Review of RoCoF Estimation Techniques for Low-Inertia Power Systems
Abstract
:1. Introduction
1.1. Motivation and Background
1.2. Contribution
- (i)
- Discussion on the role of the RoCoF in power system cascading failure and understanding the power system RoCoF;
- (ii)
- Review the estimation and prediction techniques of the maximal RoCoF following a contingency;
- (iii)
- Review the different methods of RoCoF real-time tracking techniques with a discussion on the advantages and disadvantages as well as the further development of existing methods.
1.3. Oriagnization
2. Frequency Stability of the Low-Inertia Power System
2.1. Typical Blackouts in Low-Inertia Systems
2.2. The “Role” of Inertia and RoCoF for Modern Power Systems
2.3. Concept of “Center” RoCoF
2.3.1. Frequency of CoI and Its Estimation Method
2.3.2. RoCoF of the Frequency of CoI
3. Estimation and Prediction of the Maximal RoCoF following a Contingency
3.1. Maximal RoCoF Estimation
3.2. Maximal RoCoF Prediction
3.3. Towards the Power System with Zero Rotational Inertia
4. Real-Time RoCoF Tracking Techniques
4.1. DFT-Based Methods
4.2. Kalman Filter Techniques
Algorithm 1: Unscented Kalman Filter |
1. Compute the sigma points: 2. Predict the state: 3. Predict the covariance: where 4. The propagated sigma points with measurement function: 5. The predicted measurement: 6. Compute measurement covariance: 7. Compute cross-covariance: 8. The Kalman Gain: 9. Update the state: 10. Update the covariance: |
4.3. Other Methods
4.4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kroposki, B.; Johnson, B.; Zhang, Y.C.; Gevorgian, V.; Denholm, P.; Hodge, B.M.; Hannegan, B. Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy. IEEE Power Energy Mag. 2017, 15, 61–73. [Google Scholar] [CrossRef]
- Liu, M.Y.; Chen, J.R.; Xie, Y.S.; Deng, X.Y.; Milano, F. Least Square Method for the Identification of Equivalent Inertia Constant. In Proceedings of the 2022 IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 17–21 July 2022. [Google Scholar]
- Milano, F.; Dörfler, F.; Hug, G.; Hill, D.J.; Verbič, G. Foundations and Challenges of Low-Inertia Systems (Invited Paper). In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018. [Google Scholar]
- Winter, W.; Elkington, K.; Bareux, G.; Kostevc, J. Pushing the Limits: Europe’s New Grid: Innovative Tools to Combat Transmission Bottlenecks and Reduced Inertia. IEEE Power Energy Mag. 2015, 13, 60–74. [Google Scholar] [CrossRef]
- Panda, R.K.; Mohapatra, A.; Srivastava, S.C. Application of Indirect Adaptive Control Philosophy for Inertia Estimation. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 19–23 March 2019. [Google Scholar]
- Mo, R.; Deng, X.Y.; Liu, M.Y.; Chang, X.Q. Ambient-Measurement-Based Equivalent Inertia Constant Identification Via Tikhonov Regularization Algorithm. In Proceedings of the 2022 International Conference on Renewable Energies and Smart Technologies (REST), Tirana, Albania, 28–29 July 2022. [Google Scholar]
