A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?
Abstract
:1. Introduction
2. State-of-the-Art Literature Survey
3. Biodiesel as an Alternative Renewable Fuel
4. Biodiesel Production and Potential: Tropical Cultivars
5. Biodiesel Applications in Internal Combustion Engines
- It was observed that increasing the percentage of Biodiesel in the blend led to a significant improvement in the electrical and thermal efficiency of the cogeneration system, specifically for the blends of B30 and B100. Values of 29% and 42% electrical and thermal efficiency were achieved at full load. Through the response surface methodology (RSM) analysis, it was detected that the electrical efficiency has a greater dependence on load variation (~+15%) than the biodiesel blend (~+2.7%).
- Another important aspect was the effect of injection timing on the production of NOx emissions, observing an average reduction of 27% when applying an early rather than a late injection strategy and 16% when compared to a standard injection strategy. In addition, this procedure allowed homogenization for the operating conditions in the power output. This positive effect is related to the thermal NOx formation mechanism; that is, by delaying fuel injection, combustion temperatures in the cylinder and NOx emissions were reduced.
- The regression models allowed predicting the behavior of electrical efficiency and NOx emissions with excellent accuracy, with R2 > 0.990, representing a good way to predict the overall behavior of cogeneration systems using biodiesel as a driving fuel.
- The use of this type of biodiesel with the inclusion of hydrogen increased the thermal efficiency of the brakes, in addition to reducing fuel consumption, specifically with the use of B10H (10% biodiesel with hydrogen), which allowed obtaining the maximum efficiency value of approximately 32%, a reduction of up to 6% when compared to the use of biodiesel without the addition of hydrogen.
- Another important effect of this blend was the decrease in the temperature of the combustion gases of the other blends tested (B10, B30, B30H, B50, and B50H). In the same context, there was a significant reduction in the emission of pollutants (CO2, CO, HC, and NOx) due to the addition of biodiesel and hydrogen blends to diesel (excess supply of oxygen molecules to the combustion chamber).
- Regarding the regression model, it was evident that the LSTM approach can be applied to predict performance and emission under partial or full load conditions. Considering the findings, the 10% biodiesel blend with 10 L/min hydrogen can be a potential alternative to diesel.
6. Final Considerations on the Use of Biodiesel in Energy Production
7. Conclusions
- The use of thermodynamic methods based on the first and second laws of thermodynamics (energy + exergy) with financial aspects (exergoeconomics) and the environmental impact (exergoenvironmental and life cycles) has helped with the verification of the feasibility of generation systems projects, through the total and partial use of biodiesel as a driving energy source.
- Jatropha curcas, sunflowers, soybean, Moringa oleifera, palm, cottonseed, castor, rubber seed, and coconut were tropical cultivars in which the use of various catalysts to accelerate the reaction, whether homogeneous or heterogeneous, allowed extremely high rates, varying up to values very close to 100% of conversion of their obtained oils into biodiesel.
- The reduction in environmental impacts through the blending of diesel and waste engine oil, reaching results compatible with diesel for use in internal combustion engines with low fuel consumption, provides an advantage in terms of energy and environmental aspects when compared to fossil fuels.
- The use of biodiesel represents an advantage in the socioeconomic aspect since it stimulates the production of biofuel, fostering the local economy through direct and indirect jobs for the nations that encourage this type of production.
- There is the possibility of integration and support in the energy matrix of different countries, as well as the possibility of competing and complementing, energetically, with other renewable energy sources, such as solar and wind.
- It was verified, through analyses of availability and energy, economic, and environmental feasibility, that biodiesel and its blends with diesel can be applied as a substitute fuel for diesel, thus reducing environmental impact and pollutant emissions.
- The research results can be used as a theoretical basis for new policies that aim to impact the energy sector with regulatory measures, specifically for policies that can be adopted in the South American region (Argentina, Colombia, and Brazil, among others), targeting MERCOSUR.
- To propose adequate incentives by governments and world organizations in the search for more optimized methods and procedures in the production of biodiesel from various raw materials, as well as from the use of waste products, such as residual vegetable oils.
- Creation of incentive policies for the use of biodiesel as a source of renewable energy by governments and international entities.
- Studies related to the use of catalysts to accelerate the reactions (homogeneous or heterogeneous), allowing high conversion rates of obtained oils into biodiesel.
