Green Anisole Solvent-Based Synthesis and Deposition of Phthalocyanine Dopant-Free Hole-Transport Materials for Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for Synthesis and Characterizations
2.2. Synthesis of 2,9(10),16(17),23(24)-Tetra-Tert-Butylphthalocyanines
2.3. Materials for Device Preparation
2.4. Device Fabrication
2.5. Device Characterization
3. Results
3.1. Synthesis of Tetra-Tert-Butylphthalocyanines
3.2. J-V Characterization, IPCE, and Statistical Evaluation
3.3. Cost Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar Cell Efficiency Tables (Version 59). Prog. Photovolt. Res. Appl. 2022, 30, 3–12. [Google Scholar] [CrossRef]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok, S.I.; McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for Commercializing Perovskite Solar Cells. Science 2018, 361, eaat8235. [Google Scholar] [CrossRef] [PubMed]
- Abate, A.; Correa-Baena, J.P.; Saliba, M.; Su’ait, M.S.; Bella, F. Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chem. Eur. J. 2018, 24, 3083–3100. [Google Scholar] [CrossRef] [PubMed]
- Abate, A.; Hollman, D.J.; Teuscher, J.; Pathak, S.; Avolio, R.; D’Errico, G.; Vitiello, G.; Fantacci, S.; Snaith, H.J. Protic Ionic Liquids as P-Dopant for Organic Hole Transporting Materials and Their Application in High Efficiency Hybrid Solar Cells. J. Am. Chem. Soc. 2013, 135, 13538–13548. [Google Scholar] [CrossRef]
- Snaith, H.J.; Grätzel, M. Enhanced Charge Mobility in a Molecular Hole Transporter via Addition of Redox Inactive Ionic Dopant: Implication to Dye-Sensitized Solar Cells. Appl. Phys. Lett. 2006, 89, 262114. [Google Scholar] [CrossRef]
- Abate, A.; Leijtens, T.; Pathak, S.; Teuscher, J.; Avolio, R.; Errico, M.E.; Kirkpatrik, J.; Ball, J.M.; Docampo, P.; McPherson, I.; et al. Lithium Salts as “Redox Active” p-Type Dopants for Organic Semiconductors and Their Impact in Solid-State Dye-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2013, 15, 2572–2579. [Google Scholar] [CrossRef]
- Nguyen, W.H.; Bailie, C.D.; Unger, E.L.; McGehee, M.D. Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2014, 136, 10996–11001. [Google Scholar] [CrossRef]
- Liu, J.; Pathak, S.; Stergiopoulos, T.; Leijtens, T.; Wojciechowski, K.; Schumann, S.; Kausch-Busies, N.; Snaith, H.J. Employing PEDOT as the P-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells. J. Phys. Chem. Lett. 2015, 6, 1666–1673. [Google Scholar] [CrossRef]
- Kumar, C.V.; Sfyri, G.; Raptis, D.; Stathatos, E.; Lianos, P. Perovskite Solar Cell with Low Cost Cu-Phthalocyanine as Hole Transporting Material. RSC Adv. 2015, 5, 3786–3791. [Google Scholar] [CrossRef]
- Urbani, M.; de La Torre, G.; Nazeeruddin, M.K.; Torres, T. Phthalocyanines and Porphyrinoid Analogues as Hole-and Electron-Transporting Materials for Perovskite Solar Cells. Chem. Soc. Rev. 2019, 48, 2738–2766. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.; Peng, J.; Walter, D.; Xiang, J.; Shen, H.; Chugh, D.; Lockrey, M.; Zhong, D.; Li, J.; Weber, K.; et al. Perovskite Solar Cells Employing Copper Phthalocyanine Hole-Transport Material with an Efficiency over 20% and Excellent Thermal Stability. ACS Energy Lett. 2018, 3, 2441–2448. [Google Scholar] [CrossRef]
