Implementing Very-Short-Term Forecasting of Residential Load Demand Using a Deep Neural Network Architecture
Abstract
:1. Introduction
- -
- Additional input of load demand that is delayed by 10 min;
- -
- Investigation of the DNN structure for VSTLF;
- -
- Dataset considering 1 min residential data;
- -
- Commonly available dataset used;
- -
- Method that relies on small data (only 3 days required).
2. Elements of Deep Neural Networks
3. Residential Load
4. Materials and Methods
4.1. Deep Neural Network Very-Short-Term Residential Load Forecasting
4.2. Residential Load Datasets
4.3. Deep Neural Network Parameter Analysis
5. Very-Short-Term Forecasting Results
5.1. Performance Metrics
- (i)
- Mean square error (MSE):
- (ii)
- Root mean square error (RMSE)
- (iii)
- Mean absolute percentage error (MAPE)
5.2. Parameter Analysis Results
5.3. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doumen, S.C.; Nguyen, P.; Kok, K. Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective. Renew. Sustain. Energy Rev. 2002, 165, 112569. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Karagiannis, G. Elm-fuzzy method for automated decision-making in price directed electricity markets. In Proceedings of the 2019 16th International Conference on the European Energy Market (EEM), Ljubliana, Slovenia, 18–20 September 2019. [Google Scholar]
- Alamaniotis, M.; Gatsis, N.; Tsoukalas, L.H. Virtual Budget: Integration of electricity load and price anticipation for load morphing in price-directed energy utilization. Electric. Power Syst. Res. 2018, 158, 284–296. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Ikonomopoulos, A.; Tsoukalas, L.H. Evolutionary multiobjective optimization of kernel-based very-short-term load forecasting. IEEE Trans. Power Syst. 2012, 27, 1477–1484. [Google Scholar] [CrossRef]
- Sha, H.; Xu, P.; Lin, M.; Peng, C.; Dou, Q. Development of a multi-granularity energy forecasting toolkit for demand response baseline calculation. Appl. Energy 2021, 289, 116652. [Google Scholar] [CrossRef]
- Rodrigues, F.; Cardeira, C.; Calado, J.M.F. The daily and hourly energy consumption and load forecasting using artificial neural network method: A case study using a set of 93 households in Portugal. Energy Procedia 2014, 62, 220–229. [Google Scholar] [CrossRef]
- Vats, V.K.; Rai, S.; Bharti, D.; De, M. Very Short-Term9 Short-Term and Mid-Term Load Forecasting for Residential Academic Institute: A Case Study. In Proceedings of the 4th IEEE International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 14–16 December 2018. [Google Scholar]
- Jiang, Y.; Gao, T.; Dai, Y.; Si, R.; Hao, J.; Zhang, J.; Gao, D.W. Very short-term residential load forecasting based on deep-autoformer. Appl. Energy 2020, 328, 120120. [Google Scholar] [CrossRef]
- Faraji, J.; Ketabi, A.; Hashemi-Dezaki, H.; Shafie-Khah, M.; Catalao, J.P. Optimal day-ahead scheduling and operation of the prosumer by considering corrective actions based on very short-term load forecasting. IEEE Access 2020, 8, 83561–83582. [Google Scholar] [CrossRef]
- Marino, D.L.; Amarasinghe, K.; Manic, M. Building energy load forecasting using deep neural networks. In Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016. [Google Scholar]
- Ploysuwan, T. Deep CNN & LSTM network for appliances energy forecasting in residential houses using IoT sensors. In Proceedings of the 7th International Electrical Engineering Congress (iEECON), Chiang Mai, Thailand, 4–6 March 2019. [Google Scholar]
- Ribeiro, A.M.N.C.; Rafael, P.; Carmo, X.; Endo, P.T.; Rosati, P.; Lynn, T. Short- and Very Short-Term Firm-Level Load Forecasting for Learning Models. Energies 2022, 15, 750. [Google Scholar] [CrossRef]
- Bessani, M.; Massignan, J.A.D.; Santos, T.M.O.; London, J.B.A.; Maciel, C.D. Multiple households very short-term load forecasting using bayesian networks. Electr. Power Syst. Res. 2020, 189, 106733. [Google Scholar] [CrossRef]
- Tong, C.; Zhang, L.; Li, H.; Ding, Y. Attention-based temporal–spatial convolutional network for ultra-short-term load forecasting. Electr. Power Syst. Res. 2023, 220, 109329. [Google Scholar] [CrossRef]