- Development of intelligent models for predicting energy performance using several types of biofuels, aimed at optimizing Biodiesel concentrations, and minimizing the consumption and emission of pollutants to the environment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deshmukh, S.; Kumar, R.; Bala, K. Microalgae biodiesel: A review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process. Technol. 2019, 191, 232–247. [Google Scholar] [CrossRef]
- Mujtaba, M.A.; Cho, H.M.; Masjuki, H.H.; Kalam, M.A.; Ong, H.C.; Gul, M.; Harith, M.H.; Yusoff, M.N.A.M. Critical review on sesame seed oil and its methyl ester on cold flow and oxidation stability. Energy Rep. 2020, 6, 40–54. [Google Scholar] [CrossRef]
- Tamás, M. Gábor Gyarmati clean technologies Economic and Sustainability of Biodiesel Production—A Systematic Literature Review. Econ. Sustain. Biodiesel Prod. Syst. Lit. Rev. 2021, 3, 19–36. [Google Scholar]
- Estevez, R.; Aguado-Deblas, L.; López-Tenllado, F.J.; Luna, C.; Calero, J.; Romero, A.A.; Bautista, F.M.; Luna, D. Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review. Energies 2022, 15, 3173. [Google Scholar] [CrossRef]
- Omonhinmin, C.; Olomukoro, E.; Ayoola, A.; Egwim, E. Utilization of Moringa oleifera oil for biodiesel production: A systematic review. AIMS Energy 2020, 8, 102–121. [Google Scholar] [CrossRef]
- Julio, A.A.V.; Milessi, T.S.; Batlle, E.A.O.; Lora, E.E.S.; Maya, D.M.Y.; Palacio, J.C.E. Techno-economic and environmental potential of Renewable Diesel as complementation for diesel and biodiesel in Brazil: A comprehensive review and perspectives. J. Clean. Prod. 2022, 371, 133431. [Google Scholar] [CrossRef]
- Maroa, S.; Inambao, F. A review of sustainable biodiesel production using biomass derived heterogeneous catalysts. Eng. Life Sci. 2021, 21, 790–824. [Google Scholar] [CrossRef] [PubMed]
- Osorio-González, C.S.; Gómez-Falcon, N.; Sandoval-Salas, F.; Saini, R.; Brar, S.K.; Ramírez, A.A. Production of biodiesel from castor oil: A review. Energies 2020, 13, 2467. [Google Scholar] [CrossRef]
- Ogunkunle, O.; Ahmed, N.A. A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines. Energy Rep. 2019, 5, 1560–1579. [Google Scholar] [CrossRef]
- Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. Biodiesel feasibility study: An evaluation of material compatibility; Performance; emission and engine durability. Renew. Sustain. Energy Rev. 2011, 15, 1314–1324. [Google Scholar] [CrossRef]
- Mekhilef, S.; Siga, S.; Saidur, R. A review on palm oil biodiesel as a source of renewable fuel. Renew. Sustain. Energy Rev. 2011, 15, 1937–1949. [Google Scholar] [CrossRef]
- Costa, M.W.; Oliveira, A.A.M. Social life cycle assessment of feedstocks for biodiesel production in Brazil. Renew. Sustain. Energy Rev. 2022, 159, 112166. [Google Scholar] [CrossRef]
- Jayed, M.H.; Masjuki, H.H.; Kalam, M.A.; Mahlia, T.M.I.; Husnawan, M.; Liaquat, A.M. Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia. Renew. Sustain. Energy Rev. 2011, 15, 220–235. [Google Scholar] [CrossRef]
- Bilan, Y.; Samusevych, Y.; Lyeonov, S.; Strzelec, M.; Tenytska, I. The Keys to Clean Energy Technology: Impact of Environmental Taxes on Biofuel Production and Consumption. Energies 2022, 15, 9470. [Google Scholar] [CrossRef]
- Gad, M.S.; El-Araby, R.; Abed, K.A.; El-Ibiari, N.N.; El Morsi, A.K.; El-Diwani, G.I. Performance and emissions characteristics of C.I. engine fueled with palm oil/palm oil methyl ester blended with diesel fuel. Egypt. J. Pet. 2018, 27, 215–219. [Google Scholar] [CrossRef]
- Yasin, M.H.M.; Mamat, R.; Najafi, G.; Ali, O.M.; Yusop, A.F.; Ali, M.H. Potentials of palm oil as new feedstock oil for a global alternative fuel: A review. Renew. Sustain. Energy Rev. 2017, 79, 1034–1049. [Google Scholar] [CrossRef]
- Manimaran, R.; Mohanraj, T.; Prabakaran, S. Biodegradable waste-derived biodiesel as a potential green fuel: Optimization of production process and its application in diesel engine. Ind. Crop. Prod. 2023, 192, 116078. [Google Scholar] [CrossRef]
- Eremeeva, A.M.; Kondrasheva, N.K.; Khasanov, A.F.; Oleynik, I.L. Environmentally Friendly Diesel Fuel Obtained from Vegetable Raw Materials and Hydrocarbon Crude. Energies 2023, 16, 2121. [Google Scholar] [CrossRef]
- De Souza, T.A.Z.; Pinto, G.M.; Julio, A.A.V.; Coronado, C.J.R.; Perez-Herrera, R.; Siqueira, B.O.P.S.; da Costa, R.B.R.; Roberts, J.J.; Palacio, J.C.E. Biodiesel in South American countries: A review on policies, stages of development and imminent competition with hydrotreated vegetable oil. Renew. Sustain. Energy Rev. 2022, 153, 111755. [Google Scholar] [CrossRef]
- Anwar, M.; Rasul, M.G.; Ashwath, N.; Nabi, M.D.N. The potential of utilising papaya seed oil and stone fruit kernel oil as non-edible feedstock for biodiesel production in Australia—A review. Energy Rep. 2019, 5, 280–297. [Google Scholar] [CrossRef]