- Cho, K.T.; Rakstys, K.; Cavazzini, M.; Orlandi, S.; Pozzi, G.; Nazeeruddin, M.K. Perovskite Solar Cells Employing Molecularly Engineered Zn(II) Phthalocyanines as Hole-Transporting Materials. Nano Energy 2016, 30, 853–857. [Google Scholar] [CrossRef]
- Feng, Y.; Hu, Q.; Rezaee, E.; Li, M.; Xu, Z.X.; Lorenzoni, A.; Mercuri, F.; Muccini, M. High-Performance and Stable Perovskite Solar Cells Based on Dopant-Free Arylamine-Substituted Copper(II) Phthalocyanine Hole-Transporting Materials. Adv. Energy Mater. 2019, 9, 1901019. [Google Scholar] [CrossRef]
- Yu, Z.; Hagfeldt, A.; Sun, L. The Application of Transition Metal Complexes in Hole-Transporting Layers for Perovskite Solar Cells: Recent Progress and Future Perspectives. Coord. Chem. Rev. 2020, 406, 213143. [Google Scholar] [CrossRef]
- Qu, G.; Dong, L.; Qiao, Y.; Khan, D.; Chen, Q.; Xie, P.; Yu, X.; Liu, X.; Wang, Y.; Chen, J.; et al. Dopant-Free Phthalocyanine Hole Conductor with Thermal-Induced Holistic Passivation for Stable Perovskite Solar Cells with 23% Efficiency. Adv. Funct. Mater. 2022, 32, 2206585. [Google Scholar] [CrossRef]
- Li, D.; Ge, S.; Yuan, T.; Gong, J.; Huang, B.; Tie, W.; He, W. Green Synthesis and Characterization of Crystalline Zinc Phthalocyanine and Cobalt Phthalocyanine Prisms by a Simple Solvothermal Route. CrystEngComm 2018, 20, 2749–2758. [Google Scholar] [CrossRef]
- Li, D.; Zhang, P.; Ge, S.; Sun, G.; He, Q.; Fa, W.; Li, Y.; Ma, J. A Green Route to Prepare Metal-Free Phthalocyanine Crystals with Controllable Structures by a Simple Solvothermal Method. RSC Adv. 2021, 11, 31226–31234. [Google Scholar] [CrossRef]
- Langerreiter, D.; Kostiainen, M.A.; Kaabel, S.; Anaya-Plaza, E. A Greener Route to Blue: Solid-State Synthesis of Phthalocyanines. Angew. Chem. Int. Ed. 2022, 61, e202209033. [Google Scholar] [CrossRef]
- Koyun, Ö.; Gördük, S.; Keskin, B.I.; Çetinkaya, A.; Koca, A.I.; Avciata, U. Microwave-Assisted Synthesis, Electrochemistry and Spectroelectrochemistry of Phthalocyanines Bearing Tetra Terminal-Alkynyl Functionalities and Click Approach. Polyhedron 2016, 113, 35–49. [Google Scholar] [CrossRef]
- Abe, K.; Katano, S.; Ohta, K. Microwave-Assisted Synthesis of Phthalocyanine Metal Complexes: Relationship between Yield and Maximum Temperature Reached by Microwave Irradiation. J. Jpn. Pet. Inst. 2018, 61, 140–149. [Google Scholar] [CrossRef]
- Shaabani, A.; Maleki-Moghaddam, R.; Maleki, A.; Rezayan, A.H. Microwave Assisted Synthesis of Metal-Free Phthalocyanine and Metallophthalocyanines. Dye. Pigment. 2007, 74, 279–282. [Google Scholar] [CrossRef]
- Burczyk, A.; Loupy, A.; Bogdal, D.; Petit, A. Improvement in the Synthesis of Metallophthalocyanines Using Microwave Irradiation. Tetrahedron 2005, 61, 179–188. [Google Scholar] [CrossRef]
