Analyzing the Performance of Thermoelectric Generators with Inhomogeneous Legs: Coupled Material–Device Modelling for Mg2X-Based TEG Prototypes
Abstract
:1. Introduction
2. Methods
Parameter (Units) | Symbol | Value (SI) | Reference |
---|---|---|---|
Average density of states effective mass | 2.1 | [50] | |
Band degeneracy | 6 | [31] | |
Single band mass | - | ||
Theoretical mass density (g/cm3) | 3.117 | [50] | |
Longitudinal speed of sound (m/s) | 5290 | linear with , [50] | |
AP deformation potential constant (eV) | 9.8 | [55] | |
Alloy scattering potential (eV) | 0.5 | [31,55] | |
Number of atoms per unit volume (m−3) | 4.105∙1028 | linear with , [31] |
Symbol | Description |
---|---|
m (subscript) | Indicates measured value |
Seebeck voltage | |
, | Temperature at the hot, cold block in TEG measurement at current I |
, | Temperature at the hot, cold side of the TE legs at current I |
Parasitic temperature loss at current I | |
Heat flow at the hot side (in) at current I | |
Thermal conductance of the TE legs | |
Electrical resistance of the TE legs | |
Electrical contact resistance | |
Electrical contact resistivity | |
Number of leg pairs | |
L, | Length, Cross-sectional area of TE element |
Resistance of the Cu bridges: sum of the resistances of all i pieces (varying geometries and temperatures). , are the length, cross-sectional area of each Cu piece. | |
Current at maximum power | |
Maximum power output | |
Maximum efficiency |
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renew. Sustain. Energy Rev. 2016, 65, 698–726. [Google Scholar] [CrossRef]
- Karellas, S.; Leontaritis, A.-D.; Panousis, G.; Bellos, E.; Kakaras, E. Energetic and exergetic analysis of waste heat recovery systems in the cement industry. Energy 2013, 58, 147–156. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Ebling, D.G.; Krumm, A.; Pfeiffelmann, B.; Gottschald, J.; Bruchmann, J.; Benim, A.C.; Adam, M.; Labs, R.; Herbertz, R.R. Development of a System for Thermoelectric Heat Recovery from Stationary Industrial Processes. J. Electron. Mater. 2016, 45, 3433–3439. [Google Scholar] [CrossRef]
- Li, K.; Garrison, G.; Zhu, Y.; Moore, M.; Liu, C.; Hepper, J.; Bandt, L.; Horne, R.N.; Petty, S. Thermoelectric power generator: Field test at Bottle Rock geothermal power plant. J. Power Sources 2021, 485, 229266. [Google Scholar] [CrossRef]
- Allison, L.K.; Andrew, T. A Wearable All-Fabric Thermoelectric Generator. Adv. Mater. Technol. 2019, 4, 1800615. [Google Scholar] [CrossRef]
- Elmoughni, H.M.; Menon, A.K.; Wolfe, R.M.W.; Yee, S.K. A Textile-Integrated Polymer Thermoelectric Generator for Body Heat Harvesting. Adv. Mater. Technol. 2019, 4, 1800708. [Google Scholar] [CrossRef]
- Hasan, M.N.; Nafea, M.; Nayan, N.; Mohamed Ali, M.S. Thermoelectric Generator: Materials and Applications in Wearable Health Monitoring Sensors and Internet of Things Devices. Adv. Mater. Technol. 2021, 7, 2101203. [Google Scholar] [CrossRef]
- Gorai, P.; Stevanović, V.; Toberer, E. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2017, 2, 17053. [Google Scholar] [CrossRef]
- Iversen, B.B. Breaking thermoelectric performance limits. Nat. Mater. 2021, 20, 1309–1310. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex Thermoelectric Materials, in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2011; pp. 101–110. [Google Scholar]
