Generator Fault Diagnosis with Bit-Coding Support Vector Regression Algorithm
Abstract
:1. Introduction
2. Problem Description
- (1)
- The electrical fault.
- (2)
- Mechanical vibration fault.
- (3)
- The cooling system fault.
- (1)
- Rotor unbalance: unbalanced rotor weighting or the poor base.
- (2)
- No orderliness: shaft straight line or insufficient warming.
- (3)
- Oil membrane oscillation: fault lubricating system or pump.
3. Fundamental Theory
4. The Proposed BSVR Classifier
4.1. Design Architecture and Bit-Coding Approach
- (1)
- Construct the diagnostic system.
- (2)
- Train the network with known fault patterns.
- (3)
- Use the diagnostic system to diagnose the fault.
4.2. BSVR-Based GFD System (BGFDS)
- Data acquisition to collect sampled vibration data periodically at a regular interval.
- Data sent to the Data Processor for interpretation.
- FFT to analyze data in order to acquire the frequency spectrum.
- Data processed by the fault diagnosis processor with two portions of
- (1)
- sampled data from field be constructed in EXCEL Workspace, and
- (2)
- data analysis and storage of BSVR be manipulated on this database.
5. Simulation and Tests
5.1. Training Patterns Creation
- Rotor unbalance (F1): [1 0 0 0] with 20 instances.
- Rubbing (F2): [0 1 0 0] with 20 instances.
- Rotor crack (F3): [0 0 1 0] with 20 instances.
- Oil membrane osc. (F4): [0 0 0 1] with 20 instances.
5.2. Simulation Results
E(p) | Target value of the p-th sample |
O(p) | Real output value of the p-th sample |
Q | Total number of test samples |
5.2.1. Generalization Ability Test
5.2.2. Robustness Test
5.2.3. Consistency Test
5.2.4. Performances Test
6. Conclusions
- BSVR integrates a bit-coding approach, simple SVR, and a small number of training data for problems that are not linearly separable as GFD.
- SVR trains SVs with standard quadratic optimization technique, which has a unique solution and is globally optimal, requiring much less computation time.
- SVR needs no determination for the size of hidden layers. The number of SVs determines the number of hidden units automatically.
- The training and testing of BSVR are very fast compared with other ANNs.
- A minimum sized network is built with simple learning algorithms.
- Only m SVR is needed for the m classification problem in comparison with [m(m − 1)]/2 size for traditional multi-class SVM (MSVM).
- The design architecture can use existing devices without adding extra measurement devices.
- BSVR has good classification capability, performance, consistency, noise rejection ability, and robustness, i.e., many good characteristics for machine learning.
- The proposed diagnostic algorithms can be realized in a portable device for convenient application.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doorwar, A.; Bhalja, B.; Malik, O.P. A New Internal Fault Detection and Classification Technique for Synchronous Generator. IEEE Trans. Power Deliv. 2019, 34, 739–7492. [Google Scholar] [CrossRef]
- Bouzid, M.B.K.; Champenois, G. An Efficient Simplified Physical Faulty Model of a Permanent Magnet Synchronous Generator Dedicated to Stator Fault Diagnosis Part II: Automatic Stator Fault Diagnosis. IEEE Trans. Ind. Appl. 2017, 53, 2762–2771. [Google Scholar] [CrossRef]