- Jayakumar, M.; Karmegam, N.; Gundupalli, M.P.; Bizuneh Gebeyehu, K.; Tessema Asfaw, B.; Chang, S.W.; Ravindran, B.; Kumar Awasthi, M. Heterogeneous base catalysts: Synthesis and application for biodiesel production—A review. Bioresour. Technol. 2021, 331, 125054. [Google Scholar] [CrossRef] [PubMed]
- Riayatsyah, T.M.I.; Sebayang, A.H.; Silitonga, A.S.; Padli, Y.; Fattah, I.M.R.; Kusumo, F.; Ong, H.C.; Mahlia, T.M.I. Current Progress of Jatropha Curcas Commoditisation as Biodiesel Feedstock: A Comprehensive Review. Front. Energy Res. 2022, 9, 1019. [Google Scholar] [CrossRef]
- Hoang, A.T.; Tabatabaei, M.; Aghbashlo, M.; Carlucci, A.P.; Ölçer, A.I.; Le, A.T.; Ghassemi, A. Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renew. Sustain. Energy Rev. 2021, 135, 110204. [Google Scholar] [CrossRef]
- Yusoff, M.N.A.M.; Zulkifli, N.W.M.; Sukiman, N.L.; Chyuan, O.H.; Hassan, M.H.; Hasnul, M.H.; Zulkifli, M.S.A.; Abbas, M.M.; Zakaria, M.Z. Sustainability of Palm Biodiesel in Transportation: A Review on Biofuel Standard, Policy and International Collaboration Between Malaysia and Colombia. BioEnergy Res. 2021, 14, 43–60. [Google Scholar] [CrossRef]
- Bashir, M.A.; Wu, S.; Zhu, J.; Krosuri, A.; Khan, M.U.; Ndeddy Aka, R.J. Recent development of advanced processing technologies for biodiesel production: A critical review. Fuel Process. Technol. 2022, 227, 107120. [Google Scholar] [CrossRef]
- John, J.G.; Hariram, V.; Kavuru Rakesh, V.S.S.; Harsha Vardhan, T.; Vamsi Manikanta, T.Y.; Shafi, S. Waste cooking oil biodiesel with FeO nanoparticle—A viable alternative fuel source. Mater. Today Proc. 2023, 72, 1991–1995. [Google Scholar] [CrossRef]
- Dey, S.; Reang, N.M.; Das, P.K.; Deb, M. A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel. J. Clean. Prod. 2021, 286, 124981. [Google Scholar] [CrossRef]
- Sumathi, S.; Chai, S.P.; Mohamed, A.R. Utilization of oil palm as a source of renewable energy in Malaysia. Renew. Sustain. Energy Rev. 2008, 12, 2404–2421. [Google Scholar] [CrossRef]
- Kuss, V.V.; Kuss, A.V.; Da Rosa, R.G.; Aranda, D.A.G.; Cruz, Y.R. Potential of biodiesel production from palm oil at Brazilian Amazon. Renew. Sustain. Energy Rev. 2015, 50, 1013–1020. [Google Scholar] [CrossRef]
- Somnuk, K.; Soysuwan, N.; Prateepchaikul, G. Continuous process for biodiesel production from palm fatty acid distillate (PFAD) using helical static mixers as reactors. Renew. Energy 2019, 131, 100–110. [Google Scholar] [CrossRef]
- Sanjid, A.; Masjuki, H.H.; Kalam, M.A.; Rahman, S.M.A.; Abedin, M.J.; Palash, S.M. Production of palm and jatropha based biodiesel and investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine. J. Clean. Prod. 2014, 65, 295–303. [Google Scholar] [CrossRef]
- Ali, O.M.; Mamat, R.; Abdullah, N.R.; Abdullah, A.A. Analysis of blended fuel properties and engine performance with palm biodiesel-diesel blended fuel. Renew. Energy 2015, 86, 59–67. [Google Scholar] [CrossRef]
- Ghazanfari, J.; Najafi, B.; Faizollahzadeh Ardabili, S.; Shamshirband, S. Limiting factors for the use of palm oil biodiesel in a diesel engine in the context of the ASTM standard. Cogent Eng. 2017, 4, 1411221. [Google Scholar] [CrossRef]
- Zahan, K.A.; Kano, M. Biodiesel production from palm oil, its by-products, and mill effluent: A review. Energies 2018, 11, 2132. [Google Scholar] [CrossRef]
- Yusup, S.; Khan, M. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics. Biomass Bioenergy 2010, 34, 1523–1526. [Google Scholar] [CrossRef]
- Atabani, A.E.; Mahlia, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Yussof, H.W.; Chong, W.T.; Lee, K.T. A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and non-edible oils and study on the effect of biodiesel blending. Energy 2013, 58, 296–304. [Google Scholar] [CrossRef]
- Caresana, F. Impact of biodiesel bulk modulus on injection pressure and injection timing. the effect of residual pressure. Fuel 2011, 90, 477–485. [Google Scholar] [CrossRef]
- Chong, C.T.; Ng, J.H.; Ahmad, S.; Rajoo, S. Oxygenated palm biodiesel: Ignition, combustion and emissions quantification in a light-duty diesel engine. Energy Convers. Manag. 2015, 101, 317–325. [Google Scholar] [CrossRef]
- Hess, M.A.; Haas, M.J.; Foglia, T.A. Attempts to reduce NOx exhaust emissions by using reformulated biodiesel. Fuel Process. Technol. 2007, 88, 693–699. [Google Scholar] [CrossRef]
- Benjumea, P.; Agudelo, J.; Agudelo, A. Basic properties of palm oil biodiesel-diesel blends. Fuel 2008, 87, 2069–2075. [Google Scholar] [CrossRef]
- Mosarof, M.H.; Kalam, M.A.; Masjuki, H.H.; Alabdulkarem, A.; Ashraful, A.M.; Arslan, A.; Rashedul, H.K.; Monirul, I.M. Optimization of performance, emission, friction and wear characteristics of palm and Calophyllum inophyllum biodiesel blends. Energy Convers. Manag. 2016, 118, 119–134. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Verma, P.; Sharma, M.P.; Dwivedi, G. Evaluation and enhancement of cold flow properties of palm oil and its biodiesel. Energy Rep. 2016, 2, 8–13. [Google Scholar] [CrossRef]
- Modi, A.J.; Patel, D. Experimental study on LHR diesel engine performance with blends of diesel and neem biodiesel. SAE Technol. Pap. 2015, 3, 246–259. [Google Scholar] [CrossRef]