- Sankhla, A.; Patil, A.; Kamila, H.; Yasseri, M.; Farahi, N.; Mueller, E.; de Boor, J. Mechanical alloying of optimized Mg2 (Si, Sn) solid solutions: Understanding phase evolution and tuning synthesis parameters for thermoelectric applications. ACS Appl. Energy Mater. 2018, 1, 531–542. [Google Scholar] [CrossRef]
- Kamila, H.; Sankhla, A.; Yasseri, M.; Hoang, N.; Farahi, N.; Mueller, E.; de Boor, J. Synthesis of p-type Mg2Si1-xSnx with x = 0–1 and optimization of the synthesis parameters. Mater. Today Proc. 2019, 8, 546–555. [Google Scholar] [CrossRef]
- Trivedi, V.; Battabyal, M.; Balasubramanian, P.; Muralikrishna, G.M.; Jain, P.K.; Gopalan, R. Microstructure and doping effect on the enhancement of the thermoelectric properties of Ni doped Dy filled CoSb3 skutterudites. Sustain. Energy Fuels 2018, 2, 2687–2697. [Google Scholar] [CrossRef]
- Muthiah, S.; Singh, R.; Pathak, B.; Avasthi, P.K.; Kumar, R.; Kumar, A.; Srivastava, A.; Dhar, A. Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique. Nanoscale 2018, 10, 1970–1977. [Google Scholar] [CrossRef]
- Moghaddam, A.O.; Shokuhfar, A.; Zhang, Y.; Zhang, T.; Cadavid, D.; Arbiol, J.; Cabot, A. Ge-Doped ZnSb/β-Zn4Sb3 Nanocomposites with High Thermoelectric Performance. Adv. Mater. Interfaces 2019, 6, 1900467. [Google Scholar] [CrossRef]
- Jood, P.; Male, J.P.; Anand, S.; Matsushita, Y.; Takagiwa, Y.; Kanatzidis, M.G.; Snyder, G.J.; Ohta, M. Na Doping in PbTe: Solubility, Band Convergence, Phase Boundary Mapping, and Thermoelectric Properties. J. Am. Chem. Soc. 2020, 142, 15464–15475. [Google Scholar] [CrossRef]
- Song, K.-M.; Shin, D.-K.; Jang, K.-W.; Choi, S.-M.; Lee, S.; Seo, W.-S.; Kim, I.-H. Synthesis and Thermoelectric Properties of Ce 1−z Pr z Fe 4−x Co x Sb 12 Skutterudites. J. Electron. Mater. 2017, 46, 2634–2639. [Google Scholar] [CrossRef]
- Yu, J.; Xing, Y.; Hu, C.; Huang, Z.; Qiu, Q.; Wang, C.; Xia, K.; Wang, Z.; Bai, S.; Zhao, X. Half-heusler thermoelectric module with high conversion efficiency and high power density. Adv. Energy Mater. 2020, 10, 2000888. [Google Scholar] [CrossRef]
- Chu, J.; Huang, J.; Liu, R.; Liao, J.; Xia, X.; Zhang, Q.; Wang, C.; Gu, M.; Bai, S.; Shi, X. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Jood, P.; Ohta, M.; Yamamoto, A.; Kanatzidis, M.G. Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules. Joule 2018, 2, 1339–1355. [Google Scholar] [CrossRef]
- Ying, P.; He, R.; Mao, J.; Zhang, Q.; Reith, H.; Sui, J.; Ren, Z.; Nielsch, K.; Schierning, G. Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nat. Commun. 2021, 12, 1121. [Google Scholar] [CrossRef]
- Bode, C.; Friedrichs, J.; Somdalen, R.; Koehler, J.; Büchter, K.-D.; Falter, C.; Kling, U.; Ziolkowski, P.; Zabrocki, K.; Mueller, E.; et al. Thermoelectric Energy Recuperation for Aviation—Project Overview and Potentials. J. Eng. Gas Turbines Power. 2017, 139, 101201. [Google Scholar] [CrossRef]
- Farahi, N.; Stiewe, C.; Truong, D.N.; de Boor, J.; Müller, E. High efficiency Mg2(Si,Sn)-based thermoelectric materials: Scale-up synthesis, functional homogeneity, and thermal stability. RSC Adv. 2019, 9, 23021–23028. [Google Scholar] [CrossRef]
- Kim, H.S.; Kikuchi, K.; Itoh, T.; Iida, T.; Taya, M. Design of segmented thermoelectric generator based on cost-effective and light-weight thermoelectric alloys. Mater. Sci. Eng. B 2014, 185, 45–52. [Google Scholar] [CrossRef]
- de Boor, J.; Dasgupta, T.; Saparamadu, U.; Müller, E.; Ren, Z.F. Recent progress in p-type thermoelectric magnesium silicide based solid solutions. Mater. Today Energy 2017, 4, 105–121. [Google Scholar] [CrossRef]
