Experimental Study on the Oxidation Reaction of Coal-Pyrite and Mineral-Pyrite with the Participation of Fe(III) and Bacteria under Acidic Conditions
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Sample Information and Preparation
2.2. Experimental Setup
2.2.1. Oxidation Reaction with Fe3+
2.2.2. Oxidation Reaction with Bacteria
2.3. Analysis Method
2.3.1. Morphology Observation
2.3.2. Mineral Content and Forms of Sulfur
2.3.3. Ion Content in the Solution
3. Experimental Results
3.1. Occurrence and Structure of Pyrite in Coal
3.1.1. Sample Morphology
3.1.2. Microscopic Morphology and Composition
3.2. Experimental Results of Pyrite Oxidation
3.2.1. Pyrite Oxidation with Fe3+
3.2.2. Pyrite Oxidation with Bacteria
3.2.3. Oxidation Reaction Rate
4. Discussion
4.1. Mechanism of the Pyrite Oxidation Reaction
4.1.1. Oxidation Mechanism under the Fe3+
4.1.2. Oxidation Mechanism under the Bacteria
4.2. Differences between Coal-Pyrite and Mineral-Pyrite
4.2.1. Mineral Impurities
4.2.2. Crystal Structure
4.2.3. Organic Matter
4.3. Inspiration to Prevent Coal Spontaneous Combustion
5. Conclusions
- (1)
- The natural chemical oxidation rate of pyrite is slow and uniform. The participation of oxidant Fe3+ and bacteria can significantly increase the oxidation rate of pyrite, although their action process and mechanism are different. In this study, bacteria had a lower impact on the pyrite oxidation than the oxidant.
- (2)
- Under the same conditions, the oxidation degree and rate of coal-pyrite samples were slightly higher than those of mineral-pyrite. The relatively higher impurities content and more incomplete crystal structure of coal-pyrite samples can help to improve the oxidation reaction rate. Moreover, the organic matter in coal has a close relationship with coal-pyrite and affects the oxidation process of coal-pyrite.
- (3)
- Compared to mineral-pyrite, the oxidation process and mechanism of coal-pyrite are more complex and affected by many factors. The various compositions of coal-pyrite samples can also lead to different oxidation processes. It is necessary to carry out an in-depth study to understand the oxidation mechanism of coal-pyrite under the influence of multiple factors and take corresponding measures to prevent coal spontaneous combustion accordingly.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, H.; Wang, H.; Liu, W.; Cheng, X. Comparative study of experimental testing methods for characterization parameters of coal spontaneous combustion. Fuel 2020, 275, 117880. [Google Scholar] [CrossRef]
- Xia, T.; Zhou, F.; Wang, X.; Zhang, Y.; Li, Y.; Kang, J.; Liu, J. Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs. Fuel 2016, 182, 886–896. [Google Scholar] [CrossRef]
- Ding, C.; Li, Z.; Wang, J.; Duanmu, P.; Lu, B.; Gao, D. Experimental research on the spontaneous combustion of coal with different metamorphic degrees induced by pyrite and its oxidation products. Fuel 2022, 318, 123642. [Google Scholar] [CrossRef]
- Deng, J.; Ma, X.; Zhang, Y.; Li, Y.; Zhu, W. Effects of pyrite on the spontaneous combustion of coal. Int. J. Coal. Sci. Technol. 2015, 2, 306–311. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Q.; Zhang, S.; Li, Y.; Yang, L. The thermal transformation behavior and products of pyrite during coal gangue combustion. Fuel 2022, 324, 124803. [Google Scholar] [CrossRef]
- Ma, M.; Wang, W.; Zhang, K. Occurrence Characteristics of Fine-Grained Pyrite in Coal and Its Scaling Effect on Flotation Desulfurization. Acs. Omega 2022, 7, 42467–42481. [Google Scholar] [CrossRef]