- Mosarof, M.H.; Kalam, M.A.; Masjuki, H.H.; Ashraful, A.M.; Rashed, M.M.; Imdadul, H.K.; Monirul, I.M. Implementation of palm biodiesel based on economic aspects, performance, emission, and wear characteristics. Energy Convers. Manag. 2015, 105, 617–629. [Google Scholar] [CrossRef]
- Türck, J.; Singer, A.; Lichtinger, A.; Almaddad, M.; Türck, R.; Jakob, M.; Garbe, T.; Ruck, W.; Krahl, J. Solketal as a renewable fuel component in ternary blends with biodiesel and diesel fuel or HVO and the impact on physical and chemical properties. Fuel 2022, 310, 122463. [Google Scholar] [CrossRef]
- Lamba, B.Y.; Chen, W.H. Experimental Investigation of Biodiesel Blends with High-Speed Diesels—A Comprehensive Study. Energies 2022, 15, 7878. [Google Scholar] [CrossRef]
- Đorđić, D.; Milotić, M.; Ćurguz, Z.; Đurić, S.; Đurić, T. Experimental testing of combustion parameters and emissions of waste motor oil and its diesel mixtures. Energies 2021, 14, 5950. [Google Scholar] [CrossRef]
- Niju, S.; Balajii, M.; Anushya, C. A comprehensive review on biodiesel production using Moringa oleifera oil. Int. J. Green Energy 2019, 16, 702–715. [Google Scholar] [CrossRef]
- E Silva, G.B.; Manicardi, T.; Longati, A.A.; Lora, E.E.S.; Milessi, T.S. Parametric comparison of biodiesel transesterification processes using non-edible feedstocks: Castor bean and jatropha oils. Biofuels Bioprod. Biorefining 2022, 17, 297–311. [Google Scholar] [CrossRef]
- Mapossa, A.B.; Dantas, J.; Costa, A.C.F.M. Transesterification reaction for biodiesel production from soybean oil using Ni0.5Zn0.5Fe2O4 nanomagnetic catalyst: Kinetic study. Int. J. Energy Res. 2020, 44, 6674–6684. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, Y.; Cong, W.; Zhao, X.; Janaun, J.; Wei, T.; Fang, Z. Soybean biodiesel production using synergistic CaO/Ag nano catalyst: Process optimization, kinetic study, and economic evaluation. Ind. Crop. Prod. 2021, 166, 113479. [Google Scholar] [CrossRef]
- Wang, X.; Yang, K.; Cai, R.; ChenYang, Y.; Huang, Z.; Han, B. Optimization and kinetics of biodiesel production from soybean oil using new tetraethylammonium ionic liquids with amino acid-based anions as catalysts. Fuel 2022, 324, 124510. [Google Scholar] [CrossRef]
- Dahdah, E.; Estephane, J.; Haydar, R.; Youssef, Y.; El Khoury, B.; Gennequin, C.; Aboukaïs, A.; Abi-Aad, E.; Aouad, S. Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment. Renew. Energy 2020, 146, 1242–1248. [Google Scholar] [CrossRef]
- Dahdah, E.; Estephane, J.; Chalouhi, L.M.; Sammoury, S.; Khoury, B.E.; Gennequin, C.; Aad, E.A.; Aouad, S. Transesterification of Refined Sunflower Oil to Biodiesel Using CaO/ZSM-5 Powder Catalyst. Chem. Eng. Technol. 2021, 45, 51–57. [Google Scholar] [CrossRef]
- Marinković, M.; Waisi, H.; Blagojević, S.; Zarubica, A.; Ljupković, R.; Krstić, A.; Janković, B. The effect of process parameters and catalyst support preparation methods on the catalytic efficiency in transesterification of sunflower oil over heterogeneous KI/Al2O3-based catalysts for biodiesel production. Fuel 2022, 315, 123246. [Google Scholar] [CrossRef]
- Gutiérrez-López, A.N.; Mena-Cervantes, V.Y.; García-Solares, S.M.; Vazquez-Arenas, J.; Hernández-Altamirano, R. NaFeTiO4/Fe2O3–FeTiO3 as heterogeneous catalyst towards a cleaner and sustainable biodiesel production from Jatropha curcas L. oil. J. Clean. Prod. 2021, 304, 127106. [Google Scholar] [CrossRef]
- Sahu, G.; Saha, S.; Datta, S.; Chavan, P.D.; Chauhan, V.; Gupta, P.K. Production of biodiesel from high free fatty acids content Jatropha curcas oil using environment affable K–Mg composite catalyst. Asia-Pac. J. Chem. Eng. 2021, 16, e2620. [Google Scholar] [CrossRef]
- Amesho, K.T.T.; Lin, Y.C.; Chen, C.E.; Cheng, P.C.; Shangdiar, S. Kinetics studies of sustainable biodiesel synthesis from Jatropha curcas oil by exploiting bio-waste derived CaO-based heterogeneous catalyst via microwave heating system as a green chemistry technique. Fuel 2022, 323, 123876. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Mohammadi, R.; Ramavandi, B.; Boffito, D.C. One-pot transesterification of non-edible Moringa oleifera oil over a MgO/K2CO3/HAp catalyst derived from poultry skeletal waste. Environ. Technol. Innov. 2021, 21, 101250. [Google Scholar] [CrossRef]
- Lopes, S.Q.; Holanda, F.H.; Jimenez, D.E.Q.; do Nascimento, L.A.S.; Oliveira, A.N.; Ferreira, I.M. Use of Oxone® as a Potential Catalyst in Biodiesel Production from Palm Fatty Acid Distillate (PFAD). Catal. Lett. 2022, 152, 1009–1019. [Google Scholar] [CrossRef]
- Ajala, E.O.; Ajala, M.A.; Odetoye, T.E.; Aderibigbe, F.A.; Osanyinpeju, H.O.; Ayanshola, M.A. Thermal modification of chicken eggshell as heterogeneous catalyst for palm kernel biodiesel production in an optimization process. Biomass Convers. Biorefinery 2021, 11, 2599–2615. [Google Scholar] [CrossRef]
- Malhotra, R.; Ali, A. 5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil. Renew. Energy 2019, 133, 606–619. [Google Scholar] [CrossRef]