- Gao, P. Mg2(Si, Sn)-Based Thermoelectric Materials and Devices; Michigan State University: East Lansing, MI, USA, 2016; p. 128. [Google Scholar]
- Goyal, G.K.; Dasgupta, T. Fabrication and testing of Mg2Si1-xSnx based thermoelectric generator module. Mater. Sci. Eng. B 2021, 272, 115338. [Google Scholar] [CrossRef]
- Camut, J.; Ziolkowski, P.; Ponnusamy, P.; Stiewe, C.; Mueller, E.; de Boor, J. Efficiency measurement and modelling of a high performance Mg2(Si, Sn)-based thermoelectric generator. Adv. Eng. Mater. 2022, 25, 2200776. [Google Scholar] [CrossRef]
- Kato, D.; Iwasaki, K.; Yoshino, M.; Yamada, T.; Nagasaki, T. Control of Mg content and carrier concentration via post annealing under different Mg partial pressures for Sb-doped Mg2Si thermoelectric material. J. Solid State Chem. 2018, 258, 93–98. [Google Scholar] [CrossRef]
- Sankhla, A.; Kamila, H.; Naithani, H.; Mueller, E.; de Boor, J. On the role of Mg content in Mg2(Si, Sn): Assessing its impact on electronic transport and estimating the phase width by in situ characterization and modelling. Mater. Today Phys. 2021, 21, 100471. [Google Scholar] [CrossRef]
- Ayachi, S.; Radhika, D.; Prasanna, P.; Park, S.; Jaywan, C.; SuDong, P.; Byungki, R.; Eckhard, M.; de boor, J. On the Relevance of Point Defects for the Selection of Contacting Electrodes: Ag as an Example for Mg2(Si,Sn)-based Thermoelectric Generators. Mater. Today Phys. 2021, 16, 100309. [Google Scholar] [CrossRef]
- Pham, N.H.; Farahi, N.; Kamila, H.; Sankhla, A.; Ayachi, S.; Müller, E.; de Boor, J. Ni and Ag electrodes for magnesium silicide based thermoelectric generators. Mater. Today Energy 2019, 11, 97–105. [Google Scholar] [CrossRef]
- Shang, H.; Liang, Z.; Xu, C.; Song, S.; Huang, D.; Gu, H.; Mao, J.; Ren, Z.; Ding, F. N-type Mg3Sb2-xBix with improved thermal stability for thermoelectric power generation. Acta Mater. 2020, 201, 572–579. [Google Scholar] [CrossRef]
- Brož, P.; Zelenka, F.; Kohoutek, Z.; Vřešťál, J.; Vykoukal, V.; Buršík, J.; Zemanová, A.; Rogl, G.; Rogl, P. Study of thermal stability of CoSb3 skutterudite by Knudsen effusion mass spectrometry. Calphad 2019, 65, 1–7. [Google Scholar] [CrossRef]
- Lemine, A.S.; Fayyaz, O.; Shakoor, A.; Ahmad, Z.; Bhadra, J.; Al-Thani, N.J. Corrosion Behavior of Thermoelectric P-and N-Type Bismuth Telluride Alloys Developed through Microwave Sintering Process. Available online: https://ssrn.com/abstract=4257563 (accessed on 28 February 2023).
- El Oualid, S.; Kogut, I.; Benyahia, M.; Geczi, E.; Kruck, U.; Kosior, F.; Masschelein, P.; Candolfi, C.; Dauscher, A.; Koenig, J.D.; et al. High Power Density Thermoelectric Generators with Skutterudites. Adv. Energy Mater. 2021, 11, 2100580. [Google Scholar] [CrossRef]
- Ponnusamy, P.; Naithani, H.; Müller, E.; de Boor, J. Grading studies for efficient thermoelectric devices using combined 1D material and device modeling. J. Appl. Phys. 2022, 132, 115702. [Google Scholar] [CrossRef]
- Rowe, D. Conversion Efficiency and Figure-Of-Merit, in CRC Handbook of Thermoelectrics; CRC Press: Boca Raton, FL, USA, 1995; pp. 31–37. [Google Scholar]
- Goupil, C. Continuum Theory and Modeling of Thermoelectric Elements; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ioffe, A.F.; Stil’Bans, L.S.; Iordanishvili, E.K.; Stavitskaya, T.S.; Gelbtuch, A.; Vineyard, G. Semiconductor thermoelements and thermoelectric cooling. Phys. Today 1959, 12, 42. [Google Scholar] [CrossRef]
- Ponnusamy, P.; de Boor, J.; Müller, E. Using the constant properties model for accurate performance estimation of thermoelectric generator elements. Appl. Energy 2020, 262, 114587. [Google Scholar] [CrossRef]
