Effect of Different Hydrothermal Parameters on Calorific Value and Pyrolysis Characteristics of Hydrochar of Kitchen Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydrothermal Carbonization of Kitchen Waste
2.3. Characterization of Hydrochar
2.4. Pyrolysis Experiment
3. Results and Discussion
3.1. Influence of Hydrothermal Parameters on Characteristics of Hydrochar
3.2. Physicochemical Properties of Hydrochar
3.3. Morphology
3.4. Analysis of Pyrolysis Characteristics of Hydrochar
Effect of Temperature on Pyrolysis Characteristic of Hydrochar
3.5. Pyrolysis Kinetics of Hydrochar
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seadi, T.A.; Owen, N.; Hellström, H.; Kang, H. Source Separation of MSW; IEA Bioenergy: Paris, France, 2013. [Google Scholar]
- Su, G.; Ong, H.C.; Fattah, I.M.R.; Ok, Y.S.; Jang, J.-H.; Wang, C.-T. State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges. Sci. Total Environ. 2022, 809, 151170. [Google Scholar] [CrossRef] [PubMed]
- Ly, H.V.; Kwon, B.; Kim, J.; Oh, C.; Hwang, H.T.; Lee, J.S.; Kim, S.-S. Effects of torrefaction on product distribution and quality of bio-oil from food waste pyrolysis in N2 and CO2. Waste Manag. 2022, 141, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, Y. Effects of thermal pretreatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste. Renew. Energy 2015, 77, 550–557. [Google Scholar] [CrossRef]
- Campuzano, R.; González-Martínez, S. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Manag. 2016, 54, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Fooladi, H. Economic and environmental estimated assessment of power production from municipal solid waste using anaerobic digestion and landfill gas technologies. Energy Rep. 2021, 7, 4460–4469. [Google Scholar] [CrossRef]
- Alibardi, L.; Cossu, R. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag. 2015, 36, 147–155. [Google Scholar] [CrossRef]
- Ajay, C.; Mohan, S.; Dinesha, P. Decentralized energy from portable biogas digesters using domestic kitchen waste: A review. Waste Manag. 2021, 125, 10–26. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Li, A. Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal. J. Environ. Manag. 2018, 206, 989–998. [Google Scholar] [CrossRef]
- Zhao, P.; Shen, Y.; Ge, S.; Chen, Z.; Yoshikawa, K. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl. Energy 2014, 131, 345–367. [Google Scholar] [CrossRef]
- Leng, S.; Li, W.; Han, C.; Chen, L.; Chen, J.; Fan, L.; Lu, Q.; Li, J.; Leng, L.; Zhou, W. Aqueous phase recirculation during hydrothermal carbonization of micro-algae and soybean straw: A comparison study. Bioresour. Technol. 2020, 298, 122–502. [Google Scholar] [CrossRef]
- Liu, Z.; Quek, A.; Hoekman, S.K.; Balasubramanian, R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 2013, 103, 943–949. [Google Scholar] [CrossRef]
- Reza, M.T.; Coronella, C.; Holtman, K.M.; Franqui-Villanueva, D.; Poulson, S.R. Hydrothermal Carbonization of Autoclaved Municipal Solid Waste Pulp and Anaerobically Treated Pulp Digestate. ACS Sustain. Chem. Eng. 2016, 4, 3649–3658. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuel. Bioprod. Biorefin. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Basso, D.; Patuzzi, F.; Castello, D.; Baratieri, M.; Rada, E.C.; Weiss-Hortala, E.; Fiori, L. Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manag. 2016, 47, 114–121. [Google Scholar] [CrossRef]
- Doyle, L.; Renz, M.; Mena, B.D.; Hitzl, M.; Hernandez, M. Industrial Scale Hydrothermal Carbonization: New Applications for Wet Biomass Waste; Ttz Bremerhaven: Bremerhaven, Germany, 2016. [Google Scholar]
- Kruse, A.; Funke, A.; Titirici, M.-M. Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Chem. Biol. 2013, 17, 512–521. [Google Scholar] [CrossRef]