- Gong, X.; Qiao, W. Current-based mechanical fault detection for direct-drive wind turbines via synchronous sampling and impulse detection. IEEE Trans. Ind. Electron. 2015, 62, 1693–1702. [Google Scholar] [CrossRef]
- Siegel, D.; Zhao, W.; Lapira, E.; AbuAli, M.; Lee, J. A comparative study on vibration-based condition monitoring algorithms for wind turbine drive trains. Wind. Energy 2014, 17, 695–714. [Google Scholar] [CrossRef]
- Zhang, Z.; Verma, A.; Kusiak, A. Fault analysis and condition monitoring of the wind turbine gearbox. IEEE Trans. Energy Convers. 2012, 27, 526–535. [Google Scholar] [CrossRef]
- Gong, X.; Qiao, W. Bearing fault diagnosis for direct-drive wind turbines via current-demodulated signals. IEEE Trans. Ind. Electron. 2013, 60, 3419–3428. [Google Scholar] [CrossRef]
- Gong, X.; Qiao, W. Imbalance fault detection of direct-drive wind turbines using generator current signals. IEEE Trans. Energy Convers. 2012, 27, 468–476. [Google Scholar] [CrossRef]
- Gardels, D.J.; Qiao, W.; Gong, X. Simulation studies on imbalance faults of wind turbines. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–5. [Google Scholar]
- Entezami, M.; Hillmansen, S.; Weston, P.; Papaelias, M.P. Fault detection and diagnosis within a wind turbine mechanical braking system using condition monitoring. Renew. Energy 2012, 47, 175–182. [Google Scholar] [CrossRef]
- Wei, X.; Verhaegen, M. Sensor and actuator fault diagnosis for wind turbine systems by using robust observer and filter. Wind Energy 2011, 14, 491–516. [Google Scholar] [CrossRef]
- Lu, D.; Qiao, W. Frequency demodulation-aided condition monitoring for drivetrain gearboxes. In Proceedings of the 2013 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 16–19 June 2013; pp. 1–6. [Google Scholar]
- Lin, W.M.; Yang, C.D.; Lin, C.H.; Tsay, M.T. A Fault Classification Method by RBF Neural Network with OLS Learning Procedure. IEEE Trans. Power Deliv. 2001, 16, 473–477. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, X.; Liu, Y.; Griffin, P.J. An Artificial Neural Network Approach to Transformer Fault Diagnosis. IEEE Trans. Power Deliv. 1996, 11, 1836–1841. [Google Scholar] [CrossRef]
- Wan, S.; Li, H.; Zhaofeng, X. A new method of turbine-generator vibration fault diagnosis based on correlation dimension and ANN. In Proceedings of the International Conference on Power System Technology, Kunming, China, 13–17 October 2002; Volume 3, pp. 1655–1659. [Google Scholar]
- Islam, S.M.; Wu, T.; Ledwich, G. A Novel Fuzzy Logic Approach to Transformer Fault Diagnosis. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 177–186. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Yang, H.-T.; Huang, C.-L. Developing a new transformer fault diagnosis system through evolutionary fuzzy logic. IEEE Trans. Power Deliv. 1997, 12, 761–767. [Google Scholar] [CrossRef]
- Wu, C.Z.; Yan, H.; Ma, J.F. Method Research of Noise Diagnosis Based on Fuzzy Neural Network. In Proceedings of the ICSP’98. 1998 Fourth International Conference on Signal Processing (Cat. No. 98TH8344), Beijing, China, 12–16 October 1998; pp. 1370–1373. [Google Scholar]