- Nedd, M.; Browell, J.; Bell, K.; Booth, C. Containing a Credible Loss to Within Frequency Stability Limits in a Low-Inertia GB Power System. IEEE Trans. Ind. Appl. 2020, 56, 1031–1039. [Google Scholar] [CrossRef]
- Pandey, A.; Kumar, S.; Mohire, S.; Pentayya, P.; Kazi, F. Dynamic Modeling and Cascade Failure Analysis of the Mumbai Grid Incident of October 12, 2020. IEEE Access 2022, 10, 43598–43610. [Google Scholar] [CrossRef]
- Frigo, G.; Derviškadić, A.; Zuo, Y.H.; Paolone, M. PMU-Based ROCOF Measurements: Uncertainty Limits and Metrological Significance in Power System Applications. IEEE Trans. Instrum. Meas. 2019, 68, 3810–3822. [Google Scholar] [CrossRef]
- Albu, M.; Dumitrescu, A.M.; Popovici, R. Rate of change of frequency—A power quality descriptor. In Proceedings of the 2014 16th International Conference on Harmonics and Quality of Power (ICHQP), Bucharest, Romania, 25–28 May 2014. [Google Scholar]
- Milano, F.; Ortega, Á. A Method for Evaluating Frequency Regulation in an Electrical Grid-Part I: Theory. IEEE Trans. Power Syst. 2021, 36, 183–193. [Google Scholar] [CrossRef]
- Ortega, Á.; Milano, F. A Method for Evaluating Frequency Regulation in an Electrical Grid-Part II: Applications to Non-Synchronous Devices. IEEE Trans. Power Syst. 2021, 36, 194–203. [Google Scholar] [CrossRef]
- Zhao, J.B.; Mili, L.; Milano, F. Robust Frequency Divider for Power System Online Monitoring and Control. Trans. Power Syst. 2018, 33, 4414–4423. [Google Scholar] [CrossRef]
- Zhao, R.Z.; Wen, Y.F.; Ye, X.; Tang, Q.; Li, W.Y.; Chen, Y.H.; Qu, X.B. Research on Frequency Indicators Evaluation of Disturbance Events Based on Improved Stacked Denoising Autoencoders. Proc. CSEE 2019, 39, 4081–4093. [Google Scholar]
- Wen, Y.F.; Zhao, R.Z.; Xiao, Y.Q.; Liu, Z.B. Power system frequency stability assessment based on multi-layer extreme learning machine. Autom. Electr. Power Syst. 2019, 43, 133–143. [Google Scholar]
- Hu, Y.L.; Wei, W.; Peng, Y.G.; Lei, J.Y. Fuzzy virtual inertia control for virtual synchronous generator. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, 27–29 July 2016. [Google Scholar]
- Maaruf, M.; Ferik, S.E.; Al-Ismail, F.S.; Khalid, M. Robust Optimal Virtual Inertia Control for Microgrid Frequency Regulation Considering High Renewable Energy Penetration. In Proceedings of the 1st IEEE International Conference on Renewable Energy Research and Applications, Istanbul, Turkey, 18–21 September 2022. [Google Scholar]
- Gupta, P.; Bhatia, R.S.; Jain, D.K. Active ROCOF Relay for Islanding Detection. IEEE Trans. Power Deliver. 2017, 32, 420–429. [Google Scholar] [CrossRef]
- Alam, M.R.; Begum, M.T.A.; Muttaqi, K.M. Assessing the Performance of ROCOF Relay for Anti-Islanding Protection of Distributed Generation Under Subcritical Region of Power Imbalance. IEEE Trans. Ind. Appl. 2019, 55, 5395–5405. [Google Scholar] [CrossRef]
- IEEE Std C37.118TM.1-2011 (Revision of IEEE Std C37.118TM-2005); IEEE Standard for Synchrophasor Measurements for Power Systems. IEEE Power & Energy Society: Piscataway, NJ, USA, 2011; pp. 1–61.