- Zhou, Y.; Engler, N.; Nelles, M. Symbiotic relationship between hydrothermal carbonization technology and anaerobic digestion for food waste in China. Bioresour. Technol. 2018, 260, 404–412. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Bermejo, S.P.; Prado-Guerra, A.; Pérez, A.I.G.; Prieto, L.F.C. Study of quinoa plant residues as a way to produce energy through thermogravimetric analysis and indexes estimation. Renew. Energy 2020, 146, 2224–2233. [Google Scholar] [CrossRef]
- Ma, M.; Bai, Y.; Wang, J.; Lv, P.; Song, X.; Su, W.; Yu, G. Study on the pyrolysis characteristics and kinetic mechanism of cow manure under different leaching solvents pretreatment. J. Environ. Manag. 2021, 290, 112580. [Google Scholar] [CrossRef]
- Mohammed, H.I.; Garba, K.; Ahmed, S.I.; Abubakar, L.G. Thermodynamics and kinetics of Doum (Hyphaene thebaica) shell using thermogravimetric analysis: A study on pyrolysis pathway to produce bioenergy. Renew. Energy 2022, 200, 1275–1285. [Google Scholar] [CrossRef]
- Mingxun, Z.; Zefeng, G.; Yuna, M.; Zhenting, Z.; Yuqing, W.; Huiyan, Z. (Co-)gasification characteristics and synergistic effect of hydrothermal carbonized solid/liquid products derived from fresh kitchen waste. Waste Manag. 2022, 154, 78–83. [Google Scholar]
- Gupta, D.; Mahajani, S.M.; Garg, A. Investigation on hydrochar and macromolecules recovery opportunities from food waste after hydrothermal carbonization. Sci. Total Environ. 2020, 749, 142294. [Google Scholar] [CrossRef] [PubMed]
- EunSuk, J.; DoYoon, R.; Daegi, K. Hydrothermal carbonization improves the quality of biochar derived from livestock manure by removing inorganic matter. Chemosphere 2022, 305, 135–391. [Google Scholar]
- Wang, T.; Zhai, Y.; Zhu, Y.; Peng, C.; Xu, B.; Wang, T.; Li, C.; Zeng, G. Acetic acid and sodium hydroxide-aided hydrothermal carbonization (HTC) of woody biomass for enhanced pelletization and fuel properties. Energy Fuels 2017, 31, 12200–12208. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47, 2281–2289. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2006, 86, 1781–1788. [Google Scholar] [CrossRef]
- Areeprasert, C.; Zhao, P.; Ma, D.; Shen, Y.; Yoshikawa, K.J.E. Alternative Solid Fuel Production from Paper Sludge Employing Hydrothermal Treatment. Energy Fuels 2014, 28, 1198–1206. [Google Scholar] [CrossRef]
- Peng, C.; Zhai, Y.; Zhu, Y.; Wang, T.; Xu, B.; Wang, T.; Li, C.; Zeng, G. Investigation of the structure and reaction pathway of char obtained from sewage sludge with biomass wastes, using hydrothermal treatment. J. Clean. Prod. 2017, 166, 114–123. [Google Scholar] [CrossRef]
- Megan, d.J.; Frank, S.; Michael, W.; Luise, G. The stability of carbon from a maize-derived hydrochar as a function of fractionation and hydrothermal carbonization temperature in a Podzol. Biochar 2022, 4, 22–175. [Google Scholar]
- Jaleta, D.M.; Atte, A.; Nikolai, D.; Anders, B.; Ida, M.; Leena, H.; Hupa, M. Fast Pyrolysis of Dried Sugar Cane Vinasse at 400 and 500 °C: Product Distribution and Yield. Energy Fuels 2018, 33, 1236–1247. [Google Scholar]
- Soufizadeh, M.; Doniavi, A.; Hasanzadeh, R. Assessment and optimization of plastic waste pyrolysis using quality control techniques based on kinetic modeling. Int. J. Environ. Sci. Technol. 2022, 19, 3897–3906. [Google Scholar] [CrossRef]
- Yao, Z.; Yu, S.; Su, W.; Wu, W.; Tang, J.; Qi, W. Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods. Waste Manag. Res. 2020, 38, 77–85. [Google Scholar] [CrossRef]
- Lingli, Z.; Zhaoping, Z. Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics. Korean J. Chem. Eng. 2020, 37, 1660–1668. [Google Scholar]
- Soria-Verdugo, A.; Goos, E.; Morato-Godino, A.; García-Hernando, N.; Riedel, U. Pyrolysis of biofuels of the future: Sewage sludge and microalgae—Thermogravimetric analysis and modelling of the pyrolysis under different temperature conditions. Energy Convers. Manag. 2017, 138, 261–272. [Google Scholar] [CrossRef]
