Optimization of Nanocomposite Films Based on Polyimide–MWCNTs towards Energy Storage Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis
2.3. Preparation of Polyimide-MWCNTs Composite Films
2.4. Measurements
3. Results and Discussion
3.1. Physico-Chemical Characterization
3.2. Morphology Studies
3.3. Mechanical Properties
3.4. Thermal Behavior
3.5. Broadband Dielectric Spectroscopy (BDS) Study
3.6. Energy Storage Ability of cPI-MWCNTs Flexible Electrodes
3.6.1. CV Investigations
3.6.2. GCD Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, D.; Zhu, Y.G.; Jia, C. Carbon nanotube—Polymer composites for energy storage applications. In Carbon Nanotubes—Current Progress of Their Polymer Composites; Berber, M.R., Hafez, I.H., Eds.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Capacitive energy storage in nanostructured carbon–electrolyte systems. Acc. Chem. Res. 2012, 46, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, Z.; Yuan, S.; Zhang, X. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 2014, 7, 2101–2122. [Google Scholar] [CrossRef]
- Niu, Z.; Liu, L.; Zhang, L.; Zhou, W.; Chen, X.; Xie, S. Programmable nanocarbon-based architectures for flexible supercapacitors. Adv. Energy Mater. 2015, 5, 1500677. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Wang, Y.; Shi, Y.; Wong, J.I.; Yang, H.Y. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014, 3, 46–54. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, J.; Deng, H.; Du, Y.; Shi, X. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 2021, 6, 142–151. [Google Scholar] [CrossRef]
- Yan, B.; Feng, L.; Zheng, J.; Zhang, Q.; Jiang, S.; Zhang, C.; Ding, Y.; Han, J.; Chen, W.; He, S. High performance supercapacitors based on wood-derived thick carbon electrodes synthesized via green activation process. Inorg. Chem. Front. 2022, 9, 6108–6123. [Google Scholar] [CrossRef]
- Xiao, J.; Li, H.; Zhang, H.; He, S.; Zhang, Q.; Liu, K.; Jiang, S.; Duan, G.; Zhang, K. Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges. J. Bioresour. Bioprod. 2022, 7, 245–269. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, X.; Ge, C.; Zhou, W.; Zhu, Y.; Xu, B. Branched carbon nanotube/carbon nanofiber composite for supercapacitor electrodes. Mater. Lett. 2019, 246, 174–177. [Google Scholar] [CrossRef]
- Khan, W.; Sharma, R.; Saini, P. Carbon Nanotube—Based polymer composites: Synthesis, properties and applications. In Carbon Nanotubes—Current Progress of Their Polymer Composites; Berber, M.R., Hafez, I.H., Eds.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Nalwa, H.S. (Ed.) Handbook of Low and High Dielectric Constant Materials and Their Applications; Academic Press/Harcourt Sci. & Tech. Co.: San Diego, CA, USA, 1999; Volume 2. [Google Scholar]
- Ji, D.; Li, T.; Hu, W.; Fuchs, H. Recent progress in aromatic polyimide dielectrics for organic electronic devices and circuits. Adv. Mater. 2019, 31, 1806070. [Google Scholar] [CrossRef]
- Hicyilmaz, A.S.; Bedeloglu, A.C. Applications of polyimide coatings: A review. SN Appl. Sci. 2021, 3, 363. [Google Scholar] [CrossRef]
- Butnaru, I.; Chiriac, A.-P.; Tugui, C.; Asandulesa, M.; Damaceanu, M.-D. The synergistic effect of nitrile and jeffamine structural elements towards stretchable and high-k neat polyimide materials. Mater. Chem. Front. 2021, 5, 7558. [Google Scholar] [CrossRef]
- Park, C.; Ounaies, Z.; Wise, K.E.; Harrison, J.S. In situ poling and imidization of amorphous piezoelectric polyimides. Polymer 2004, 45, 5417–5425. [Google Scholar] [CrossRef]
- Bacosca, I.; Hamciuc, E.; Bruma, M. Effect of flexible linkages on the properties of poly(ether imide) films. Soft Mater. 2013, 11, 465–475. [Google Scholar] [CrossRef]