- Wang, M.H.; Sun, Y.Z. A practical method to improve phasor and power measurement accuracy of DFT algorithm. IEEE Trans. Power Deliver. 2006, 21, 1054–1062. [Google Scholar] [CrossRef]
- Yang, R.G.; Xue, H. A Novel Algorithm for Accurate Frequency Measurement Using Transformed Consecutive Points of DFT. IEEE Trans. Power Syst. 2008, 23, 1057–1062. [Google Scholar] [CrossRef]
- Castello, P.; Liu, J.Q.; Muscas, C.; Pegoraro, P.A.; Ponci, F.; Monti, A. A Fast and Accurate PMU Algorithm for P+M Class Measurement of Synchrophasor and Frequency. IEEE Trans. Instrum. Meas. 2014, 63, 2837–2845. [Google Scholar] [CrossRef]
- Wright, P.S.; Davis, P.N.; Johnstone, K.; Rietveld, G.; Roscoe, A.J. Field Measurement of Frequency and ROCOF in the Presence of Phase Steps. IEEE Trans. Instrum. Meas. 2019, 68, 1688–1695. [Google Scholar] [CrossRef]
- Roscoe, A.J.; Dyśko, A.; Marshall, B.; Lee, M.; Kirkham, H.; Rietveld, G. The Case for Redefinition of Frequency and ROCOF to Account for AC Power System Phase Steps. In Proceedings of the 2017 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Liverpool, UK, 20–22 September 2017. [Google Scholar]
- Li, T.; Li, Y.; Li, S.; Zhang, W. Research on Current-Limiting Control Strategy Suitable for Ground Faults in AC Microgrid. IEEE J. Emerg. Sel. Top. Power 2021, 9, 1736–1750. [Google Scholar] [CrossRef]
- Masood, N.A.; Yan, R.F.; Saha, T.K. Cascading Contingencies in a Renewable Dominated Power System: Risk of Blackouts and Its Mitigation. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018. [Google Scholar]
- Jamborsalamati, P.; Moghimi, M.; Hossain, M.J.; Taghizadeh, S.; Lu, J.; Konstantinou, G. A Framework for Evaluation of Power Grid Resilience Case Study: 2016 South Australian Blackout. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018. [Google Scholar]
- Yan, R.F.; Masood, N.A.; Saha, T.K.; Bai, F.F.; Gu, H.J. The Anatomy of the 2016 South Australia Blackout: A Catastrophic Event in a High Renewable Network. IEEE Trans. Power Syst. 2018, 33, 5374–5388. [Google Scholar] [CrossRef]
- Lai, L.L.; Zhang, H.T.; Mishra, S.; Ramasubramanian, D.; Lai, C.S.; Xu, F.Y. Lessons learned from July 2012 Indian blackout. In Proceedings of the 9th IET International Conference on Advances in Power System Control, Operation and Management (APSCOM 2012), Hong Kong, China, 18–21 November 2012. [Google Scholar]
- Rampurkar, V.; Pentayya, P.; Mangalvedekar, H.A.; Kazi, F. Cascading Failure Analysis for Indian Power Grid. IEEE Trans. Smart Grid 2016, 7, 1951–1960. [Google Scholar] [CrossRef]
- Suresh, V.; Sutradhar, R.; Mandal, S.; Debnath, K. Near Miss of Blackout in Southern Part of North Eastern Grid of India. In Proceedings of the 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, Meghalaya, India, 5–7 March 2021. [Google Scholar]
- Hartono, J.; Pramana, P.A.A.; Kusuma, A.A.; Munir, B.S. Power System Inertia Estimation Based on Frequency Measurement. In Proceedings of the 2019 Asia Pacific Conference on Research in Industrial and Systems Engineering (APCoRISE), Depok, Indonesia, 18–19 April 2019. [Google Scholar]
- Liu, M.Y.; Chen, J.R.; Milano, F. On-Line Inertia Estimation for Synchronous and Non-Synchronous Devices. IEEE Trans. Power Syst. 2021, 36, 2693–2701. [Google Scholar] [CrossRef]
- Delkhosh, H.; Seifi, H. Power System Frequency Security Index Considering All Aspects of Frequency Profile. IEEE Trans. Power Syst. 2021, 36, 1656–1659. [Google Scholar] [CrossRef]
- Sun, M.; Xie, G.W.; Chen, L.; Liu, Y.M.; Li, X.J.; Min, Y. Study on the Necessity and Role of Inertia in Power System Frequency Response. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020. [Google Scholar]