- Villemin, D.; Hammadi, M.; Hachemi, M.; Bar, N. Applications of Microwave in Organic Synthesis: An Improved One-Step Synthesis of Metallophthalocyanines and a New Modified Microwave Oven for Dry Reactions. Molecules 2001, 6, 831–844. [Google Scholar] [CrossRef]
- Gonzalez, A.C.S.; Damas, L.; Aroso, R.T.; Tomé, V.A.; Dias, L.D.; Pina, J.; Carrilho, R.M.B.; Pereira, M.M. Monoterpene-Based Metallophthalocyanines: Sustainable Synthetic Approaches and Photophysical Studies. J. Porphyr. Phthalocyanines 2020, 24, 947–958. [Google Scholar] [CrossRef]
- Saito, Y.; Higuchi, T.; Sugimori, H.; Yabu, H. One-Pot UV-Assisted Synthesis of Metal Phthalocyanine Nanocrystals. ChemNanoMat 2015, 1, 92–95. [Google Scholar] [CrossRef]
- Youssef, T.E. Efficient Green Procedures for the Preparation of Novel Tetraalkynyl-Substituted Phthalocyanines. Polyhedron 2010, 29, 1776–1783. [Google Scholar] [CrossRef]
- Lo, P.C.; Cheng, D.Y.Y.; Ng, D.K.P. Phthalocyanine Synthesis in Ionic Liquids: Preparation of Differently Substituted Phthalocyanines in Tetrabutylammonium Bromide. Synthesis 2005, 2005, 1141–1147. [Google Scholar] [CrossRef]
- Yadav, K.K.; Poonam, P.; Chauhan, S.M.S. Convenient and Efficient Method for the Synthesis of Phthalocyanines and Metallophthalocyanines in Task-Specific 2-Hydroxyethyl Ionic Liquids. Synth. Commun. 2014, 44, 2797–2807. [Google Scholar] [CrossRef]
- Shaabani, A.; Hooshmand, S.E.; Afshari, R.; Shaabani, S.; Ghasemi, V.; Atharnezhad, M.; Akbari, M. Direct Construction of Diverse Metallophthalocyanines by Manifold Substrates in a Deep Eutectic Solvent. J. Solid. State Chem. 2018, 258, 536–542. [Google Scholar] [CrossRef]
- Zanotti, G.; Imperatori, P.; Paoletti, A.M.; Pennesi, G. Sustainable Approaches to the Synthesis of Metallophthalocyanines in Solution. Molecules 2021, 26, 1760. [Google Scholar] [CrossRef] [PubMed]
- Zanotti, G.; Angelini, N.; Mattioli, G.; Paoletti, A.M.; Pennesi, G.; Caschera, D.; Sobolev, A.P.; Beverina, L.; Calascibetta, A.M.; Sanzone, A.; et al. [1]Benzothieno[3,2-b][1]Benzothiophene-Phthalocyanine Derivatives: A Subclass of Solution-Processable Electron-Rich Hole Transport Materials. Chempluschem 2020, 85, 2376–2386. [Google Scholar] [CrossRef]
- Bernt, C.M.; Bottari, G.; Barrett, J.A.; Scott, S.L.; Barta, K.; Ford, P.C. Mapping Reactivities of Aromatic Models with a Lignin Disassembly Catalyst. Steps toward Controlling Product Selectivity. Catal. Sci. Technol. 2016, 6, 2984–2994. [Google Scholar] [CrossRef]
- Gillet, S.; Aguedo, M.; Petitjean, L.; Morais, A.R.C.; da Costa Lopes, A.M.; Łukasik, R.M.; Anastas, P.T. Lignin Transformations for High Value Applications: Towards Targeted Modifications Using Green Chemistry. Green Chem. 2017, 19, 4200–4233. [Google Scholar] [CrossRef]
- Leiva, K.; Garcia, R.; Sepulveda, C.; Laurenti, D.; Geantet, C.; Vrinat, M.; Garcia-Fierro, J.L.; Escalona, N. Conversion of Guaiacol over Supported ReOx Catalysts: Support and Metal Loading Effect. Catal. Today 2017, 296, 228–238. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and Techniques for Solvent Selection: Green Solvent Selection Guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef]