- Du, L.; Li, Z.; Ding, S.; Chen, C.; Qu, S.; Yi, W.; Lu, J.; Ding, J. Synthesis and characterization of carbon-based MgO catalysts for biodiesel production from castor oil. Fuel 2019, 258, 116122. [Google Scholar] [CrossRef]
- Khan, S.G.; Hassan, M.; Anwar, M.; Zeshan; Masood Khan, U.; Zhao, C. Mussel shell based CaO nano-catalyst doped with praseodymium to enhance biodiesel production from castor oil. Fuel 2022, 330, 125480. [Google Scholar] [CrossRef]
- Bharadwaj, A.S.; Singh, M.; Niju, S.; Begum, K.M.S.; Anantharaman, N. Biodiesel production from rubber seed oil using calcium oxide derived from eggshell as catalyst-optimization and modeling studies. Green Process. Synth. 2019, 8, 430–442. [Google Scholar] [CrossRef]
- Lakshmi, S.B.A.V.S.; Pillai, N.S.; Mohamed, M.S.B.K.; Narayanan, A. Biodiesel production from rubber seed oil using calcined eggshells impregnated with Al2O3 as heterogeneous catalyst: A comparative study of RSM and ANN optimization. Braz. J. Chem. Eng. 2020, 37, 351–368. [Google Scholar] [CrossRef]
- Helmiyati, M. Nanocomposite of cellulose and magnetite-magnesia as catalyst for biodiesel from coconut oil. IOP Conf. Ser. Earth Environ. Sci. 2021, 846, 012009. [Google Scholar] [CrossRef]
- Widiarti, N.; Bahruji, H.; Holilah, H.; Ni’mah, Y.L.; Ediati, R.; Santoso, E.; Jalil, A.A.; Hamid, A.; Prasetyoko, D. Upgrading catalytic activity of NiO/CaO/MgO from natural limestone as catalysts for transesterification of coconut oil to biodiesel. Biomass Convers. Biorefinery 2021, 13, 3001–3015. [Google Scholar] [CrossRef]
- Yusuff, A.S.; Kumar, M.; Obe, B.O.; Mudashiru, L.O. Calcium Oxide Supported on Coal Fly Ash (CaO/CFA) as an Efficient Catalyst for Biodiesel Production from Jatropha curcas Oil. Top. Catal. 2021, 1–13. [Google Scholar] [CrossRef]
- Mirzayanti, Y.W.; Asri, N.P.; Marlinda, L.; Muttaqii, M.A.L. Transesterification of jatropha curcas oil for biodiesel production over NiO catalyst. J. Phys. Conf. Ser. 2021, 1833, 012041. [Google Scholar] [CrossRef]
- Sahu, G.; Saha, S.; Khuman, Y.S.C.; Datta, S.; Chavan, P.D. Transesterification of jatropha curcas oil by using K impregnated CaO heterogeneous catalyst. J. Sci. Ind. Res. 2020, 79, 1080–1086. [Google Scholar] [CrossRef]
- Basumatary, S.; Nath, B.; Das, B.; Kalita, P.; Basumatary, B. Utilization of renewable and sustainable basic heterogeneous catalyst from Heteropanax fragrans (Kesseru) for effective synthesis of biodiesel from Jatropha curcas oil. Fuel 2021, 286, 119357. [Google Scholar] [CrossRef]
- Jalalmanesh, S.; Kazemeini, M.; Rahmani, M.H.; Zehtab Salmasi, M. Biodiesel Production from Sunflower Oil Using K2CO3 Impregnated Kaolin Novel Solid Base Catalyst. JAOCS J. Am. Oil Chem. Soc. 2021, 98, 633–642. [Google Scholar] [CrossRef]
- Salmasi, M.Z.; Kazemeini, M.; Sadjadi, S. Transesterification of sunflower oil to biodiesel fuel utilizing a novel K2CO3/Talc catalyst: Process optimizations and kinetics investigations. Ind. Crop. Prod. 2020, 156, 112846. [Google Scholar] [CrossRef]
- Pan, L.; Xiang, F.; Cheng, Z.; Zhao, X.; Fu, L.; Li, Y.; Liu, Y. Synthesis of Biodiesel from Soybean Oil with Methanol Catalyzed by Ni-Doped CaO-MgO Catalysts. ChemistrySelect 2019, 4, 11181–11188. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, R.; Sosa-Rodríguez, F.S.; Vazquez-Arenas, J. Zinc oxide-co-sodium zirconate: A fast heterogeneous catalyst for biodiesel production from soybean oil. J. Environ. Chem. Eng. 2022, 10, 108191. [Google Scholar] [CrossRef]
- Hardi, J.; Sosidi, H.; Ridhay, A.; Agus, A.Y. Production of biodiesel based on moringa seed oil at varied reaction times by using CaO catalyst from chicken eggshells. J. Phys. Conf. Ser. 2021, 1763, 012054. [Google Scholar] [CrossRef]
- Sierra-Cantor, J.F.; Parra-Santiago, J.J.; Guerrero-Fajardo, C.A. Leaching and reusing analysis of calcium–zinc mixed oxides as heterogeneous catalysts in the biodiesel production from refined palm oil. Int. J. Environ. Sci. Technol. 2019, 16, 643–654. [Google Scholar] [CrossRef]
- Qu, T.; Niu, S.; Zhang, X.; Han, K.; Lu, C. Preparation of calcium modified Zn-Ce/Al2O3 heterogeneous catalyst for biodiesel production through transesterification of palm oil with methanol optimized by response surface methodology. Fuel 2021, 284, 118986. [Google Scholar] [CrossRef]
- Ude, C.N.; Onukwuli, O.D.; Ugwu, B.I.; Okey-Onyesolu, C.F.; Ezidinma, T.A.; Ejikeme, P.M. Methanolysis optimization of cottonseed oil to biodiesel using heterogeneous catalysts. Iran. J. Chem. Chem. Eng. 2020, 39, 355–370. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, L.; Wei, G.; Yuan, Y.; Huang, Z. Synthesis, characterization and application of a novel carbon-doped mix metal oxide catalyst for production of castor oil biodiesel. J. Clean. Prod. 2022, 373, 133768. [Google Scholar] [CrossRef]
- El Ahmar, R.; Harrats, C.; Bassou, D.; Kacimi, S. Heterogeneous transesterification of castor oil for biodiesel production by Al2O3, Al2O3-NiO and Al2O3-CoO modified bentonite as catalyst. Rev. Roum. Chim. 2020, 65, 825–837. [Google Scholar] [CrossRef]