- Bevrani, H.; Golpîra, H.; Messina, A.R.; Hatziargyriou, N.; Milano, F.; Ise, T. Power system frequency control: An updated review of current solutions and new challenges. Electr. Power Syst. Res. 2021, 194, 107114. [Google Scholar] [CrossRef]
- Kundur, P. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Tan, B.D.; Zhao, J.B.; Netto, M.; Krishnan, V.; Terzija, V.; Zhang, Y.C. Power System Inertia Estimation: Review of Methods and the Impacts of Converter-Interfaced Generations. Int. J. Elec. Power 2022, 134, 107362. [Google Scholar] [CrossRef]
- Hatziargyriou, N.; Rahmann, C.; Canizares, C.; Hiskens, I.; Pourbeik, P.; Cutsem, T.V. Definition and Classification of Power System Stability–Revisited & Extended. IEEE Trans. Power Syst. 2021, 36, 3271–3281. [Google Scholar]
- Wen, J.X.; Bu, S.Q.; Li, F.X.; Du, P.W. Risk assessment and mitigation on area-level RoCoF for operational planning. Energy 2021, 228, 120632. [Google Scholar] [CrossRef]
- Zhao, J.B.; Tang, Y.; Terzija, V. Robust Online Estimation of Power System Center of Inertia Frequency. IEEE Trans. Power Syst. 2019, 34, 821–825. [Google Scholar] [CrossRef]
- Milano, F.; Ortega, Á. Frequency divider. IEEE Trans. Power Syst. 2017, 32, 1493–1501. [Google Scholar]
- Ortega, Á.; Milano, F. Frequency Participation Factors. IEEE Trans. Power Syst. 2018, 33, 5563–5571. [Google Scholar] [CrossRef]
- Wen, J.X.; Bu, S.Q.; Zhou, B.W.; Chen, Q.Y.; Yang, H.K. A Fast-Algorithmic Probabilistic Evaluation on Regional Rate of Change of Frequency (RoCoF) for Operational Planning of High Renewable Penetrated Power Systems. Energies 2020, 13, 2780. [Google Scholar] [CrossRef]
- Milano, F. Rotor Speed-Free Estimation of the Frequency of the Center of Inertia. IEEE Trans. Power Syst. 2018, 33, 1153–1155. [Google Scholar] [CrossRef]
- Sauer, P.W.; Pai, M.A. Power System Dynamics and Stability; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Milano, F. Power System Modelling and Scripting; Springer: London, UK, 2010. [Google Scholar]
- Bašakarad, T.; Holjevac, N.; Kuzle, I.; Ivanković, I.; Zovko, N. Rocof Importance in Electric Power Systems with High Renewables Share: A Simulation Case for Croatia. In Proceedings of the 12th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2020), Online Conference, 9–12 November 2020. [Google Scholar]
- Doheny, D.; Conlon, M. Investigation into the local nature of rate of change of frequency in electrical power systems. In Proceedings of the 2017 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017. [Google Scholar]
- Ghosh, R.; Tummuru, N.R.; Rajpurohit, B.S.; Monti, A. Virtual Inertia from Renewable Energy Sources: Mathematical Representation and Control Strategy. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 2–4 January 2020. [Google Scholar]
- Inoue, T.; Taniguchi, H.; Ikeguchi, Y.; Yoshida, K. Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients. IEEE Trans. Power Syst. 1997, 12, 136–143. [Google Scholar] [CrossRef]
- Du, P.W.; Makarov, Y. Using Disturbance Data to Monitor Primary Frequency Response for Power System Interconnections. IEEE Trans. Power Syst. 2014, 29, 1431–1432. [Google Scholar] [CrossRef]
- Phurailatpam, C.; Rather, Z.H.; Bahrani, B.; Doolla, S. Measurement-Based Estimation of Inertia in AC Microgrids. IEEE Trans. Sustain. Energ. 2020, 11, 1975–1984. [Google Scholar] [CrossRef]
- IEEE Std C37.118.1a™-2014 (Amendment to IEEE Std C37.118.1™-2011); IEEE Standard for Synchrophasor Measurements for Power Systems. IEEE Power & Energy Society: Piscataway, NJ, USA, 2014; pp. 1–25.