- Lee, H.-J.; Ahn, B.-S.; Park, Y.-M. A Fault Diagnosis Expert System for Distribution Substations. IEEE Trans. Power Syst. 2000, 15, 92–974. [Google Scholar]
- Wan, S.; Li, H.; Li, Y. Adaptive Radial Basis Function Network and Its Application in Turbine-Generator Vibration Fault Diagnosis. In Proceedings of the International Conference on Power System Technology, Kunming, China, 13–17 October 2002; Volume 3, pp. 1607–1610. [Google Scholar]
- Zhang, J.; Li, R.X.; Han, P.; Wang, D.F.; Yin, X.C. Wavelet packet feature extraction for vibration monitoring and fault diagnosis of turbo-generator. In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics, Xi’an, China, 5 November 2003; Volume 1, pp. 340–344. [Google Scholar]
- Xie, D.M.; Song, X.; Zhou, H.L.; Guo, M.W. Fuzzy vibration fault diagnosis system of steam turbo-generator rotor. In Proceedings of the International Conference on Machine Learning and Cybernetics, Beijing, China, 4–5 November 2002; Volume 1, pp. 411–415. [Google Scholar]
- Ghazali, M.H.M.; Rahiman, W. Vibration-Based Fault Detection in Drone Using Artificial Intelligence. IEEE Sens. J. 2022, 22, 8439–8448. [Google Scholar] [CrossRef]
- Mitchell, J.S. Machinery Analysis and Monitoring; Pennwell Publishing Company: Tulsa, OK, USA, 1981. [Google Scholar]
- Szu, H.; Brian, T. Neural Network Adaptive Wavelets for Signal Representation and Classification. Opt. Eng. 1992, 31, 1907–1916. [Google Scholar] [CrossRef]
- Kecman, V. Learning and Soft Computing; MIT Press: Cambridge, MA, USA, 2001; pp. 11–298. [Google Scholar]
- Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Schölkopf, B.; Smola, A.J. Learning with Kernel; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Schölkopf, B.; Smola, A.J.; Willianson, R.; Bartlett, P. New support vector algorithms. Neural Comput. 2000, 12, 207–1245. [Google Scholar] [CrossRef]
- Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Lin, C.-J. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar]
- Moulin, L.S.; da Silva, A.P.A.; Sharkawi, M.A.E.I.; Mark, R.J., II. Support Vector Machines for Transient Stability Analysis of Large-Scale Power Systems. IEEE Trans. Power Syst. 2004, 19, 818–825. [Google Scholar] [CrossRef]
- Gunn, S.R. Support Vector Machines for Classification and Regression. ISIS Tech. Rep. 1998, 14, 5–16. [Google Scholar]
- Smola, A.; Schölkopf, B. A Tutorial on Support Vector Regression; NeuroCOLT Tech. Rep. NC-TR-98-030; Royal Holloway University: London, UK, 1998; Available online: http://www.kernel-machines.org/ (accessed on 15 February 2023).
- Ertekin, S.; Bottou, L.; Giles, C.L. Nonconvex Online Support Vector Machines. IEEE Trans. Pattern Anal. Mach. Intelligence 2011, 33, 368–381. [Google Scholar] [CrossRef]
- Deng, J.-L. Control Problems of Grey Systems. Syst. Control. Lett. 1982, 1, 288–294. [Google Scholar]
- Deng, J.-L. Introduction to Grey System Theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Wang, M.-H. Application of Extension Theory to Vibration Fault Diagnosis of Generator sets. IEE Proc. Gener. Transm. Distrib. 2004, 151, 503–508. [Google Scholar] [CrossRef]
- Li, H.; Sun, C.X.; Hu, X.S.; Yue, G.; Wang, K. The fuzzy inputting and outputting method in vibration fault diagnosis of steam turbine-generator set. J. Chongqing Univ. 1999, 22, 36–41. (In Chinese) [Google Scholar]