- Borup, K.A.; De Boor, J.; Wang, H.; Drymiotis, F.; Gascoin, F.; Shi, X.; Chen, L.; Fedorov, M.I.; Müller, E.; Iversen, B.B. Measuring thermoelectric transport properties of materials. Energy Environ. Sci. 2015, 8, 423–435. [Google Scholar] [CrossRef]
- De Boor, J.; Stiewe, C.; Ziolkowski, P.; Dasgupta, T.; Karpinski, G.; Lenz, E.; Edler, F.; Mueller, E. High-temperature measurement of Seebeck coefficient and electrical conductivity. J. Electron. Mater. 2013, 42, 1711–1718. [Google Scholar] [CrossRef]
- Vaney, J.B.; Piarristeguy, A.; Ohorodniichuck, V.; Ferry, O.; Pradel, A.; Alleno, E.; Monnier, J.; Lopes, E.B.; Gonçalves, A.P.; Delaizir, G.; et al. Effective medium theory based modeling of the thermoelectric properties of composites: Comparison between predictions and experiments in the glass–crystal composite system Si10As15Te75–Bi0.4Sb1.6Te3. J. Mater. Chem. C 2015, 3, 11090–11098. [Google Scholar] [CrossRef]
- Webman, I.; Jortner, J.; Cohen, M.H. Thermoelectric power in inhomogeneous materials. Phys. Rev. B 1977, 16, 2959–2964. [Google Scholar] [CrossRef]
- Hao, Q.; Zhao, H.; Xiao, Y.; Xu, D. Thermal investigation of nanostructured bulk thermoelectric materials with hierarchical structures: An effective medium approach. J. Appl. Phys. 2018, 123, 014303. [Google Scholar] [CrossRef]
- Castillo-Hernández, G.; Müller, E.; de Boor, J. Impact of the Dopant Species on the Thermomechanical Material Properties of Thermoelectric Mg2Si0.3Sn0.7. Materials 2022, 15, 779. [Google Scholar] [CrossRef]
- De Boor, J.; Müller, E. Data analysis for Seebeck coefficient measurements. Rev. Sci. Instrum. 2013, 84, 065102. [Google Scholar] [CrossRef]
- Kamila, H.; Sahu, P.; Sankhla, A.; Yasseri, M.; Pham, H.-N.; Dasgupta, T.; Mueller, E.; de Boor, J. Analyzing transport properties of p-type Mg2Si–Mg2Sn solid solutions: Optimization of thermoelectric performance and insight into the electronic band structure. J. Mater. Chem. A 2019, 7, 1045–1054. [Google Scholar] [CrossRef]
- Martin, J. Apparatus for the high temperature measurement of the Seebeck coefficient in thermoelectric materials. Rev. Sci. Instrum. 2012, 83, 065101. [Google Scholar] [CrossRef]
- Ziolkowski, P.; Stiewe, C.; de Boor, J.; Druschke, I.; Zabrocki, K.; Edler, F.; Haupt, S.; König, J.; Mueller, E. Iron Disilicide as High-Temperature Reference Material for Traceable Measurements of Seebeck Coefficient between 300 K and 800 K. J. Electron. Mater. 2017, 46, 51–63. [Google Scholar] [CrossRef]
- Camut, J.; Ayachi, S.; Castillo-Hernández, G.; Park, S.; Ryu, B.; Park, S.; Frank, A.; Stiewe, C.; Müller, E.; de Boor, J. Overcoming Asymmetric Contact Resistances in Al-Contacted Mg2(Si, Sn) Thermoelectric Legs. Materials 2021, 14, 6774. [Google Scholar] [CrossRef]
- May, A.F.; Snyder, G.J. Introduction to Modeling Thermoelectric Transport at High Temperatures, in Materials, Preparation, and Characterization in Thermoelectrics; CRC Press: Boca Raton, FL, USA, 2017; pp. 207–224. [Google Scholar]
- Sankhla, A.; Kamila, H.; Kelm, K.; Mueller, E.; de Boor, J. Analyzing thermoelectric transport in n-type Mg2Si0.4Sn0.6 and correlation with microstructural effects: An insight on the role of Mg. Acta Mater. 2020, 199, 85–95. [Google Scholar] [CrossRef]
- Ziolkowski, P.; Karpinski, G.; Dasgupta, T.; Mueller, E. Probing thermopower on the microscale. Phys. Status Solidi 2013, 210, 89–105. [Google Scholar] [CrossRef]
