigBee | LoRa | 6LoWPAN | Wi-Fi | G3 | PRIME |
Standard | IEEE 802.15.1 | ITU G-9959 | IEEE 802.15.4 | IEEE 802.15.4g | IEEE 802.15.4 | IEEE 802.11 | ITU-T G-9903 | ITU-T G-9904 |
Network | WPAN | WPAN | WPAN | WAN | WPAN | WLAN | WAN | |
Topology | Star, mesh | Mesh | Star, mesh, tree | Mesh | Star, Mesh | Mesh | ||
Power | Low | Low | Low | Ultra-low-power | Low | Medium | Low | |
Frequency Bands | 2.4 GHz | 868 MHz– 908 MHz | 2.4 GHz | 869/915 MHz | 868 MHz (EU), 915 MHz (USA), 2.4 GHz (Global) | 2.4/5/6 GHz | 3–490 kHz | 3–95 kHz |
Data Rate | 1–2 Mbps | 40 kbps | 250 kbps | 50 kbps | 250 kbps | 11–9600 Mbps | 33.4 kbps | 130 kbps |
Range | 15–30 m Short Range | 30 m (indoors), 100 m (outdoors) | 10–100 m Short Range | Urban (2–5 km) suburban (15 km) | 10–100 m Short Range | 100m | 10 m–100 Kms | |
Spreading | FHSS | - | DSSS | CSS | DSSS | DSSS | ||
Security | E0 stream, AES-128 | AES-128 | AES-128 | AES-128 | AES-128 | WPA2/3 | ||
Common Applications | Audio applications and Wireless headsets | Home Monitoring and Control | Controlling and Home industry monitoring | Air Pollution Monitoring. Agriculture Processing. Animal Tracking. Fire Detection. Fleet Tracking. Home Security. | Monitor and Control via internet | Mobile, Business, Home, Computerized, Automotive, Browsing | Smart Grid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, M.; Gamal, A.; Ahmed, A.I.; Said, L.A.; Elbaz, A.; Herencsar, N.; Soltan, A. Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions. Energies 2023, 16, 3465. https://doi.org/10.3390/en16083465
Mansour M, Gamal A, Ahmed AI, Said LA, Elbaz A, Herencsar N, Soltan A. Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions. Energies. 2023; 16(8):3465. https://doi.org/10.3390/en16083465
Chicago/Turabian StyleMansour, Mohammad, Amal Gamal, Ahmed I. Ahmed, Lobna A. Said, Abdelmoniem Elbaz, Norbert Herencsar, and Ahmed Soltan. 2023. "Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions" Energies 16, no. 8: 3465. https://doi.org/10.3390/en16083465
APA StyleMansour, M., Gamal, A., Ahmed, A. I., Said, L. A., Elbaz, A., Herencsar, N., & Soltan, A. (2023). Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions. Energies, 16(8), 3465. https://doi.org/10.3390/en16083465