- Kawada, M.; Yamada, K.; Yamashita, K.; Isaka, K. Fundamental Study on Vibration Diagnosis for Turbine Generators Using Wavelet Transform. In Proceedings of the IEEE PES 2004 Power System Conference and Exposition, New York, NY, USA, 10–13 October 2004; Volume 13, pp. 1215–1220. [Google Scholar]
- Lin, C.-H. Classification Enhancible Grey Relational Analysis for Cardiac Arrhythmias Discrimination. Med. Biol. Eng. Comput. 2006, 44, 311–320. [Google Scholar] [CrossRef]
- Lin, C.-H.; Huang, P.-Z.; Wu, C.-H.; He, C.-Z. Window Based Assistant Tool for Oil-Immersed Transformer Fault Diagnosis Using Grey Clustering Analysis. In Proceedings of the 27th Symposium on Electrical Power Engineering, Tsing-Hua University, Hsin-Chu, Taiwan, 22–23 December 2006; pp. PD2.20.1–PD2-20.5. [Google Scholar]
- Liu, S.F.; Zhao, L.; Wang, Z.Y.; Yi, L. A New Method for Venturous Capital Pricing. Chin. J. Manag. Sci. 2001, 9, 22–26. [Google Scholar]
- Hong, Y.-Y.; Chen, Y.-C. Application of Algorithms and Artificial Intelligence Approach for Locating Multiple Harmonics in Distribution System. IEE Proc. Gener. Transm. Distrib. 1999, 146, 325–329. [Google Scholar] [CrossRef]
- Lin, W.-M.; Lin, C.-H.; Tu, K.-P.; Wu, C.-H. Multiple harmonic source detection and equipment identification with cascade correction network. IEEE Trans. Power Deliv. 2005, 20, 2166–2173. [Google Scholar] [CrossRef]
- Lin, W.-M.; Lin, C.-H.; Sun, Z.-C. Adaptive Multiple Fault Detection and Alarm Processing for Loop System with Probabilistic Network. IEEE Trans. Power Deliv. 2004, 19, 64–69. [Google Scholar] [CrossRef]
Fault Type | Rotor Vibration Frequency (VF, in Hz) | Afi Amplitude Range (μm) (10−6 m) | ||
---|---|---|---|---|
Lower Value | Upper Value | |||
Oil Membrane Oscillation | f1 | <0.4 f | 2.70 | 6.50 |
f2 | 1 f | 11.00 | 19.00 | |
f3 | 2 f | 1.10 | 4.90 | |
f4 | 3 f | 0.80 | 2.40 | |
f5 | >3 f | 0.50 | 3.80 | |
Unbalance (Imbalance) | f1 | <0.4 f | 0.54 | 2.70 |
f2 | 1 f | 38.00 | 54.50 | |
f3 | 2 f | 2.70 | 6.80 | |
f4 | 3 f | 0.54 | 4.10 | |
f5 | >3 f | 0.00 | 2.70 | |
No Orderliness | f1 | <0.4 f | 0.54 | 1.90 |
f2 | 1 f | 22.00 | 30.00 | |
f3 | 2 f | 22.00 | 26.50 | |
f4 | 3 f | 14.00 | 19.50 | |
f5 | >3 f | 5.40 | 16.20 | |
Normal Condition | f1 | <0.4 f | 0.00 | 0.54 |
f2 | 1 f | 0.00 | 8.60 | |
f3 | 2 f | 0.00 | 3.30 | |
f4 | 3 f | 0.00 | 3.30 | |
f5 | >3 f | 0.00 | 2.7 |
SVR Type | Targets [O1 O2 O3 O4] |
---|---|
SVR_u | rotor unbalance: 1; otherwise: 0 |
SVRM_r | rubbing: 1; otherwise: 0 |
SVR_c | rotor crack: 1; otherwise: 0 |
SVM_o | oil membrane oscillation: 1; otherwise: 0 |
Network Size | Number of Training Sets | C | ||
---|---|---|---|---|
I | S | O | ||
9 | 4 | 4 | 80 | 50 |
Network Size | Number of Training Sets | Learning Rate (L) | ||
---|---|---|---|---|
I | H | O | ||
9 | 7 | 4 | 80 | 0.2 |
Sample No. | Input Data | AFT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
(0.01~ 0.39) f | (0.4~ 0.49) f | 0.5 f | (0.51~ 0.99) f | 1 f | 2 f | (3~5) f | Odd f | >5 f | ||
1 | 0.00256 | 0.00122 | 0.00993 | 0.01826 | 0.81123 | 0.07904 | 0.04958 | 0.04958 | 0.00397 | F1 |