- Bründlinger, R. Grid Codes in Europe—Overview on the Current Requirements in European Codes and National Interconnection Standards; AIT Austrian Institute of Technology: Vienna, Austria, 2019. [Google Scholar]
- DGA Consulting. International Review of Frequency Control Adaptation. Australian Energy Market Operator, 14 October 2016. [Google Scholar]
- Khalili, S.; Breyer, C. Review on 100% Renewable Energy System Analyses—A Bibliometric Perspective. IEEE Access 2022, 10, 125792–125834. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Krauland, A.K.V.; Burton, Z.F.M.; Coughlin, S.J.; Jaeggli, C.; Nelli, D.; Nelson, A.J.H.; Shu, Y.B.; Smith, M.; Tan, C.; et al. Transitioning All Energy in 74 Metropolitan Areas, Including 30 Megacities, to 100% Clean and Renewable Wind, Water, and Sunlight (WWS). Energies 2020, 13, 4934. [Google Scholar] [CrossRef]
- Roy, N.K.; Islam, S.; Podder, A.K.; Roy, T.K.; Muyyen, S.M. Virtual Inertia Support in Power Systems for High Penetration of Renewables—Overview of Categorization, Comparison, and Evaluation of Control Techniques. IEEE Access 2022, 10, 129190–129216. [Google Scholar] [CrossRef]
- Zaid, S.A.; Bakeer, A.; Magdy, G.; Albalawi, H.; Kassem, A.M.; El-Shimy, M.E.; AbdelMeguid, H.; Manqarah, B. A New Intelligent Fractional-Order Load Frequency Control for Interconnected Modern Power Systems with Virtual Inertia Control. Fractal Fract. 2023, 7, 62. [Google Scholar] [CrossRef]
- Wang, T.; Jin, M.X.; Li, Y.D.; Wang, J.M.; Wang, Z.P.; Huang, S.L. Adaptive Damping Control Scheme for Wind Grid-Connected Power Systems with Virtual Inertia Control. IEEE Trans. Power Syst. 2022, 37, 3902–3912. [Google Scholar] [CrossRef]
- IEC/IEEE 60255-118-1; IEEE/IEC International Standard–Measuring Relays and Protection Equipment–Part 118-1: Synchrophasor for Power Systems–Measurements. IEEE: Piscataway, NJ, USA, 2018; pp. 1–78.
- Sozanski, K.; Szczesniak, P. Advanced Control Algorithm for Three-Phase Shunt Active Power Filter Using Sliding DFT. Energies 2023, 16, 1453. [Google Scholar] [CrossRef]
- Bertocco, M.; Frigo, G.; Narduzzi, C.; Muscas, C.; Pegoraro, P.A. Compressive Sensing of a Taylor–Fourier Multifrequency Model for Synchrophasor Estimation. IEEE Trans. Instrum. Meas. 2015, 64, 3274–3283. [Google Scholar] [CrossRef]
- Grandke, T. Interpolation Algorithms for Discrete Fourier Transforms of Weighted Signals. IEEE Trans. Instrum. 1983, 32, 350–355. [Google Scholar] [CrossRef]
- Belega, D.; Petri, D. Accuracy Analysis of the Multicycle Synchrophasor Estimator Provided by the Interpolated DFT Algorithm. IEEE Trans. Instrum. Meas. 2013, 62, 942–953. [Google Scholar] [CrossRef]
- Li, Z.Q.; Zhang, W.F.; Zhuang, Z.Y.; Jin, T. A Novel Synchrophasor Estimation Based on Enhanced All-Phase DFT with Iterative Compensation and Its Implementation. Energies 2022, 15, 6964. [Google Scholar] [CrossRef]
- Xu, C.J.; Zhou, L.Y.; Chen, C.; Zhang, Q.Y. A Low Computational Complexity Frequency Estimation Method with High Precision of Sinusoid Based on DFT. In Proceedings of the 2017 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 21–23 July 2017. [Google Scholar]