- Restrepo, J.B.; Paternina-Arboleda, C.D.; Bula, A.J. 1,2—Propanediol Production from Glycerol Derived from Biodiesel’s Production: Technical and Economic Study. Energies 2021, 14, 81. [Google Scholar] [CrossRef]
- Mondal, S.; Arifa, A.A.; Biswas, P. Production of 1,2-Propanediol from Renewable Glycerol Over Highly Stable and Efficient Cu–Zn(4:1)/MgO Catalyst. Catal. Letters 2017, 147, 2783–2798. [Google Scholar] [CrossRef]
- Tao, Y.m.; Bu, C.y.; Zou, L.h.; Hu, Y.l.; Zheng, Z.J.; Ouyang, J. A Comprehensive Review on Microbial Production of 1,2-Propanediol: Micro-Organisms, Metabolic Pathways, and Metabolic Engineering. Biotechnol. Biofuels 2021, 14, 216. [Google Scholar] [CrossRef]
- Taylor, A.D.; Sun, Q.; Goetz, K.P.; An, Q.; Schramm, T.; Hofstetter, Y.; Litterst, M.; Paulus, F.; Vaynzof, Y. A General Approach to High-Efficiency Perovskite Solar Cells by Any Antisolvent. Nat. Commun. 2021, 12, 1878. [Google Scholar] [CrossRef]
- Yavari, M.; Mazloum-Ardakani, M.; Gholipour, S.; Tavakoli, M.M.; Turren-Cruz, S.H.; Taghavinia, N.; Grätzel, M.; Hagfeldt, A.; Saliba, M. Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1800177. [Google Scholar] [CrossRef]
- Zhao, P.; Kim, B.J.; Ren, X.; Lee, D.G.; Bang, G.J.; Jeon, J.B.; Kim, W.b.; Jung, H.S. Antisolvent with an Ultrawide Processing Window for the One-Step Fabrication of Efficient and Large-Area Perovskite Solar Cells. Adv. Mater. 2018, 30, 1802763. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; Deng, L.L.; Leng, S.; Guo, X.; Tan, C.H.; Choy, W.C.H.; Chen, C.C. The Mechanism of Universal Green Antisolvents for Intermediate Phase Controlled High-Efficiency Formamidinium-Based Perovskite Solar Cells. Mater. Horiz. 2020, 7, 934–942. [Google Scholar] [CrossRef]
- de Rossi, F.; Pontecorvo, T.; Brown, T.M. Characterization of Photovoltaic Devices for Indoor Light Harvesting and Customization of Flexible Dye Solar Cells to Deliver Superior Efficiency under Artificial Lighting. Appl. Energy 2015, 156, 413–422. [Google Scholar] [CrossRef]
- Henriques, C.A.; Pinto, S.M.A.; Aquino, G.L.B.; Pineiro, M.; Calvete, M.J.F.; Pereira, M.M. Ecofriendly Porphyrin Synthesis by Using Water under Microwave Irradiation. ChemSusChem 2014, 7, 2821–2824. [Google Scholar] [CrossRef]
- Gomes, C.; Peixoto, M.; Pineiro, M. Porphyrin Synthesis Using Mechanochemistry: Sustainability Assessment. J. Porphyr. Phthalocyanines 2019, 23, 889–897. [Google Scholar] [CrossRef]
- Calvete, M.J.F.; Dias, L.D.; Henriques, C.A.; Pinto, S.M.A.; Carrilho, R.M.B.; Pereira, M.M. A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Zeolite as an Inorganic Acid Catalyst. Molecules 2017, 22, 741. [Google Scholar] [CrossRef]
- Zanotti, G.; Mancini, L.; Paoletti, A.M.; Pennesi, G.; Raglione, V. Greener Shades of Blue: Green Chemistry as an Opportunity to Improve the Approach to the Synthesis of Phthalocyanines. J. Porphyr. Phthalocyanines 2023. [Google Scholar] [CrossRef]