- Arisoy, A.; Beamish, B. Mutual effects of pyrite and moisture on coal self-heating rates and reaction rate data for pyrite oxidation. Fuel 2015, 139, 107–114. [Google Scholar] [CrossRef]
- Dos Santos, E.C.; de Mendonça Silva, J.C.; Duarte, H.A. Pyrite Oxidation Mechanism by Oxygen in Aqueous Medium. J. Phys. Chem. C 2016, 120, 2760–2768. [Google Scholar] [CrossRef]
- Feng-hua, Z.; Hong-fu, S.; Li, W.S. Migration of hazardous elements in acid coal mine drainage. J. China Coal. Soc. 2007, 32, 261–266. [Google Scholar]
- Kiventerä, J.; Perumal, P.; Yliniemi, J.; Illikainen, M. Mine tailings as a raw material in alkali activation: A review. Int. J. Miner. Metall. Mater. 2020, 27, 1009–1020. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Bancroft, G.M.; Pratt, A.R.; Scaini, M.J. Sulfur and iron surface states on fractured pyrite surfaces. Am. Mineral. 1998, 83, 1067–1076. [Google Scholar] [CrossRef]
- Moses, C.O.; Nordstrom, D.K.; Herman, J.S.; Mills, A.L. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim. Cosmochim. Acta 1987, 51, 1561–1571. [Google Scholar] [CrossRef]
- Yue, M.; Zhao, F.; Sun, H.F.; Ren, D.Y. The kinetics of oxidation reaction of pyrites from coal-bearing measure. Mei T’an Hsueh Pao J. China Coal Soc. 2005, 30, 75–79. [Google Scholar]
- Mazumdar, A.; Goldberg, T.; Strauss, H. Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments. Chem. Geol. 2008, 253, 30–37. [Google Scholar] [CrossRef]
- Reedy, B.J.; Beattie, J.K.; Lowson, R.T. A vibrational spectroscopic 18O tracer study of pyrite oxidation. Geochim. Cosmochim. Acta 1991, 55, 1609–1614. [Google Scholar] [CrossRef]
- Nicholson, R.V.; Gillham, R.W.; Reardon, E.J. Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. Geochim. Cosmochim. Acta 1990, 54, 395–402. [Google Scholar] [CrossRef]
- Boon, M.; Brasser, H.J.; Hansford, G.S.; Heijnen, J.J. Comparison of the oxidation kinetics of different pyrites in the presence of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans. Hydrometallurgy 1999, 53, 57–72. [Google Scholar] [CrossRef]
- Sun, H.; Chen, M.; Zou, L.; Shu, R.; Ruan, R. Study of the kinetics of pyrite oxidation under controlled redox potential. Hydrometallurgy 2015, 155, 13–19. [Google Scholar] [CrossRef]
- Williams, K.P.; Kelly, D.P. Proposal for A New Class Within The Phylum Proteobacteria, Acidithiobacillia Classis Nov. with the Type Order Acidithiobacillales, and Emended Description of the Class Gammaproteobacteria. Int. J. Syst. Evol. Micr. 2013, 63, 2901–2906. [Google Scholar] [CrossRef] [PubMed]
- Quatrini, R.; Appia-Ayme, C.; Denis, Y.; Ratouchniak, J.; Veloso, F.; Valdes, J.; Lefimil, C.; Silver, S.; Roberto, F.; Orellana, O.; et al. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy 2006, 83, 263–272. [Google Scholar] [CrossRef]
- Sand, W.; Gehrke, T.; Jozsa, P.G.; Schippers, A. Direct versus indirect bioleaching. Process Metall. 1999, 9, 27–49. [Google Scholar]
- Muhammad, S.N.; Kusin, F.M.; Madzin, Z. Coupled physicochemical and bacterial reduction mechanisms for passive remediation of sulfate- and metal-rich acid mine drainage. Int. J. Environ. Sci. Technol. 2018, 15, 2325–2336. [Google Scholar] [CrossRef]
- Tu, B.; Wang, F.; Li, J.; Sha, J.; Lu, X.; Han, X. Analysis of Genes and Proteins in Acidithiobacillus ferrooxidans During Growth and Attachment on Pyrite Under Different Conditions. Geomicrobiol. J. 2013, 30, 255–267. [Google Scholar] [CrossRef]
- Wang, C.; Bai, Z.; Xiao, Y.; Deng, J.; Shu, C. Effects of FeS2 on the process of coal spontaneous combustion at low temperatures. Process Saf. Environ. 2020, 142, 165–173. [Google Scholar] [CrossRef]