- Castello, P.; Ferrero, R.; Pegoraro, P.A.; Toscani, S. Space Vector Taylor–Fourier Models for Synchrophasor, Frequency, and ROCOF Measurements in Three-Phase Systems. IEEE Trans. Instrum. Meas. 2019, 68, 1313–1321. [Google Scholar] [CrossRef]
- Petri, D.; Fontanelli, D.; Macii, D.; Belega, D. A DFT-based synchrophasor, frequency and ROCOF estimation algorithm. In Proceedings of the 2013 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Aachen, Germany, 25–27 September 2013. [Google Scholar]
- Romano, P.; Paolone, M. Enhanced Interpolated-DFT for Synchrophasor Estimation in FPGAs: Theory, Implementation, and Validation of a PMU Prototype. IEEE Trans. Instrum. Meas. 2014, 63, 2824–2836. [Google Scholar] [CrossRef]
- Jain, V.K.; Collins, W.L.; Davis, D.C. High-Accuracy Analog Measurements via Interpolated FFT. IEEE Trans. Instrum. Meas. 1979, 28, 113–122. [Google Scholar] [CrossRef]
- Belega, D.; Macii, D.; Petri, D. Fast Synchrophasor Estimation by Means of Frequency-Domain and Time-Domain Algorithms. IEEE Trans. Instrum. Meas. 2014, 63, 388–401. [Google Scholar] [CrossRef]
- Andria, G.; Savino, M.; Trotta, A. Windows and interpolation algorithms to improve electrical measurement accuracy. IEEE Trans. Instrum. Meas. 1989, 38, 856–863. [Google Scholar] [CrossRef]
- Derviškadić, A.; Romano, P.; Paolone, M. Iterative-interpolated DFT for synchrophasor estimation in M-class compliant PMUs. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017. [Google Scholar]
- Wu, X.H.; Qian, Q.Q.; Bao, Y.Q. Demand Response Using Disturbance Estimation-Based Kalman Filtering for the Frequency Control. Energies 2022, 15, 9377. [Google Scholar] [CrossRef]
- Namba, M.; Nishiwaki, T.; Yokokawa, S.; Ohtsuka, K.; Ueki, Y. Identification of Parameters for Power System Stability Analysis Using Kalman Filter. IEEE Trans. Power Appar. Syst. 1981, PER-1, 37. [Google Scholar] [CrossRef]
- Huang, C.H.; Lee, C.H.; Shih, K.J.; Wang, Y.J. Frequency Estimation of Distorted Power System Signals Using a Robust Algorithm. IEEE Trans. Power Deliver. 2008, 23, 41–51. [Google Scholar] [CrossRef]
- Wu, C.C.; Magaña, M.E.; Cotilla-Sánchez, E. Dynamic Frequency and Amplitude Estimation for Three-Phase Unbalanced Power Systems Using the Unscented Kalman Filter. IEEE Trans. Instrum. Meas. 2019, 68, 3387–3395. [Google Scholar] [CrossRef]
- Wan, W.K.; Feng, J.G.; Song, B.; Li, X.X. Huber-Based Robust Unscented Kalman Filter Distributed Drive Electric Vehicle State Observation. Energies 2021, 14, 750. [Google Scholar] [CrossRef]
- Fontanelli, D.; Macii, D.; Petri, D. Dynamic synchrophasor estimation using Smoothed Kalman filtering. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, 23–26 May 2016. [Google Scholar]
- Gajjar, G.; Soman, S.A. Auto detection of power system events using wide area frequency measurements. In Proceedings of the 2014 Eighteenth National Power Systems Conference (NPSC), Guwahati, India, 18–20 December 2014. [Google Scholar]
- Shaw, P.; Jena, K.M. A Novel Event Detection and Classification Scheme Using Wide-Area Frequency Measurements. IEEE Trans. Smart Grid 2021, 12, 2320–2330. [Google Scholar] [CrossRef]
- Wilches-Bernal, F.; Wold, J.; Concepcion, R.; Budai, J. A Method for Correcting Frequency and RoCoF Estimates of Power System Signals with Phase Steps. In Proceedings of the 2019 North American Power Symposium (NAPS), Wichita, KS, USA, 13–15 October 2019. [Google Scholar]