- Munkhammar, J.; van der Meer, D.; Widén, J. Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model. Appl. Energy 2021, 282, 116180. [Google Scholar] [CrossRef]
- Shi, T.; Mei, F.; Lu, J.; Lu, J.; Pan, Y.; Zhou, C.; Wu, J.; Zheng, J. Phase Space Reconstruction Algorithm and Deep Learning-Based Very Short-Term Bus Load Forecasting. Energies 2019, 12, 4349. [Google Scholar] [CrossRef]
- Lin, W.; Wu, D.; Boulet, B. Spatial-temporal residential short-term load forecasting via graph neural networks. IEEE Trans. Smart Grid 2021, 12, 5373–5384. [Google Scholar] [CrossRef]
- Botman, L.; Soenen, J.; Theodorakos, K.; Yurtman, A.; Bekker, J.; Vanthournout, K.; Bart de Moor, H.B.; Lago, J. A scalable ensemble approach to forecast the electricity consumption of households. IEEE Trans. Smart Grid 2022, 14, 757–768. [Google Scholar] [CrossRef]
- Ves, A.V.; Ghitescu, N.; Pop, C.; Antal, M.; Cioara, T.; Anghel, I.; Salomie, I. A stacking multi-learning ensemble model for predicting near real time energy consumption demand of residential buildings. In Proceedings of the IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 5–7 September 2019. [Google Scholar]
- Atef, S.; Nakata, K.; Eltawil, A.B. A deep bi-directional long-short term memory neural network-based methodology to enhance short-term electricity load forecasting for residential applications. Comput. Ind. Eng. 2022, 170, 108364. [Google Scholar] [CrossRef]
- Rajabi, R.; Estebsari, A. Deep learning based forecasting of individual residential loads using recurrence plots. In Proceedings of the IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019. [Google Scholar]
- Dinesh, C.; Makonin, S.; Bajić, I.V. Residential power forecasting using load identification and graph spectral clustering. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1900–1904. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, X.; Yu, K.; Gan, L.; Wang, Y.; Wang, K. Short-term power load forecasting of residential community based on GRU neural network. In Proceedings of the International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018. [Google Scholar]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2017, 10, 841–851. [Google Scholar] [CrossRef]
- Din, G.M.U.; Mauthe, A.U.; Marnerides, A.K. Appliance-level short-term load forecasting using deep neural networks. In Proceedings of the International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 5–8 March 2018. [Google Scholar]
- Oprea, S.V.; Bâra, A. Machine learning algorithms for short-term load forecast in residential buildings using smart meters, sensors and big data solutions. IEEE Access 2019, 7, 177874–177889. [Google Scholar] [CrossRef]
- Gonzalez, R.; Ahmed, S.; Alamaniotis, M. Deep Neural Network Based Methodology for Very-Short-Term Residential Load Forecasting. In Proceedings of the 13th International Conference on Information, Intelligence, Systems & Applications (IISA), Corfu, Greece, 18–20 July 2022. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Tsoukalas, L.H.; Uhrig, R.E. Fuzzy and Neural Approaches in Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Alamaniotis, M. Synergism of deep neural network and elm for smart very-short-term load forecasting. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019. [Google Scholar]
- Alamaniotis, M. Fuzzy Leaky Bucket System for Intelligent Management of Consumer Electricity Elastic Load in Smart Grids. Front. Artif. Intell. 2020, 3, 1–14. [Google Scholar] [CrossRef]
- Dimitroulis, P.; Alamaniotis, M. Residential energy management system utilizing fuzzy based decision-making. In Proceedings of the IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 6–7 February 2020. [Google Scholar]
- Dimitroulis, P.; Alamaniotis, M. Multimodal energy management system for residential building prosumers utilizing various lifestyles. Electr. Power Syst. Res. 2022, 213, 108732. [Google Scholar] [CrossRef]
- Machine Learning Repository. Individual Household Electric Power Consumption Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption (accessed on 1 February 2023).