2 | 0.05129 | 0.00267 | 0.00227 | 0.01846 | 0.7578 | 0.09388 | 0.03373 | 0.03373 | 0.00596 | F1 |
3 | 0.00494 | 0.00162 | 0.00131 | 0.01049 | 0.84174 | 0.05299 | 0.01962 | 0.01962 | 0.00322 | F1 |
4 | 0.11805 | 0.01598 | 0.00831 | 0.12527 | 0.56643 | 0.01725 | 0.04653 | 0.02356 | 0.07864 | F2 |
5 | 0.03012 | 0.01275 | 0.02175 | 0.16904 | 0.61279 | 0.01977 | 0.05657 | 0.02518 | 0.052 | F2 |
6 | 0.1167 | 0.00545 | 0.00523 | 0.17401 | 0.56365 | 0.02107 | 0.05358 | 0.01288 | 0.05344 | F2 |
7 | 0.00344 | 0.00344 | 0.00553 | 0.00723 | 0.54074 | 0.15488 | 0.12893 | 0.12893 | 0.02687 | F3 |
8 | 0.00178 | 0.00178 | 0.00323 | 0.00566 | 0.58058 | 0.15624 | 0.11422 | 0.11422 | 0.0223 | F3 |
9 | 0.0132 | 0.00261 | 0.00281 | 0.00642 | 0.63413 | 0.14974 | 0.07667 | 0.07667 | 0.0377 | F3 |
10 | 0.02475 | 0.18273 | 0.39201 | 0.19642 | 0.05736 | 0.09657 | 0.02254 | 0.02254 | 0.0051 | F4 |
11 | 0.00482 | 0.24 | 0.50575 | 0.07214 | 0.08549 | 0.03526 | 0.02535 | 0.02535 | 0.0059 | F4 |
12 | 0.02363 | 0.14473 | 0.53938 | 0.10211 | 0.05216 | 0.091177 | 0.02069 | 0.02069 | 0.00548 | F4 |
13 | 0.00755 | 0.26129 | 0.4818 | 0.0761 | 0.08415 | 0.03498 | 0.02331 | 0.02331 | 0.0055 | F4 |
14 | 0.01321 | 0.23394 | 0.488 | 0.06358 | 0.09938 | 0.03841 | 0.02777 | 0.02777 | 0.00791 | F4 |
Noise | −40% | 20% | −10% | +10% | +10 | −20% | +30% | +20% | −20% |
Method | The PRMSE (%) Value | |||
---|---|---|---|---|
O1 | O2 | O3 | O4 | |
BSVR | 2.408 | 2.449 | 1.897 | 1.673 |
BPNN | 10.752 | 6.746 | 10.817 | 4.754 |
Method | n | SN | Mean Value of Each Output Node O1~O4 | |||
---|---|---|---|---|---|---|
BSVR | 12 | 1 | 0.9247 | 0.0331 | 0.0466 | 0.0242 |
24 | 1 | 0.9247 | 0.0331 | 0.0466 | 0.0242 | |
12 | 2 | 0.9686 | 0.0190 | 0.0000 | 0.0226 | |
24 | 2 | 0.9686 | 0.0190 | 0.0000 | 0.0226 | |
BPNN | 12 | 1 | 0.7922 | −0.0117 | 0.2260 | −0.0079 |
24 | 1 | 0.8085 | −0.0215 | 0.2212 | −0.0089 | |
12 | 2 | 0.8596 | −0.0060 | 0.1491 | 0.0028 | |
24 | 2 | 0.8598 | 0.0195 | 0.1217 | 0.0023 | |
Method | n | SN | Standard deviation of each output node O1~O4 | |||
BSVR | 12 | 1 | 0 | 0 | 0 | 0 |
24 | 1 | 0 | 0 | 0 | 0 | |
12 | 2 | 0 | 0 | 0 | 0 | |
24 | 2 | 0 | 0 | 0 | 0 | |
BPNN | 12 | 1 | 0.0831 | 0.0317 | 0.0649 | 0.0186 |
24 | 1 | 0.0833 | 0.0466 | 0.0605 | 0.0225 | |
12 | 2 | 0.0788 | 0.0740 | 0.1031 | 0.0252 | |
24 | 2 | 0.0932 | 0.0831 | 0.1022 | 0.0417 |
Method | tr | te | C | L | Tr_ep | Tr_t (sec) | Te_t (sec) |
---|---|---|---|---|---|---|---|
BSVR | 80 | 14 | 50 | - | - | 1 | 1 |
BPNN | 80 | 14 | - | 0.2 | 50 k | 13.89 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-M. Generator Fault Diagnosis with Bit-Coding Support Vector Regression Algorithm. Energies 2023, 16, 3582. https://doi.org/10.3390/en16083582
Lin W-M. Generator Fault Diagnosis with Bit-Coding Support Vector Regression Algorithm. Energies. 2023; 16(8):3582. https://doi.org/10.3390/en16083582
Chicago/Turabian StyleLin, Whei-Min. 2023. "Generator Fault Diagnosis with Bit-Coding Support Vector Regression Algorithm" Energies 16, no. 8: 3582. https://doi.org/10.3390/en16083582
APA StyleLin, W.-M. (2023). Generator Fault Diagnosis with Bit-Coding Support Vector Regression Algorithm. Energies, 16(8), 3582. https://doi.org/10.3390/en16083582