- Karo, J.A.K.; Husin, H.; Nasution, F.; Yani, F.T.; Maliki, S.; Prayuda, D.D.; Hasfita, F. Conversion of rubber seed oil into biodiesel with potassium oxide alumina supported by (K2O/Al2O3) catalyst. IOP Conf. Ser. Mater. Sci. Eng. 2020, 980, 012058. [Google Scholar] [CrossRef]
- Samart, C.; Karnjanakom, S.; Chaiya, C.; Reubroycharoen, P.; Sawangkeaw, R.; Charoenpanich, M. Statistical optimization of biodiesel production from para rubber seed oil by SO3H-MCM-41 catalyst. Arab. J. Chem. 2019, 12, 2028–2036. [Google Scholar] [CrossRef]
- Winoto, V.; Yoswathana, N. Optimization of biodiesel production using nanomagnetic CaO-based catalysts with subcritical methanol transesterification of rubber seed oil. Energies 2019, 12, 230. [Google Scholar] [CrossRef]
- Herliana, I.; Simanjuntak, W.; Pandiangan, K.D. Transesterification of coconut oil (Cocos nucifera L.) into biodiesel using zeolite-A catalyst based on rice husk silica and aluminum foil. J. Phys. Conf. Ser. 2021, 1751, 012091. [Google Scholar] [CrossRef]
- Leite, C.A.A.F.; Alcântara, S.C.S.; Ochoa, A.A.V.; dos Santos, C.A.C.; Dutra, J.C.C.; Costa, J.A.P.; Michima, P.S.A.; Silva, H.C.N. Natural gas based cogeneration system proposal to a textile industry: A financial assessment. Energy Effic. 2021, 14, 20. [Google Scholar] [CrossRef]
- Kosai, S.; Zakaria, S.; Che, H.S.; Hasanuzzaman, M.; Rahim, N.A.; Tan, C.; Ahmad, R.D.R.; Abbas, A.R.; Nakano, K.; Yamasue, E.; et al. Estimation of Greenhouse Gas Emissions of Petrol, Biodiesel and Battery Electric Vehicles in Malaysia Based on Life Cycle Approach. Sustainability 2022, 14, 5783. [Google Scholar] [CrossRef]
- Shadidi, B.; Najafi, G.; Zolfigol, M.A. A Review of the Existing Potentials in Biodiesel Production in Iran. Sustainability 2022, 14, 3284. [Google Scholar] [CrossRef]
- Khan, T.M.Y. A review of performance-enhancing innovative modifications in biodiesel engines. Energies 2020, 13, 4395. [Google Scholar] [CrossRef]
- Cavalcanti, E.J.C.; Carvalho, M.; Ochoa, A.A.V. Exergoeconomic and exergoenvironmental comparison of diesel-biodiesel blends in a direct injection engine at variable loads. Energy Convers. Manag. 2019, 183, 450–461. [Google Scholar] [CrossRef]
- Novaes, T.L.C.C.; Henríquez, J.R.; Ochoa, A.A.V. Numerical simulation of the performance of a diesel cycle operating with diesel-biodiesel mixtures. Energy Convers. Manag. 2019, 180, 990–1000. [Google Scholar] [CrossRef]
- Caligiuri, C.; Bietresato, M.; Algieri, A.; Baratieri, M.; Renzi, M. Experimental Investigation and RSM Modeling of the Effects of Injection Timing on the Performance and NOx Emissions of a Micro-Cogeneration Unit Fueled with Biodiesel Blends. Energies 2022, 15, 3586. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Sekar, M.; Elgendi, M.; Krishnamoorthy, N.R.; Xia, C.; Priya Matharasi, D. Machine learning algorithms for a diesel engine fuelled with biodiesel blends and hydrogen using LSTM networks. Fuel 2023, 333, 126292. [Google Scholar] [CrossRef]
- Markov, V.A.; Sa, B.; Devyanin, S.N.; Zherdev, A.A.; Vallejo Maldonado, P.R.; Zykov, S.A.; Denisov, A.D.; Ambawatte, H.C. Investigation of the performances of a diesel engine operating on blended and emulsified biofuels from rapeseed oil. Energies 2021, 14, 6661. [Google Scholar] [CrossRef]
- Nabi, M.N.; Hussam, W.K.; Afroz, H.M.M.; Rashid, A.B.; Islam, J.; Mukut, A.N.M.M.I. Investigation of engine performance, combustion, and emissions using waste tire Oil-Diesel-Glycine max biodiesel blends in a diesel engine. Case Stud. Therm. Eng. 2022, 39, 102435. [Google Scholar] [CrossRef]
- Selvan, B.K.; Das, S.; Chandrasekar, M.; Girija, R.; John Vennison, S.; Jaya, N.; Saravanan, P.; Rajasimman, M.; Vasseghian, Y.; Rajamohan, N. Utilization of biodiesel blended fuel in a diesel engine—Combustion engine performance and emission characteristics study. Fuel 2022, 311, 122621. [Google Scholar] [CrossRef]
- Zhuravel, D.; Samoichuk, K.; Petrychenko, S.; Bondar, A.; Hutsol, T.; Kuboń, M.; Niemiec, M.; Mykhailova, L.; Gródek-Szostak, Z.; Sorokin, D. Modeling of Diesel Engine Fuel Systems Reliability When Operating on Biofuels. Energies 2022, 15, 1795. [Google Scholar] [CrossRef]
- Al Qubeissi, M.; Mahmoud, A.; Al-Damook, M.; Almshahy, A.; Khatir, Z.; Soyhan, H.S.; Raja Ahsan Shah, R.M. Comparative Analysis of Battery Thermal Management System Using Biodiesel Fuels. Energies 2023, 16, 565. [Google Scholar] [CrossRef]
- Barros, R.W.D.S.; Henriquez, J.; Dutra, J.C.C. Experimental Evaluation of the use of Cottonseed Biodiesel and Mixtures with Commercial Diesel Engine Generator. IEEE Lat. Am. Trans. 2018, 16, 489–496. [Google Scholar] [CrossRef]
- Ağbulut, Ü.; Sarıdemir, S.; Albayrak, S. Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 389. [Google Scholar] [CrossRef]
- Gongora, B.; de Souza, S.N.M.; Bassegio, D.; Santos, R.F.; Siqueira, J.A.C.; Bariccatti, R.A.; Gurgacz, F.; Secco, D.; Tokura, L.K.; Sequinel, R. Comparison of emissions and engine performance of safflower and commercial biodiesels. Ind. Crop. Prod. 2022, 179, 114680. [Google Scholar] [CrossRef]