- Alamaniotis, M.; Ikonomopoulos, A.; Tsoukalas, L.H. A Pareto optimization approach of a Gaussian process ensemble for short-term load forecasting. In Proceedings of the 16th International Conference on Intelligent System Applications to Power Systems, Hersonisos, Greece, 25–28 September 2011. [Google Scholar]
- Nichiforov, C.; Martinez-Molina, A.; Alamaniotis, M. An Intelligent Big Data Analytics Method for Two-Dimensional Non-Residential Building Energy Forecasting. Intell. Decis. Technol. 2022, 16, 691–698. [Google Scholar] [CrossRef]
- Ghenai, C.; Al-Mufti, O.A.A.; Al-Isawi, O.A.M.; Amirah, L.H.L.; Merabet, A. Short-term building electrical load forecasting using adaptive neuro-fuzzy inference system (ANFIS). J. Build. Eng. 2022, 52, 104323. [Google Scholar] [CrossRef]
Ref. | Year | First Author | Horizon | Approach | Data Gran. |
---|---|---|---|---|---|
[7] | 2018 | Vats | VSTLF | Linear regression | 15 s |
[8] | 2022 | Jiang | VSTLF | Deep-autoformer neural network | 15 min |
[9] | 2020 | Faraji | VSTLF | First level: MLP-ANN; second level: FF-ANN | Hourly |
[10] | 2016 | Marino | VSTLF | LSTM with sequence-to-sequence architecture | 1 min |
[11] | 2019 | Ploysuwan | VSTLF | CNN for feature learning and LSTM layers for time series | 10 min |
[12] | 2022 | Ribeiro | VSTLF | Extreme gradient boosting (XGBoost) | Hourly |
[13] | 2020 | Bessani | VSTLF | Bayesian networks | 30 min |
[14] | 2023 | Tong | VSTLF | Attention-based temporal–spatial convolutional network (ACN) | Hourly |
[15] | 2021 | Munkhammar | VSTLF | Markov-chain mixture distribution model (MCM) | 30 min |
[16] | 2019 | Shi | VSTLF | Phase space reconstruction (PSR) | 5 min |
[17] | 2021 | Lin | STLF | Graph neural-network-based forecasting framework | Hourly |
[18] | 2023 | Botman | LTF | Ensemble: clustering with k-means, prediction with ensemble | 30 min |
[19] | 2019 | Ves | VSTLF | Ensemble: gradient boosting regression, MLP and LSTM networks; linear regression | (Agg. to hourly) |
[20] | 2022 | Atef | STLF | 6 input feature set scenarios with 4 prediction methods (LR, SVR, Uni-LSTM, and bi-LSTM) that result in analysis of 24 configurations | (Agg. to hourly) |
[21] | 2019 | Rajabi | STLF | Recurrence plots fed to CNN to make the first layer 2-D instead of directly feeding time-series | (Agg. to 15 min) |
[22] | 2019 | Dinesh | STLF | Aggregate power signal is decomposed into individual appliance signals and each appliance’s power is forecasted | 1 min |
[23] | 2019 | Zheng | STLF | Gated recurrent unit (GRU) neural network | Hourly |
[24] | 2019 | Kong | STLF | LSTM-RNN | 30 min |
[25] | 2018 | Din | STLF | FF-DNN and R-DNN | 1, 15, 30 min |
[26] | 2019 | Oprea | STLF | 7 algorithms: Momentum, Nesterov, Nesterov + backtracking, NARX, DNN, GTB, RF | 15 min |
Layers | MSE | RMSE | MAPE |
---|---|---|---|
[10] | 0.6111 | 0.7422 | 0.5072 |
[5 5] | 0.5810 | 0.7230 | 0.4782 |
[10 10] | 0.7271 | 0.7946 | 0.5429 |
[5 5 5] | 0.5355 | 0.7050 | 0.4841 |
[10 10 10] | 0.7789 | 0.8325 | 0.5607 |
[20 20 20] | 1.4297 | 1.0954 | 0.7507 |