- Butnaru, I.; Bruma, M.; Gaan, S. Phosphine oxide based polyimides: Structure–property relationships. RSC Adv. 2017, 7, 50508–50518. [Google Scholar] [CrossRef]
- Wang, D.H.; Riley, J.K.; Fillery, S.P.; Durstock, M.F.; Vaia, R.A.; Tan, L.-S. Synthesis and characterization of unsymmetrical benzonitrile-containing polyimides: Viscosity-lowering effect and dielectric properties. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 4998–5011. [Google Scholar] [CrossRef]
- Treufeld, I.; Wang, D.H.; Kurish, B.A.; Tan, L.S.; Zhu, L. Enhancing electrical energy storage using polar polyimides with nitrile groups directly attached to the main chain. J. Mater. Chem. A 2014, 2, 20683–20696. [Google Scholar] [CrossRef]
- Butnaru, I.; Constantin, C.-P.; Damaceanu, M.-D. Optimization of triphenylamine-based polyimide structure towards molecular sensors for selective detection of heavy/transition metal ions. J. Photochem. Photobiol. A Chem. 2023, 435, 114271. [Google Scholar] [CrossRef]
- Kim, H.; Hwang, S.; Hwang, T.; Bin In, J.; Yeo, J. Digitally patterned mesoporous carbon nanostructures of colorless polyimide for transparent and flexible micro-supercapacitor. Energies 2021, 14, 2547. [Google Scholar] [CrossRef]
- Saxena, A.; Prabhakaran, P.V.; Rao, V.L.; Ninan, K.N. Synthesis and characterization of polyamides and poly(amide-imide)s derived from 2,6-bis(3-aminophenoxy)benzonitrile or 2,6-bis(4-aminophenoxy)benzonitrile. Polym. Int. 2005, 54, 544–552. [Google Scholar] [CrossRef]
- Li, L.; Kikuchi, R.; Kakimoto, M.-A.; Jikei, M.; Takahashi, A. Synthesis and characterization of new polyimides containing nitrile groups. High Perform. Polym. 2005, 17, 135–147. [Google Scholar] [CrossRef]
- Bacosca, I.; Hamciuc, E.; Bruma, M.; Ronova, I.A. Study of aromatic polyimides containing cyano groups. High Perform. Polym. 2010, 22, 703–714. [Google Scholar] [CrossRef]
- Basheer, B.V.; George, J.J.; Siengchin, S.; Parameswaranpillai, J. Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review. Nano-Struct. Nano-Objects 2020, 22, 100429. [Google Scholar] [CrossRef]
- Yuen, S.M.; Ma, C.C.M.; Lin, Y.Y.; Kuan, H.C. Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Compos. Sci. Technol. 2007, 67, 2564–2573. [Google Scholar] [CrossRef]
- Chang, C.M.; Liu, Y.L. Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon 2010, 48, 1289–1297. [Google Scholar] [CrossRef]
- Chou, W.J.; Wang, C.C.; Chen, C.Y. Characteristics of polyimide-based nanocomposites containing plasma-modified multi-walled carbon nanotubes. Compos. Sci. Technol. 2008, 68, 2208–2213. [Google Scholar] [CrossRef]
- Lin, W.; Moon, K.S.; Wong, C.P. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube–polymer nanocomposites: Toward applications as thermal interface materials. Adv. Mater. 2009, 21, 2421–2424. [Google Scholar] [CrossRef]
- Huang, Y.C.; Lin, J.H.; Tseng, I.H.; Lo, A.Y.; Lo, T.Y.; Yu, H.P.; Tsai, M.H.; Whang, W.T.; Hsu, K.Y. An in situ fabrication process for highly electrical conductive polyimide/ MWCNT composite films using 2,6-diaminoanthraquinone. Compos. Sci. Technol. 2013, 87, 174–181. [Google Scholar] [CrossRef]
- Butnaru, I.; Chiriac, A.-P.; Constantin, C.P.; Damaceanu, M.-D. Insights into MWCNTs/polyimide nanocomposites: From synthesis to application as free-standing flexible electrodes in low-cost micro-supercapacitors. Mater. Today Chem. 2022, 23, 100671. [Google Scholar] [CrossRef]
- Govindaraj, B.; Sarojadevi, M. Microwave-assisted synthesis of nanocomposites from polyimides chemically cross-linked with functionalized carbon nanotubes for aerospace applications. Polym. Adv. Technol. 2018, 29, 1718–1726. [Google Scholar] [CrossRef]
- Zindy, N.; Aumaitre, C.; Mainville, M.; Saneifar, H.; Johnson, P.A.; Bélanger, D.; Leclerc, M. Pyrene diimide based π-conjugated copolymer and single-walled carbon nanotube composites for lithium-ion batteries. Chem. Mater. 2019, 31, 8764–8773. [Google Scholar] [CrossRef]