- Lin, Z.; Chang, J.; Xiao, J.; Zhu, H.; Xu, Q.H.; Zhang, C.; Ouyang, J.; Hao, Y. Interface Studies of the Planar Heterojunction Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 157, 783–790. [Google Scholar] [CrossRef]
- Jacobsson, T.J.; Hultqvist, A.; García-Fernández, A.; Anand, A.; Al-Ashouri, A.; Hagfeldt, A.; Crovetto, A.; Abate, A.; Ricciardulli, A.G.; Vijayan, A.; et al. An Open-Access Database and Analysis Tool for Perovskite Solar Cells Based on the FAIR Data Principles. Nat. Energy 2022, 7, 107–115. [Google Scholar] [CrossRef]
- Javier Ramos, F.; Ince, M.; Urbani, M.; Abate, A.; Grätzel, M.; Ahmad, S.; Torres, T.; Nazeeruddin, M.K. Non-Aggregated Zn(Ii)Octa(2,6-Diphenylphenoxy) Phthalocyanine as a Hole Transporting Material for Efficient Perovskite Solar Cells. Dalton Trans. 2015, 44, 10847–10851. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.; Zhao, X.; Li, G.; Shen, Y.; Wang, M. A New Method for Fitting Current–Voltage Curves of Planar Heterojunction Perovskite Solar Cells. Nanomicro Lett. 2018, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Babu, V.; Fuentes Pineda, R.; Ahmad, T.; Alvarez, A.O.; Castriotta, L.A.; di Carlo, A.; Fabregat-Santiago, F.; Wojciechowski, K. Improved Stability of Inverted and Flexible Perovskite Solar Cells with Carbon Electrode. ACS Appl. Energy Mater. 2020, 3, 5126–5134. [Google Scholar] [CrossRef]
- Saranin, D.; Komaricheva, T.; Luchnikov, L.; Muratov, D.S.; Le, T.S.; Karpov, Y.; Gostishchev, P.; Yurchuk, S.; Kuznetsov, D.; Didenko, S.; et al. Hysteresis-Free Perovskite Solar Cells with Compact and Nanoparticle NiO for Indoor Application. Sol. Energy Mater. Sol. Cells 2021, 227, 111095. [Google Scholar] [CrossRef]
- Zhu, Z.; Bai, Y.; Lee, H.K.H.; Mu, C.; Zhang, T.; Zhang, L.; Wang, J.; Yan, H.; So, S.K.; Yang, S. Polyfluorene Derivatives Are High-Performance Organic Hole-Transporting Materials for Inorganic-Organic Hybrid Perovskite Solar Cells. Adv. Funct. Mater. 2014, 24, 7357–7365. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Yang, Y.; Lai, X.; Su, Q.; Wu, D.; Li, G.; Wang, K.; Chen, S.; Sun, X.W.; et al. Defects Passivation with Dithienobenzodithiophene-Based π-Conjugated Polymer for Enhanced Performance of Perovskite Solar Cells. Solar RRL 2019, 3, 1900029. [Google Scholar] [CrossRef]
- Hu, X.; Wang, H.; Wang, M.; Zang, Z. Interfacial Defects Passivation Using Fullerene-Polymer Mixing Layer for Planar-Structure Perovskite Solar Cells with Negligible Hysteresis. Solar Energy 2020, 206, 816–825. [Google Scholar] [CrossRef]
- Abbaszadeh, D.; Kunz, A.; Wetzelaer, G.A.H.; Michels, J.J.; Craciun, N.I.; Koynov, K.; Lieberwirth, I.; Blom, P.W.M. Elimination of Charge Carrier Trapping in Diluted Semiconductors. Nat. Mater. 2016, 15, 628–633. [Google Scholar] [CrossRef]
- Ren, G.; Han, W.; Deng, Y.; Wu, W.; Li, Z.; Guo, J.; Bao, H.; Liu, C.; Guo, W. Strategies of Modifying Spiro-OMeTAD Materials for Perovskite Solar Cells: A Review. J. Mater. Chem. A Mater. 2021, 9, 4589–4625. [Google Scholar] [CrossRef]