- Lv, J.; Wang, S.; Meng, B. The Effects of Nano-Additives Added to Diesel-Biodiesel Fuel Blends on Combustion and Emission Characteristics of Diesel Engine: A Review. Energies 2022, 15, 1032. [Google Scholar] [CrossRef]
- Dadpour, D.; Deymi-Dashtebayaz, M.; Hoseini-Modaghegh, A.; Abbaszadeh-Bajgiran, M.; Soltaniyan, S.; Tayyeban, E. Proposing a new method for waste heat recovery from the internal combustion engine for the double-effect direct-fired absorption chiller. Appl. Therm. Eng. 2022, 216, 119114. [Google Scholar] [CrossRef]
- Regularization, B.; Machine, N.N.; Performance, E. Bayesian Regularization Neural Network-Based Machine Learning Approach on Optimization of CRDI-Split Injection with Waste Cooking Oil Biodiesel to Improve Diesel. Energies 2023, 16, 2805. [Google Scholar]
- Marques, A.S.; Carvalho, M.; Ochoa, A.A.V.; Abrahão, R.; Santos, C.A.C. Life cycle assessment and comparative exergoenvironmental evaluation of a micro-trigeneration system. Energy 2021, 216, 119310. [Google Scholar] [CrossRef]
- Phuang, Z.X.; Lin, Z.; Liew, P.Y.; Hanafiah, M.M.; Woon, K.S. The dilemma in energy transition in Malaysia: A comparative life cycle assessment of large scale solar and biodiesel production from palm oil. J. Clean. Prod. 2022, 350, 131475. [Google Scholar] [CrossRef]
- Algieri, A.; Morrone, P.; Perrone, D.; Bova, S.; Castiglione, T. Analysis of multi-source energy system for small-scale domestic applications. Integration of biodiesel, solar and wind energy. Energy Rep. 2020, 6, 652–659. [Google Scholar] [CrossRef]
- Santhosh, N.; Afzal, A.; Ağbulut, Ü.; Alahmadi, A.A.; Gowda, A.C.; Alwetaishi, M.; Shaik, S.; Hoang, A.T. Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization. Energy 2023, 270, 126826. [Google Scholar] [CrossRef]
- Nikas, A.; Koasidis, K.; Köberle, A.C.; Kourtesi, G.; Doukas, H. A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective. Renew. Sustain. Energy Rev. 2022, 156, 112022. [Google Scholar] [CrossRef]
- Balamurugan, T.; Arun, A.; Sathishkumar, G.B. Biodiesel derived from corn oil—A fuel substitute for diesel. Renew. Sustain. Energy Rev. 2018, 94, 772–778. [Google Scholar] [CrossRef]
- Pradelle, F.; Leal Braga, S.; Fonseca de Aguiar Martins, A.R.; Turkovics, F.; Nohra Chaar Pradelle, R. Performance and combustion characteristics of a compression ignition engine running on diesel-biodiesel-ethanol (DBE) blends—Potential as diesel fuel substitute on an Euro III engine. Renew. Energy 2019, 136, 586–598. [Google Scholar] [CrossRef]
- Yildiz, I.; Caliskan, H.; Mori, K. Energy, exergy and environmental assessments of biodiesel and diesel fuels for an internal combustion engine using silicon carbide particulate filter. J. Therm. Anal. Calorim. 2021, 145, 739–750. [Google Scholar] [CrossRef]
- Benti, N.E.; Aneseyee, A.B.; Geffe, C.A.; Woldegiyorgis, T.A.; Gurmesa, G.S.; Bibiso, M.; Asfaw, A.A.; Milki, A.W.; Mekonnen, Y.S. Biodiesel production in Ethiopia: Current status and future prospects. Sci. Afr. 2023, 19, e01531. [Google Scholar] [CrossRef]
- Oloyede, C.T.; Jekayinfa, S.O.; Alade, A.O.; Ogunkunle, O.; Laseinde, O.T.; Adebayo, A.O.; Abdulkareem, A.I.; Smaisim, G.F.; Fattah, I.M.R. Synthesis of Biobased Composite Heterogeneous Catalyst for Biodiesel Production Using Simplex Lattice Design Mixture: Optimization Process by Taguchi Method. Energies 2023, 16, 2197. [Google Scholar] [CrossRef]
- Sáez-Bastante, J.; Carmona-cabello, M.; Villarreal-ornelas, E.; Trejo-calzada, R.; Pinzi, S.; Dorado, M.P. Feasibility of the Production of Argemone pleiacantha Marginal Areas. Energies 2023, 16, 2588. [Google Scholar] [CrossRef]
- Ebrahimian, E.; Denayer, J.F.M.; Aghbashlo, M.; Tabatabaei, M.; Karimi, K. Biomethane and biodiesel production from sunflower crop: A biorefinery perspective. Renew. Energy 2022, 200, 1352–1361. [Google Scholar] [CrossRef]
- Basumatary, B.; Brahma, S.; Nath, B.; Basumatary, S.F.; Das, B.; Basumatary, S. Post-harvest waste to value-added materials: Musa champa plant as renewable and highly effective base catalyst for Jatropha curcas oil-based biodiesel production. Bioresour. Technol. Rep. 2023, 21, 101338. [Google Scholar] [CrossRef]
- Vázquez, V.; Flores, M.M.A.; Casas, L.F.H.; Castillo, N.A.M.; Uribe, A.R.; Aguado, H.C.C. Biodiesel Production Catalyzed by Lipase Extract Powder of. Energies 2023, 16, 2848. [Google Scholar] [CrossRef]
- Chamkalani, A.; Zendehboudi, S.; Rezaei, N.; Hawboldt, K. A critical review on life cycle analysis of algae biodiesel: Current challenges and future prospects. Renew. Sustain. Energy Rev. 2020, 134, 110143. [Google Scholar] [CrossRef]
- Gazeta Brazil. Governo Oficializa Aumento do Percentual do Biodiesel Sobre Diesel, Brasilia. Available online: https://gazetabrasil.com.br/economia/2023/03/29/governo-oficializa-aumento-do-percentual-do-biodiesel-sobre-diesel/ (accessed on 29 March 2023).