- Szabat, K.; Wróbel, K.; Dróżdż, K.; Janiszewski, D.; Pajchrowski, T.; Wójcik, A. A Fuzzy Unscented Kalman Filter in the Adaptive Control System of a Drive System with a Flexible Joint. Energies 2020, 13, 2056. [Google Scholar] [CrossRef]
- Qi, J.J.; Sun, K.; Wang, J.H.; Liu, H. Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman Filter with Enhanced Numerical Stability. IEEE Trans. Smart Grid 2018, 9, 1184–1196. [Google Scholar] [CrossRef]
- Gao, C.; Sun, J. Dynamic State Estimation for Power System Based on M-UKF Algorithm. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October 2020–1 November 2020. [Google Scholar]
- Zhao, H.Q.; Tian, B.Y. Robust Power System Forecasting-Aided State Estimation with Generalized Maximum Mixture Correntropy Unscented Kalman Filter. IEEE Trans. Instrum. Meas. 2022, 71, 9002610. [Google Scholar] [CrossRef]
- Singh, A.K.; Pal, B.C. Rate of Change of Frequency Estimation for Power Systems Using Interpolated DFT and Kalman Filter. IEEE Trans. Power Syst. 2019, 34, 2509–2517. [Google Scholar] [CrossRef]
- Ghahremani, E.; Kamwa, I. Online State Estimation of a Synchronous Generator Using Unscented Kalman Filter from Phasor Measurements Units. IEEE Trans. Energy Conver. 2011, 26, 1099–1108. [Google Scholar] [CrossRef]
- Wang, S.B.; Gao, W.Z.; Meliopoulos, A.P.S. An Alternative Method for Power System Dynamic State Estimation Based on Unscented Transform. IEEE Trans. Power Syst. 2012, 27, 942–950. [Google Scholar] [CrossRef]
- Karimi, H.; Karimi-Ghartemani, M.; Iravani, M.R. Estimation of frequency and its rate of change for applications in power systems. IEEE Trans. Power Deliver. 2004, 19, 472–480. [Google Scholar] [CrossRef]
- Toscani, S.; Muscas, C.; Pegoraro, P.A. Design and Performance Prediction of Space Vector-Based PMU Algorithms. IEEE Trans. Instrum. Meas. 2017, 66, 394–404. [Google Scholar] [CrossRef]
- Ferrero, R.; Pegoraro, P.A.; Toscani, S. A Space Vector Phase-Locked-Loop Approach to Synchrophasor, Frequency and Rocof Estimation. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019. [Google Scholar]
- Yao, W.X.; You, S.T.; Wang, W.K.; Deng, X.D.; Li, Y.C.; Zhan, L.W.; Liu, Y.L. A Fast Load Control System Based on Mobile Distribution-Level Phasor Measurement Unit. IEEE Trans. Smart Grid 2020, 11, 895–904. [Google Scholar] [CrossRef]
- Yin, H.; Wu, Y.R.; Qiu, W.; Zeng, C.J.; You, S.T.; Tan, J.; Hoke, J.; Kruse, C.J.; Rockwell, B.W.; Kawamura, K.A.; et al. Precise ROCOF estimation algorithm for low inertia power grids. Electr. Pow. Syst. Res. 2022, 209, 107968. [Google Scholar] [CrossRef]
- Belega, D.; Fontanelli, D.; Petri, D. Dynamic Phasor and Frequency Measurements by an Improved Taylor Weighted Least Squares Algorithm. IEEE Trans. Instrum. Meas. 2015, 64, 2165–2178. [Google Scholar] [CrossRef]
- Sun, M.Y.; Liu, G.Y.; Popov, M.; Terzija, V. Azizi, S. Underfrequency Load Shedding Using Locally Estimated RoCoF of the Center of Inertia. IEEE Trans. Power Syst. 2021, 36, 4212–4222. [Google Scholar] [CrossRef]
- You, S.T.; Li, H.Y.; Liu, S.Y.; Sun, K.Q.; Wang, W.K.; Liu, Y.L. Calculate Center-of-Inertia Frequency and System RoCoF Using PMU Data. In Proceedings of the 2021 IEEE Power & Energy Society General Meeting (PESGM), Washington, DC, USA, 26–29 July 2021. [Google Scholar]