- Osedach, T.P.; Andrew, T.L.; Bulović, V. Effect of Synthetic Accessibility on the Commercial Viability of Organic Photovoltaics. Energy Environ. Sci. 2013, 6, 711–718. [Google Scholar] [CrossRef]
HTM | Yield (%) | E-Factor |
---|---|---|
TBU4-Co | 33 | 1125 |
TBU4-Cu | 55 | 317 |
TBU4-Zn | 51 | 698 |
Device Name | Voc [V] | Jsc [mAcm−2] | FF [%] | PCE [%] |
---|---|---|---|---|
Spiro-MeOTAD in anisole | 0.96 ± 0.01 (0.97) | 20.48 ± 0.36 (20.56) | 64.87 ± 4.95 (71.46) | 12.68 ± 0.97 (14.23) |
Spiro-MeOTAD in CB | 1.000 ± 0.01 (1.011) | 21.09 ± 0.15 (21.25) | 71.55 ± 0.88 (72.29) | 15.11 ± 0.18 (15.30) |
TBU4-Cu in Anisole | 0.90 ± 0.014 (0.92) | 19.38 ± 0.41 (19.98) | 67.46 ± 2.07 (69.77) | 11.76 ± 0.32 (12.27) |
TBU4-Cu in CB | 0.90 ± 0.01 (0.91) | 19.27 ± 0.26 (19.67) | 66.38 ± 1.99 (68.24) | 11.53 ± 0.37 (12.22) |
TBU4-Zn in Anisole | 0.917 ± 0.022 (0.95) | 19.101 ± 0.426 (19.56) | 64.516 ± 1.379 (66.14) | 11.296 ± 0.334 (11.73) |
TBU4-Zn in CB | 0.906 ± 0.021 (0.93) | 18.804 ± 0.487 (19.38) | 61.44 ± 2.328 (63.54) | 10.46 ± 0.201 (10.81) |
TBU4-Co in Anisole | 0.876 ± 0.013 (0.88) | 15.626 ± 0.531 (16.26) | 58.82 ± 1.730 (61.13) | 8.06 ± 0.432 (8.83) |
TBU4-Co in CB | 0.865 ± 0.012 (0.87) | 15.766 ± 0.532 (16.31) | 59.238 ± 1.455 (61.09) | 8.091 ± 0.480 (8.62) |
Sample | A1 | τ1 [ns] | A2 | τ2 [ns] |
---|---|---|---|---|
Reference Spiro | 0.41 | 1.24 | 0.29 | 18.26 |
TBU4-Cu | 0.86 | 1.46 | 0.19 | 27.08 |
TBU4-Zn | 0.24 | 1.68 | 0.23 | 30.11 |
TBU4-Co | 0.43 | 2.11 | 0.18 | 69.37 |
HTM | Reagents | Solvents | Workup/Purification | Total | Cheapest Price on Market |
---|---|---|---|---|---|
TBU4-Co | 43.85 | 0.41 | 37.44 | 81.70 | n/a |
TBU4-Cu | 24.66 | 0.22 | 1.70 | 26.58 | 124.00 1 |
TBU4-Zn | 26.63 | 0.22 | 23.28 | 50.13 | 101.00 1 |
Spiro-MeOTAD | / | / | / | / | 264.50 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podapangi, S.K.; Mancini, L.; Xu, J.; Reddy, S.H.; Di Carlo, A.; Brown, T.M.; Zanotti, G. Green Anisole Solvent-Based Synthesis and Deposition of Phthalocyanine Dopant-Free Hole-Transport Materials for Perovskite Solar Cells. Energies 2023, 16, 3643. https://doi.org/10.3390/en16093643
Podapangi SK, Mancini L, Xu J, Reddy SH, Di Carlo A, Brown TM, Zanotti G. Green Anisole Solvent-Based Synthesis and Deposition of Phthalocyanine Dopant-Free Hole-Transport Materials for Perovskite Solar Cells. Energies. 2023; 16(9):3643. https://doi.org/10.3390/en16093643
Chicago/Turabian StylePodapangi, Suresh K., Laura Mancini, Jie Xu, Sathy Harshavardhan Reddy, Aldo Di Carlo, Thomas M. Brown, and Gloria Zanotti. 2023. "Green Anisole Solvent-Based Synthesis and Deposition of Phthalocyanine Dopant-Free Hole-Transport Materials for Perovskite Solar Cells" Energies 16, no. 9: 3643. https://doi.org/10.3390/en16093643
APA StylePodapangi, S. K., Mancini, L., Xu, J., Reddy, S. H., Di Carlo, A., Brown, T. M., & Zanotti, G. (2023). Green Anisole Solvent-Based Synthesis and Deposition of Phthalocyanine Dopant-Free Hole-Transport Materials for Perovskite Solar Cells. Energies, 16(9), 3643. https://doi.org/10.3390/en16093643