- Han, N.K.; Choi, Y.C.; Park, D.U.; Ryu, J.H.; Jeong, Y.G. Core-shell type composites based on polyimide-derived carbon nanofibers and manganese dioxide for self-standing and binder-free supercapacitor electrode applications. Compos. Sci. Technol. 2020, 196, 108212. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Z.; Zhang, Y.; Ma, B.; Luo, J.; Deng, J.; Yuan, W. Efficient carbon nanotube/polyimide composites exhibiting tunable temperature coefficient of resistance for multi-role thermal films. Compos. Sci. Technol. 2020, 199, 108333. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Zhou, Z.-H.; Zhou, C.-G.; Sun, W.-J.; Gao, J.-F.; Dai, K.; Yan, D.-X.; Li, Z.-M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712. [Google Scholar] [CrossRef] [PubMed]
- Burç, M.; Köytepe, S.; Duran, S.T.; Ayhan, N.; Aksoy, B.; Seçkin, T. Development of voltammetric sensor based on polyimide-MWCNT composite membrane for rapid and highly sensitive detection of paracetamol. Measurement 2020, 151, 107103. [Google Scholar] [CrossRef]
- Farahani, M.H.D.A.; Hua, D.; Chung, T.-S. Cross-linked mixed matrix membranes consisting of carboxyl-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN). Sep. Purif. Technol. 2017, 186, 243–254. [Google Scholar] [CrossRef]
- Jeong, Y.; Park, J.; Lee, J.; Kim, K.; Park, I. Ultrathin, biocompatible, and flexible pressure sensor with a wide pressure range and its biomedical application. ACS Sens. 2020, 5, 481–489. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Jia, L.; Wang, C. MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst. J. Power Sources 2016, 304, 146–154. [Google Scholar] [CrossRef]
- Kang, J.H.; Park, C.; Lowther, S.E.; Harrison, J.S.; Park, C.E. All-organic actuator fabricated with single wall carbon nanotube electrodes. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 2532–2538. [Google Scholar] [CrossRef]
- Kang, J.H.; Park, C.; Gaik, S.J.; Lowther, S.E.; Harrison, J.S. The effect of single wall carbon nanotubes on the dipole orientation and piezoelectric properties of polymeric nanocomposites. NANO Brief Rep. Rev. 2006, 1, 77–85. [Google Scholar] [CrossRef]
- Ounaies, Z.; Park, C.; Harrison, J.; Lillehei, P. Evidence of piezoelectricity in SWCNT polyimide and SWNT-PZT-polyimide composites. J. Thermoplast. Compos. Mater. 2008, 21, 393–409. [Google Scholar] [CrossRef]
- Saito, T.; Matsushige, K.; Tanaka, K. Chemical treatment and modification of multi-walled carbon nanotubes. Phys. B Condens. Matter 2002, 323, 280–283. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Li, C.T. Synthesis and characterization of new fluorene-based poly(ether imide)s. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 1403–1412. [Google Scholar] [CrossRef]
- Bruma, M.; Damaceanu, M.D.; Muller, P. Comparative study of polyimides containing oxadiazole and ether groups. High Perform. Polym. 2009, 21, 522–534. [Google Scholar] [CrossRef]
- Lebrón-Colón, M.; Meador, M.A.; Gaier, J.R.; Solá, F.; Scheiman, D.A.; McCorkle, L.S. Reinforced thermoplastic polyimide with dispersed functionalized single wall carbon nanotubes. ACS Appl. Mater. Interf. 2010, 2, 669–676. [Google Scholar] [CrossRef]
- An, L.; Pan, Y.Z.; Shen, X.W.; Lu, H.B.; Yang, Y.L. Rod-like attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability and related mechanisms. J. Mater. Chem. 2008, 18, 4928–4941. [Google Scholar] [CrossRef]
- Misiego, C.R.; Pipes, R.B. Dispersion and its relation to carbon nanotube concentration in polyimide nanocomposites. Compos. Sci. Technol. 2013, 85, 43–49. [Google Scholar] [CrossRef]