Variable | Description |
---|---|
Equivalent inertia constant of the power system, synchronous generator and IBRs | |
Normal frequency, frequency of center of inertia, and inner frequency of the sources | |
The change of the output power from the generations providing the frequency support to the system | |
The unbalanced active power caused by the contingency | |
The damping factor of the power system | |
The rated power | |
The number of synchronous machines and IBRs | |
The vector consisting of the node frequency of the power system | |
The vector consisting of the equivalent speed of the generation set | |
The parameter matrix of the power system | |
The admittance matrix of the power system | |
Normalized inertia constants with dimension m × 1 | |
Identity matrix with dimension n × 1 and unit matrix with dimension m × m |
Variable | Description |
---|---|
Averaged system frequency | |
A short period following the contingency | |
The pre-contingency frequency and the frequency of a short period T following the contingency | |
The approximated maximal RoCoF |
Grid Code | T | Security Threshold (Normal Frequency) |
---|---|---|
IEEE [55] | N.A. | 0.4 Hz/s (60 Hz) |
Denmark [49,56] | 500 ms | 2 Hz/s (50 Hz) |
Ireland [49,56] | 200 ms | 1 Hz/s (50 Hz) |
UK [56] | 500 ms | 1 Hz/s (50 Hz) |
Germany [49,56] | 500 ms | 2 Hz/s (50 Hz) |
Australia [49] | N.A. | No standard for RoCoF (50 Hz) |
USA [49,57] | N.A. | No standard for RoCoF (60 Hz) |
Variable | Description |
---|---|
The magnitude of the voltage waveforms | |
The signal frequency to be estimated | |
The phase angle | |
The sampling interval | |
The sampling frequency | |
The vector of state variables | |
The vector of measurements | |
The control vector | |
The state transition matrix | |
The control matrix | |
The measurement matrix | |
The column vector of process noise | |
The column vector of measurement noise | |
Estimated values | |
Predicted values | |
Transposition of the matrix | |
Covariance matrix | |
Covariance of process noise | |
Kalman gain matrix | |
Covariance of measurement noise | |
Adjustable parameters of UKF algorithm | |
Vectors consisting of nonlinear state transition functions and measurement functions | |
Weights for the mean and covariance, respectively | |
PI filter parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Mo, R.; Wang, P.; Chen, J.; Nan, D.; Liu, M. Review of RoCoF Estimation Techniques for Low-Inertia Power Systems. Energies 2023, 16, 3708. https://doi.org/10.3390/en16093708
Deng X, Mo R, Wang P, Chen J, Nan D, Liu M. Review of RoCoF Estimation Techniques for Low-Inertia Power Systems. Energies. 2023; 16(9):3708. https://doi.org/10.3390/en16093708
Chicago/Turabian StyleDeng, Xiaoyu, Ruo Mo, Pengliang Wang, Junru Chen, Dongliang Nan, and Muyang Liu. 2023. "Review of RoCoF Estimation Techniques for Low-Inertia Power Systems" Energies 16, no. 9: 3708. https://doi.org/10.3390/en16093708
APA StyleDeng, X., Mo, R., Wang, P., Chen, J., Nan, D., & Liu, M. (2023). Review of RoCoF Estimation Techniques for Low-Inertia Power Systems. Energies, 16(9), 3708. https://doi.org/10.3390/en16093708