- Meng-hui, X.; Qin, Y.; Tong-sheng, Y.I. Sedimentary patterns and structural controls of late permian coal-bearing strata in Guizhou, China. J. China Univ. Min. Technol. 2006, 35, 778–782. [Google Scholar]
- Xin, Z.D.; Jiang, B.; Qin, Y.; Zheng, Q.U.; Zhao, Y.; Yan, W.U. Pattern and mechanism of metamorphism of late permian coal in western Guizhou. J. China Coal. Soc. 2012, 37, 424–429. [Google Scholar]
- Chen, H. Geochemistry of the Ore-Forming Fluid of the Yaogangxian Tungsten Deposit in Southern Hunan, China; Institute of Geochemistry Chinese Academy of Sciences: Guangzhou, China, 2008. [Google Scholar]
- McKibben, M.A.; Barnes, H.L. Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochim. Cosmochim. Acta 1986, 50, 1509–1520. [Google Scholar] [CrossRef]
- Vöröš, D.; Geršlová, E.; Šimoníková, L.; Díaz-Somoano, M. Late Carboniferous palaeodepositional changes recorded by inorganic proxies and REE data from the coal-bearing strata: An example on the Czech part of the Upper Silesian Coal basin (USCB). J. Nat. Gas. Sci. Eng. 2022, 107, 104789. [Google Scholar] [CrossRef]
- Qin, H.; Jia, J.; Lin, L.; Ni, H.; Wang, M.; Meng, L. Pyrite FeS2 nanostructures: Synthesis, properties and applications. Mater. Sci. Eng. B 2018, 236, 104–124. [Google Scholar] [CrossRef]
- Sun, J.; Bostick, B.C.; Mailloux, B.J.; Jamieson, J.; Yan, B.; Pitiranggon, M.; Chillrud, S.N. Arsenic mobilization from iron oxides in the presence of oxalic acid under hydrodynamic conditions. Chemosphere 2018, 212, 219–227. [Google Scholar] [CrossRef]
- Rohwerder, T.; Sand, W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 2003, 149, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Lilova, K.; Karamanev, D. Direct oxidation of copper sulfide by a biofilm of Acidithiobacillus ferrooxidans. Hydrometallurgy 2005, 80, 147–154. [Google Scholar] [CrossRef]
- Zhu, T.; Lu, X.; Liu, H.; Li, J.; Zhu, X.; Lu, J.; Wang, R. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans. Geochim. Cosmochim. Acta 2014, 127, 120–139. [Google Scholar] [CrossRef]
- Moon, H.S.; Kim, B.; Hyun, S.P.; Lee, Y.; Shin, D. Effect of the redox dynamics on microbial-mediated as transformation coupled with Fe and S in flow-through sediment columns. J. Hazard Mater. 2017, 329, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, J.; Lu, X.; Tu, B.; Ouyang, B.; Han, X.; Wang, R. Sulfur Transformation in Microbially Mediated Pyrite Oxidation by Acidithiobacillus ferrooxidans: Insights from X-ray Photoelectron Spectroscopy-Based Quantitative Depth Profiling. Geomicrobiol. J. 2016, 33, 118–134. [Google Scholar] [CrossRef]
- Lu, X.; Juan, L.I.; Huan, L.; WeiJie, L.I.; RuiYong, W.; Jianjun, L. Microbial oxidation of metal sulfides and its consequences. Acta. Pet. Sin. 2019, 35, 153–163. [Google Scholar]
- Wenrui, J.; Zhihong, T.U.; Shu, Z.; Qi, W.U.; Zhi, D.; Huijun, H.E.; Chongmin, L.; Jie, L. A Brief Overview on the Mechanism and Kinetic Influencing Factors of the Pyrite Surface Oxidation. Met. Mine 2021, 3, 88–102. [Google Scholar]
- Vera, M.; Schippers, A.; Sand, W. Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation—Part A. Appl. Microbiol. Biot. 2013, 97, 7529–7541. [Google Scholar] [CrossRef]
- Tang, Y.; Ren, D.Y. The genesis of pyrites in coal. Geol. Rev. 1996, 42, 64–70. [Google Scholar]
- Zhao, H.; Frimmel, H.E.; Jiang, S.; Dai, B. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore. Geol. Rev. 2011, 43, 142–153. [Google Scholar] [CrossRef]