- Ming, X.; Xu, F.; Jiang, Y.; Zong, P.; Wang, B.; Li, J.; Qiao, Y.; Tian, Y. Thermal degradation of food waste by TG-FTIR and Py-GC/MS: Pyrolysis behaviors, products, kinetic and thermodynamic analysis. J. Clean. Prod. 2019, 244, 118713. [Google Scholar] [CrossRef]
- Jo, J.-H.; Kim, S.-S.; Shim, J.-W.; Lee, Y.-E.; Yoo, Y.-S. Pyrolysis Characteristics and Kinetics of Food Wastes. Energies 2017, 10, 1191. [Google Scholar] [CrossRef]
Sample | Ultimate Analysis (wt.%) | Proximate Analysis (wt.%) | O/C H/C | HHV (MJ/Kg) | ED (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | Oa | FC | Vad | A | |||||
W-185 | 67.142 | 5.985 | 3.858 | 22.075 | 37.380 | 61.680 | 0.940 | 0.247 | 1.070 | 26.922 | 69.664 |
W-205 | 67.799 | 5.583 | 3.627 | 20.641 | 42.180 | 55.470 | 2.350 | 0.228 | 0.988 | 27.197 | 68.960 |
W-225 | 70.128 | 5.448 | 3.938 | 17.636 | 45.530 | 51.620 | 2.850 | 0.189 | 0.932 | 28.517 | 65.768 |
W-245 | 72.599 | 5.291 | 4.438 | 14.052 | 49.570 | 46.810 | 3.620 | 0.145 | 0.875 | 29.671 | 63.210 |
W-265 | 73.418 | 5.353 | 4.239 | 13.050 | 50.830 | 45.230 | 3.940 | 0.133 | 0.875 | 30.933 | 60.631 |
S-1.5 | 72.847 | 5.652 | 3.942 | 15.319 | 46.620 | 51.140 | 2.240 | 0.158 | 0.931 | 29.840 | 62.852 |
S-3.5 | 72.793 | 5.630 | 4.195 | 14.302 | 46.970 | 49.950 | 3.080 | 0.147 | 0.928 | 30.257 | 61.986 |
S-4.5 | 72.868 | 5.535 | 4.044 | 14.623 | 48.800 | 48.270 | 2.930 | 0.151 | 0.912 | 30.193 | 62.117 |
S-5.5 | 73.058 | 5.656 | 4.306 | 13.620 | 46.600 | 50.040 | 3.360 | 0.140 | 0.929 | 30.998 | 60.504 |
G-5 | 73.685 | 5.580 | 4.154 | 14.331 | 46.660 | 51.090 | 2.250 | 0.146 | 0.909 | 30.825 | 60.843 |
G-15 | 71.770 | 5.537 | 3.894 | 15.849 | 46.300 | 50.750 | 2.950 | 0.166 | 0.926 | 30.699 | 61.093 |
G-20 | 72.602 | 5.383 | 4.523 | 15.922 | 50.630 | 47.800 | 1.570 | 0.164 | 0.890 | 29.834 | 62.865 |
Hydrochar | Weightlessness Temperature Interval (°C) | Maximum Weightlessness Temperature (°C) | Maximum Weightlessness Loss Rate (%/min) | Residual Mass (%) |
---|---|---|---|---|
W-185 | 313.4–498.3 | 369 | 7.93 | 37.21 |
W-205 | 331.0–516.3 | 378 | 6.36 | 41.47 |
W-225 | 341.1–527.2 | 384 | 5.54 | 46.45 |
W-245 | 355.0–537.8 | 429 | 4.46 | 47.80 |
W-265 | 381.0–546.9 | 438 | 4.32 | 50.41 |
Hydrochar | Weightlessness Temperature Interval (°C) | Fitted Curve | E (KJ/mol) | A (min−1) | Average R2 |
---|---|---|---|---|---|
W-185 | 313.4–498.3 | y = −4027x − 7.29 | 33.48 | 54.95 | 0.95350 |
W-205 | 331.0–516.3 | y = −3678x − 7.95 | 30.58 | 50.19 | 0.96446 |
W-225 | 341.1–527.2 | y = −3473x − 8.33 | 28.87 | 16.75 | 0.97385 |
W-245 | 355.0–537.8 | y = −3464x − 8.41 | 28.80 | 15.42 | 0.98261 |
W-265 | 381.0–546.9 | y = −3451x − 8.50 | 28.69 | 14.04 | 0.97804 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Li, C.; Chai, R.; Wu, J.; Wang, Y. Effect of Different Hydrothermal Parameters on Calorific Value and Pyrolysis Characteristics of Hydrochar of Kitchen Waste. Energies 2023, 16, 3561. https://doi.org/10.3390/en16083561
Shi Y, Li C, Chai R, Wu J, Wang Y. Effect of Different Hydrothermal Parameters on Calorific Value and Pyrolysis Characteristics of Hydrochar of Kitchen Waste. Energies. 2023; 16(8):3561. https://doi.org/10.3390/en16083561
Chicago/Turabian StyleShi, Yan, Chenglin Li, Runze Chai, Junquan Wu, and Yining Wang. 2023. "Effect of Different Hydrothermal Parameters on Calorific Value and Pyrolysis Characteristics of Hydrochar of Kitchen Waste" Energies 16, no. 8: 3561. https://doi.org/10.3390/en16083561
APA StyleShi, Y., Li, C., Chai, R., Wu, J., & Wang, Y. (2023). Effect of Different Hydrothermal Parameters on Calorific Value and Pyrolysis Characteristics of Hydrochar of Kitchen Waste. Energies, 16(8), 3561. https://doi.org/10.3390/en16083561