[10 10 10 10] | 0.7887 | 0.8379 | 0.5866 |
[10 20 10] | 2.0240 | 1.1113 | 0.7311 |
Activation Function | MSE | RMSE | MAPE |
---|---|---|---|
compet—competitive transfer function | 0.9925 | 0.9799 | 1.5295 |
elliotsig—Elliot sigmoid transfer function | 0.5246 | 0.6965 | 0.4950 |
hardlim—positive hard limit transfer function | 1.2279 | 1.0757 | 1.5222 |
hardlims—symmetric hard limit transfer function | 1.2020 | 1.0652 | 1.4746 |
logsig—logarithmic sigmoid transfer function | 0.5631 | 0.7160 | 0.4870 |
netinv—inverse transfer function | 3.1747 | 1.2561 | 0.6894 |
poslin—positive linear transfer function | 0.5165 | 0.6858 | 0.4616 |
purelin—linear transfer function | 0.5015 | 0.6793 | 0.5595 |
radbas—radial basis transfer function | 0.5709 | 0.7211 | 0.4754 |
radbasn—radial basis normalized transfer function | 0.6365 | 0.7612 | 0.5240 |
satlin—positive saturating linear transfer function | 0.4954 | 0.6748 | 0.4658 |
satlins—symmetric saturating linear transfer function | 0.5384 | 0.7039 | 0.4914 |
softmax—soft max transfer function | 0.5658 | 0.7177 | 0.4923 |
tansig—symmetric sigmoid transfer function | 0.6436 | 0.7719 | 0.5533 |
tribas—triangular basis transfer function | 0.5832 | 0.7350 | 0.5886 |
Method | MSE | RMSE | MAPE |
---|---|---|---|
Regression (fine tree) | 0.8808 | 0.9064 | 0.6413 |
SVM (fine Gaussian) | 0.6429 | 0.7672 | 0.4737 |
ANN (10 neurons) | 0.6111 | 0.7422 | 0.5072 |
DNN ((5 5 5) neurons, satlin) | 0.5082 | 0.6832 | 0.5040 |
Test Set | MSE | RMSE | MAPE | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
Winter week | 0.3396 | 1.2694 | 0.5784 | 0.5828 | 1.1267 | 0.7408 | 0.3652 | 0.6956 | 0.4942 |
Spring week | 0.1239 | 0.7427 | 0.5404 | 0.3520 | 0.8618 | 0.7173 | 0.4496 | 0.7296 | 0.5154 |
Summer week | 0.0386 | 0.9874 | 0.3274 | 0.1965 | 0.9937 | 0.5138 | 0.4004 | 1.0794 | 0.6138 |
Fall week | 0.3171 | 0.8513 | 0.5554 | 0.5631 | 0.9226 | 0.7372 | 0.2623 | 0.7152 | 0.4087 |
Special days | 0.1712 | 0.8967 | 0.5629 | 0.4137 | 0.9470 | 0.7248 | 0.3933 | 0.5927 | 0.4762 |
Overall | 0.0386 | 1.2694 | 0.5082 | 0.1965 | 1.1267 | 0.6832 | 0.2623 | 1.0794 | 0.5040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, R.; Ahmed, S.; Alamaniotis, M. Implementing Very-Short-Term Forecasting of Residential Load Demand Using a Deep Neural Network Architecture. Energies 2023, 16, 3636. https://doi.org/10.3390/en16093636
Gonzalez R, Ahmed S, Alamaniotis M. Implementing Very-Short-Term Forecasting of Residential Load Demand Using a Deep Neural Network Architecture. Energies. 2023; 16(9):3636. https://doi.org/10.3390/en16093636
Chicago/Turabian StyleGonzalez, Reynaldo, Sara Ahmed, and Miltiadis Alamaniotis. 2023. "Implementing Very-Short-Term Forecasting of Residential Load Demand Using a Deep Neural Network Architecture" Energies 16, no. 9: 3636. https://doi.org/10.3390/en16093636
APA StyleGonzalez, R., Ahmed, S., & Alamaniotis, M. (2023). Implementing Very-Short-Term Forecasting of Residential Load Demand Using a Deep Neural Network Architecture. Energies, 16(9), 3636. https://doi.org/10.3390/en16093636