- Belousov, I.; Large, R.R.; Meffre, S.; Danyushevsky, L.V.; Steadman, J.; Beardsmore, T. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration. Ore. Geol. Rev. 2016, 79, 474–499. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Tian, X.; Yang, Z.; Jiang, Y.; Zhao, F. Interactions between iron mineral-humic complexes and hexavalent chromium and the corresponding bio-effects. Environ. Pollut. 2018, 241, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, S.; Liang, Z.; Liu, Y.; Ren, H.; Jia, S.; Han, X. Oxidation reactivity of As(III)-containing pyrites: Differences between structurally-incorporated and adsorbed As(III). Chem. Geol. 2019, 522, 223–239. [Google Scholar] [CrossRef]
- Buckley, A.N.; Woods, R. The surface oxidation of pyrite. Appl. Surf. Sci. 1987, 27, 437–452. [Google Scholar] [CrossRef]
- Loffredo, E.; Senesi, N. The Role of Natural Organic Matter (Humic Substances) on Adsorption of Pesticides Possessing Endocrine Disruptor Activity. Nato Sci. Peace Secur. Ser. C Environ. Secur. 2008, 369–383. [Google Scholar]
- Murphy, E.M.; Zachara, J.M. The role of sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater. Geoderma 1995, 67, 103–124. [Google Scholar] [CrossRef]
- Fubo, L.; Li, X.; Jun, L.; Qi, Z. Redox Behavior and Research Progress of Humic Acid. Chem. Eur. J. 2008, 71, 833–837. [Google Scholar]
- Zheng, K.; Li, H.; Xu, L.; Li, S.; Wang, L.; Wen, X.; Liu, Q. The influence of humic acids on the weathering of pyrite: Electrochemical mechanism and environmental implications. Environ. Pollut. 2019, 251, 738–745. [Google Scholar] [CrossRef]
- Yang, H.; Luo, W.; Gao, Y. Effect of Acidithiobacillus ferrooxidans on Humic-Acid Passivation Layer on Pyrite Surface. Minerals 2018, 8, 422. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Li, J.; Zhou, Y.; Yang, Y.; Tang, Y. Studies on the Low-Temp Oxidation of Coal Containing Organic Sulfur and the Corresponding Model Compounds. Molecules 2015, 20, 22241–22256. [Google Scholar] [CrossRef]
- Kargi, F.; Robinson, J.M. Microbial oxidation of dibenzothiophene by the thermophilic organism Sulfolobus acidocaldarius. Biotechnol. Bioeng. 1984, 26, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Jun, C.J. Mechanism and Effect Factors for Spontaneous Combustion of Iron Sulfide in Natural Environment. J. Combust. Sci. Technol. 2007, 5, 443–447. [Google Scholar]
- Nordstrom, D.; Alpers, C. Geochemistry of acid mine waters. In The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues; Plumlee, G.S., Logsdon, M.J., Eds.; Society of Economic Geologists Inc.: Littleton, CO, USA, 1999; Volume 6A, pp. 133–156. [Google Scholar]
- Wang, C.; Lv, C.; Bai, Z.; Deng, J.; Kang, F.; Xiao, Y.; Shu, C. Synergistic Acceleration Effect of Coal Spontaneous Combustion Caused By Moisture And Associated Pyrite. Fuel 2021, 304, 121458. [Google Scholar] [CrossRef]
- Hu, Z.; Zhu, Q.; Xu, J.; Zhang, X. Effect of Bactericides on Control of Acidification Pollution and Spontaneous Combustion of Coal Gangue Dumps in China and Its Mechanism. Sustainability 2020, 12, 6697. [Google Scholar] [CrossRef]
Coal Mine | Sample ID | St.d | Sp.d | So.d | Ss.d | Classification | |||
---|---|---|---|---|---|---|---|---|---|
S0 | P | S0 | P | S0 | P | ||||
Jiashun | C1 | 5.7 | 3.9 | 68.8 | 1.7 | 29.0 | 0.1 | 2.3 | High sulfur |
Xiongxin | C2 | 5.3 | 4.7 | 89.1 | 0.5 | 9.6 | 0.07 | 1.3 | (St.d > 3.0) |
Sample ID | Test Site | Morphology | Element Proportion % | N(S)/N(Fe) | |||||
---|---|---|---|---|---|---|---|---|---|
O | S | Fe | Al | Si | C | ||||
C1 | 1 | Framboidal | 45.6 | 23.2 | 21.7 | 0.63 | 0.55 | 1.07 | |
2 | Fissure-filled | 7.3 | 30.0 | 16.2 | 46.5 | 1.85 | |||
3 | Aggregated massive | 53.2 | 38.2 | 4.5 | 4.1 | 1.39 | |||
4 | Euhedral crystalline | 66.6 | 33.4 | 1.99 | |||||