Document Type | Query 1 | Query 2 | Query 3 |
---|---|---|---|
Article | 582 | 39 | 9 |
Conference paper | 232 | 14 | 4 |
Review | 83 | 10 | 6 |
Conference Review | 25 | 2 | 0 |
Book Chapter | 44 | 5 | 1 |
Total | 966 | 70 | 20 |
Advantages | Disadvantages |
---|---|
High oil content and higher yield of production with a low market price [28,29,30] | High viscosity and density of palm biodiesel results in poor fuel atomization and increases the ignition delay [31,32] |
Palm biodiesel is ecofriendly, renewable, biodegradable, and nontoxic; it is compatible with any diesel engine without any modification [33,34] | High pour and cloud points, as well as low volatilities [35] |
High cetane number of palm biodiesel lowers knocking tendency [32,36] | Early nozzle opening and advanced injection due to higher volume modulus [37] |
Palm biodiesel possesses enhanced lubricity property [11] | High oxygen content in palm biodiesel releases a high amount of NOx emission [15,38,39] |
Low sulfur content [40] | Several engine defects such as carbon deposit, piston ring sticking, lubricating oil thickening, and injector cooking [10,41] |
High flashpoint improves safety [36,42] | Difficulties in cold weather performance due to poor flow properties at lower temperature [43] |
Low emissions (CO, CO2, and HC) and noise [15,44] | Lower energy content compared to diesel, increasing fuel consumption [36] |
New job opportunities that improve living standards and social developments [13,28] | Negative impact on the environment due to deforestation of palm oil plantation [45] |
Oxygen content (10–12%) in palm biodiesel contributes to better combustion characteristics [16] |
Feedstock | Catalyst Element | Alcohol/Oil Proportion | Maximum Conversion Rate | Authors |
---|---|---|---|---|
Jatropha Curcas | CaO/coal fly ash | 12:1 methanol/oil | 95.64% | [70] |
Jatropha Curcas | NiO | 15:1 methanol/oil | 59.8% | [71] |
Jatropha Curcas | KF-impregnated CaO | 10:1 methanol/oil | 97% | [72] |
Jatropha Curcas | Heteropanax fragrans (Kesseru) | 12:1 methanol/oil | 97.75% | [73] |
Sunflower | K2CO3 | 6:1 methanol/oil | 95.3% ± 1.2% | [74] |
Sunflower | K2CO3/talc material | 6:1 methanol/oil | 98.4% | [75] |
Soybean | Ni/CaO–MgO | 27:1 methanol/oil | 97.6% | [76] |
Soybean | ZnO·Na2ZrO3 | 14:1 methanol/oil | 97% | [77] |
Moringa Oleifera | CaO and chicken eggshells | 6:1 methanol/oil | 86.56% | [78] |
Palm | Zn/Ca | 30:1 methanol/oil | 83.87% | [79] |
Palm | Zn–Ce/Al2O3 | 18.53:1 methanol/oil | 99.44% | [80] |
Cottonseed | CaO and MgO impregnated on saw dust ash | 6:1 (CaO) and 8:1(MgO) methanol/oil | 86% (CaO) | [81] |
Castor | Carbon-doped mix metal oxide | 21:1 methanol/oil | 91.1% | [82] |
Castor | Al2O3-, Al2O3–NiO-, and Al2O3–CoO-modified bentonite | 15:1 ethanol/oil | 98% (Al2O3–CoO) | [83] |
Rubber seed | Potassium oxide alumina supported by (K2O/Al2O3) | 10:1 methanol/oil | 96.9% | [84] |
Rubber seed | SO3H-MCM- | 16:1 methanol/oil | 84% | [85] |
Rubber seed | CaO with subcritical methanol | 28:1 methanol/oil | 86.79% | [86] |
Coconut | Rice husk silica and aluminum foil | 4:1 methanol/oil | Approximately 100% | [87] |
Engine Performance | Volume Content of RO | |||
---|---|---|---|---|
0% | 20% | 40% | 60% | |
BSFC, g/kW-h | 249.0/225.8 | 255.1/231.8 | 258.1/239.8 | 265.1/243.1 |
BTE | 0.340/0.375 | 0.340/0.374 | 0.345/0.372 | 0.345/0.376 |
Exhaust smoke opacity, % on Hartridge scale | 11.0/25.0 | 8.0/16.5 | 7.0/13.0 | 8.0/11.0 |
ABSFC over the 13 modes | 247.20 | 254.38 | 259.40 | 272.23 |
ABTE over the 13 modes | 0.343 | 0.341 | 0.343 | 0.336 |
IBSNOx over the 13 modes, g/kWh | 7.442 | 7.159 | 7.031 | 6.597 |
IBSCO over the 13 modes, g/kWh | 3.482 | 3.814 | 3.880 | 3.772 |
IBSHC over the 13 modes, g/kWh | 1.519 | 0.965 | 0.949 | 1.075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, A.B.; Ochoa, A.A.V.; Costa, J.Â.P.d.; Leite, G.d.N.P.; Silva, H.C.N.; Tómas, A.C.C.; Barbosa, D.C.; Michima, P.S.A. A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution? Energies 2023, 16, 3736. https://doi.org/10.3390/en16093736
Souza AB, Ochoa AAV, Costa JÂPd, Leite GdNP, Silva HCN, Tómas ACC, Barbosa DC, Michima PSA. A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution? Energies. 2023; 16(9):3736. https://doi.org/10.3390/en16093736
Chicago/Turabian StyleSouza, Anderson Breno, Alvaro Antonio Villa Ochoa, José Ângelo Peixoto da Costa, Gustavo de Novaes Pires Leite, Héber Claudius Nunes Silva, Andrezza Carolina Carneiro Tómas, David Campos Barbosa, and Paula Suemy Arruda Michima. 2023. "A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?" Energies 16, no. 9: 3736. https://doi.org/10.3390/en16093736
APA StyleSouza, A. B., Ochoa, A. A. V., Costa, J. Â. P. d., Leite, G. d. N. P., Silva, H. C. N., Tómas, A. C. C., Barbosa, D. C., & Michima, P. S. A. (2023). A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution? Energies, 16(9), 3736. https://doi.org/10.3390/en16093736