- Platzek, D.; Karpinski, G.; Stiewe, C.; Ziolkowski, P.; Drasar, C.; Muller, E. Potential-Seebeck-microprobe (PSM): Measuring the spatial resolution of the Seebeck coefficient and the electric potential. In In Proceedings of the ICT 2005, 24th International Conference on Thermoelectrics, Clemson, SC, USA, 19–23 June 2005; IEEE: Piscataway, NJ, USA, 2005. [Google Scholar]
- Ponnusamy, P.; Kamila, H.; Müller, E.; de Boor, J. Efficiency as a performance metric for material optimization in thermoelectric generators. J. Phys. Energy 2021, 3, 044006. [Google Scholar] [CrossRef]
- Goyal, G.K.; Dasgupta, T. Generic Approach for Contacting Thermoelectric Solid Solutions: Case Study in n- and p-Type Mg2Si0.3Sn0.7. ACS Appl. Mater. Interfaces 2021, 13, 20754–20762. [Google Scholar] [CrossRef]
- Yang, P.; Dai, S.; Ma, T.; Huang, A.; Jiang, G.; Wang, Y.; Hong, Z.; Jin, Z. Analysis of Peak Electromagnetic Torque Characteristics for Superconducting DC Induction Heaters. IEEE Access 2020, 8, 14777–14788. [Google Scholar] [CrossRef]
- Ziolkowski, P.; Poinas, P.; Leszczynski, J.; Karpinski, G.; Müller, E. Estimation of Thermoelectric Generator Performance by Finite Element Modeling. J. Electron. Mater. 2010, 39, 1934–1943. [Google Scholar] [CrossRef]
- de Boor, J. On the applicability of the single parabolic band model to advanced thermoelectric materials with complex band structures. J. Mater. 2021, 7, 603–611. [Google Scholar] [CrossRef]
- Ziolkowski, P.; Blaschkewitz, P.; Müller, E. Heat flow measurement as a key to standardization of thermoelectric generator module metrology: A comparison of reference and absolute techniques. Measurement 2021, 167, 108273. [Google Scholar] [CrossRef]
- Liu, W.; Chi, H.; Sun, H.; Zhang, Q.; Yin, K.; Tang, X.; Zhang, Q.; Uher, C. Advanced thermoelectrics governed by a single parabolic band: Mg2Si0.3Sn0.7, a canonical example. Phys. Chem. Chem. Phys. 2014, 16, 6893–6897. [Google Scholar] [CrossRef]
- Naithani, H.; Dasgupta, T. Critical Analysis of Single Band Modeling of Thermoelectric Materials. ACS Appl. Energy Mater. 2020, 3, 2200–2213. [Google Scholar] [CrossRef]
- Ravich, Y.I.; Efimova, B.A.; Smirnov, I.A. Semiconducting Lead Chalcogenides; Stil’bans, L.S., Ed.; Plenum Press: New York, NY, USA, 1970. [Google Scholar]
- Naithani, H.; Muller, E.; de Boor, J. Developing a two-parabolic band model for thermoelectric transport modelling using Mg2Sn as an example. J. Phys. Energy 2022, 4, 045002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camut, J.; Müller, E.; de Boor, J. Analyzing the Performance of Thermoelectric Generators with Inhomogeneous Legs: Coupled Material–Device Modelling for Mg2X-Based TEG Prototypes. Energies 2023, 16, 3666. https://doi.org/10.3390/en16093666
Camut J, Müller E, de Boor J. Analyzing the Performance of Thermoelectric Generators with Inhomogeneous Legs: Coupled Material–Device Modelling for Mg2X-Based TEG Prototypes. Energies. 2023; 16(9):3666. https://doi.org/10.3390/en16093666
Chicago/Turabian StyleCamut, Julia, Eckhard Müller, and Johannes de Boor. 2023. "Analyzing the Performance of Thermoelectric Generators with Inhomogeneous Legs: Coupled Material–Device Modelling for Mg2X-Based TEG Prototypes" Energies 16, no. 9: 3666. https://doi.org/10.3390/en16093666
APA StyleCamut, J., Müller, E., & de Boor, J. (2023). Analyzing the Performance of Thermoelectric Generators with Inhomogeneous Legs: Coupled Material–Device Modelling for Mg2X-Based TEG Prototypes. Energies, 16(9), 3666. https://doi.org/10.3390/en16093666