5 | Caviar-like | 53.9 | 46.1 | 1.17 | |||||
C2 | 6 | Fine-grained agglomerated | 39.0 | 30.6 | 27.9 | 1.21 | 1.04 | 0.25 | 1.10 |
7 | Aggregated massive | 29.8 | 21.4 | 13.9 | 0.21 | 0.17 | 34.5 | 1.54 | |
8 | Euhedral crystalline | 13.1 | 55.1 | 30.1 | 0.81 | 0.79 | 1.83 |
Sample | Sulfate Sulfur (Ss,d) | Organic Sulfur (So,d) | Pyrite Sulfur (Sp,d) | Other Sulfides | ||
---|---|---|---|---|---|---|
Sulphoxides | Thiophenes | Total | ||||
M1 | 2.41 | 1.16 | 1.97 | 3.13 | 93.08 | 1.37 |
C1 | 14.90 | 0.00 | 4.61 | 4.61 | 76.90 | 3.59 |
C2 | 16.54 | 2.09 | 1.84 | 3.93 | 76.71 | 2.82 |
Chemical Equation | Temperature (°C) | ΔH (kJ) | ΔS (J/K) | ΔG (kJ) | K | Lg(K) |
---|---|---|---|---|---|---|
Equation (3) | 25 | −1285.507 | −563.038 | −1117.637 | 6.632 × 10195 | 195.822 |
Equation (4) | 25 | −99.673 | −62.924 | −80.912 | 1.502 × 1014 | 14.177 |
Equation (6) | 25 | 96.507 | −22.294 | 103.154 | 8.441 × 10−19 | −18.074 |
Equation (7) | 25 | 109.910 | 317.894 | 15.130 | 2.234 × 10−3 | −2.651 |
Reaction Conditions | Reaction Time | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 min | 30 min | 60 min | 90 min | 120 min | ||||||
Iron Ion | SO42− | Iron Ion | SO42− | Iron Ion | SO42− | Iron Ion | SO42− | Iron Ion | SO42− | |
Ml- with Fe3+ | 0 | 0 | 0.068 | 0.09 | 0.173 | 0.225 | 0.224 | 0.259 | 0.245 | 0.294 |
C1- with Fe3+ | 0 | 0 | 0.128 | 0.11 | 0.21 | 0.24 | 0.246 | 0.279 | 0.266 | 0.309 |
C2- with Fe3+ | 0 | 0 | 0.085 | 0.14 | 0.205 | 0.241 | 0.257 | 0.312 | 0.291 | 0.335 |
Reaction conditions | 0 day | 5 day | 10 day | 15 day | 20 day | |||||
Iron ion | SO42− | Iron ion | SO42− | Iron ion | SO42− | Iron ion | SO42− | Iron ion | SO42− | |
M1-without bacteria | 0 | 0 | 0 | 0.002 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.003 |
M1-with bacteria | 0 | 0 | 0.019 | 0.024 | 0.034 | 0.039 | 0.064 | 0.088 | 0.103 | 0.116 |
C1-with bacteria | 0 | 0 | 0.016 | 0.037 | 0.043 | 0.098 | 0.101 | 0.166 | 0.133 | 0.212 |
C2-with bacteria | 0 | 0 | 0.021 | 0.017 | 0.031 | 0.063 | 0.087 | 0.113 | 0.119 | 0.193 |
Reaction conditions | 25 day | 30 day | 35 day | 40 day | ||||||
Iron ion | SO42− | Iron ion | SO42− | Iron ion | SO42− | Iron ion | SO42− | |||
M1-without bacteria | 0.002 | 0.005 | 0.011 | 0.016 | 0.012 | 0.017 | 0.018 | 0.026 | ||
M1-with bacteria | 0.126 | 0.204 | 0.141 | 0.225 | 0.149 | 0.248 | 0.166 | 0.282 | ||
C1-with bacteria | 0.141 | 0.249 | 0.160 | 0.259 | 0.170 | 0.291 | 0.182 | 0.307 | ||
C2-with bacteria | 0.137 | 0.203 | 0.150 | 0.225 | 0.165 | 0.276 | 0.174 | 0.293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Wang, W.; Zhang, K.; Shi, Z. Experimental Study on the Oxidation Reaction of Coal-Pyrite and Mineral-Pyrite with the Participation of Fe(III) and Bacteria under Acidic Conditions. Energies 2023, 16, 3588. https://doi.org/10.3390/en16083588
Ma M, Wang W, Zhang K, Shi Z. Experimental Study on the Oxidation Reaction of Coal-Pyrite and Mineral-Pyrite with the Participation of Fe(III) and Bacteria under Acidic Conditions. Energies. 2023; 16(8):3588. https://doi.org/10.3390/en16083588
Chicago/Turabian StyleMa, Mengya, Wenfeng Wang, Kun Zhang, and Zhixiang Shi. 2023. "Experimental Study on the Oxidation Reaction of Coal-Pyrite and Mineral-Pyrite with the Participation of Fe(III) and Bacteria under Acidic Conditions" Energies 16, no. 8: 3588. https://doi.org/10.3390/en16083588
APA StyleMa, M., Wang, W., Zhang, K., & Shi, Z. (2023). Experimental Study on the Oxidation Reaction of Coal-Pyrite and Mineral-Pyrite with the Participation of Fe(III) and Bacteria under Acidic Conditions. Energies, 16(8), 3588. https://doi.org/10.3390/en16083588