- Saini, P.; Choudhary, V.; Singh, B.P.; Mathur, R.B.; Dhawan, S.K. Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth. Met. 2011, 161, 1522–1526. [Google Scholar] [CrossRef]
- Kareem, A.A. Preparation and electrical properties of polyimide/carbon nanotubes composites. Mater. Sci. Pol. 2017, 35, 755–759. [Google Scholar] [CrossRef]
- Asandulesa, M.; Kostromin, S.; Aleksandrov, A.; Tameev, A.; Bronnikov, S. The effect of PbS quantum dots on molecular dynamics and conductivity of PTB7:PC71BM bulk heterojunction as revealed by dielectric spectroscopy. Phys. Chem. Chem. Phys. 2022, 24, 9589–9596. [Google Scholar] [CrossRef]
- Chisca, S.; Musteata, V.E.; Sava, I.; Bruma, M. Dielectric behavior of some aromatic polyimide films. Eur. Polym. J. 2011, 47, 1186–1197. [Google Scholar] [CrossRef]
- Bei, R.; Qian, C.; Zhang, Y.; Chi, Z.; Liu, S.; Chen, X.; Xu, J.; Aldred, M.P. Intrinsic low dielectric constant polyimides: Relationship between molecular structure and dielectric properties. J. Mater. Chem. C 2017, 5, 12807–12815. [Google Scholar] [CrossRef]
- Pochard, I.; Vall, M.; Eriksson, J.; Farineau, C.; Cheung, O.; Frykstrand, S.; Welch, K.; Stromme, M. Amine-functionalised mesoporous magnesium carbonate: Dielectric spectroscopy studies of interactions with water and stability. Mater. Chem. Phys. 2018, 216, 332–338. [Google Scholar] [CrossRef]
- Asandulesa, M.; Musteata, V.E.; Bele, A.; Dascalu, M.; Bronnikov, S.; Racles, C. Molecular dynamics of polysiloxane polar-nonpolar co-networks and blends studied by dielectric relaxation spectroscopy. Polymer 2018, 149, 73–84. [Google Scholar] [CrossRef]
- Aboutalebi, S.H.; Chidembo, A.T.; Salari, M.; Konstantinov, K.; Wexler, D.; Liu, H.K.; Dou, S.X. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 2011, 4, 1855–1865. [Google Scholar] [CrossRef]
- Zhang, S.; Pan, N. Supercapacitors performance evaluation. Adv. Energy Mater. 2015, 5, 1401401. [Google Scholar] [CrossRef]
- Manjakkal, L.; Navaraj, W.T.; Núñez, C.G.; Dahiya, R. Graphene–graphite polyurethane composite based high-energy density flexible supercapacitors. Adv. Sci. 2019, 6, 1802251. [Google Scholar] [CrossRef] [PubMed]
Sample | Tensile Strength [MPa] | Elongation at Break [%] | Young’s Modulus [GPa] | Φ [µm] | Tg [°C] | T5 [°C] | Tmax [°C] | W700 [%] |
---|---|---|---|---|---|---|---|---|
PI | 95.38 ± 2.1 | 9.45 ± 0.9 | 1.49 ± 0.7 | 45 | 240 | 526 | 550/620 | 65.16 |
cPI-Aa | 53.36 ± 0.8 | 7.55 ± 0.2 | 0.91 ± 0.4 | 50 | 243 | 546 | 560/620 | 69.62 |
cPI-Ab | 71.31 ± 1.2 | 8.75 ± 0.7 | 1.29 ± 0.8 | 90 | 241 | 537 | 560/620 | 70.99 |
cPI-Ba | 58.22 ± 4.4 | 5.85 ± 0.8 | 1.12 ± 1.5 | 50 | 240 | 540 | 560/ * | 69.17 |
cPI-Bb | 39.79 ± 3.2 | 6.33 ± 0.6 | 0.96 ± 2.0 | 92 | 240 | 534 | 560/610 | 69.51 |
cPI-Ca | 36.84 ± 2.3 | 5.71 ± 0.4 | 0.91 ± 0.3 | 51 | 240 | 544 | 565/ * | 68.88 |
cPI-Cb | 44.39 ± 2.1 | 6.09 ± 0.4 | 0.97 ± 1.5 | 56 | 240 | 530 | 565/612 | 68.68 |
cPI-Da | 46.54 ± 2.2 | 6.29 ± 0.1 | 1.01 ± 0.9 | 60 | 240 | 534 | 565/620 | 66.92 |
cPI-Db | 44.27 ± 7.5 | 7.98 ± 0.9 | 0.86 ± 0.4 | 80 | 240 | 530 | 565/610 | 69.75 |
Sample | Dielectric Constant, ε′ | Dielectric Loss, ε″ | Conductivity, σ (S/cm) | ||||||
---|---|---|---|---|---|---|---|---|---|
−100 °C | 25 °C | 200 °C | −100 °C | 25 °C | 200 °C | −100 °C | 25 °C | 200 °C | |
PI | 2.7 | 2.8 | 3.1 | 0.002 | 0.01 | 0.04 | 1.4 × 10−13 | 7.4 × 10−13 | 2.3 × 10−12 |
cPI-Aa | 7.4 | 8.9 | 12.9 | 4.8 | 8.4 | 18.7 | 2.7 × 10−10 | 4.7 × 10−10 | 1 × 10−9 |
cPI-Ba | 8.3 | 9.4 | 11.7 | 2.8 | 3.8 | 5.8 | 1.5 × 10−10 | 2.1 × 10−10 | 3.2 × 10−10 |
cPI-Ca | 14.8 | 16.4 | 20.4 | 703 | 1217 | 1854 | 3.9 × 10−8 | 6.8 × 10−8 | 1 × 10−7 |
cPI-Da | 6.5 | 6.7 | 7.3 | 1436 | 2068 | 3002 | 8 × 10−8 | 1.1 × 10−7 | 1.7 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiriac, A.P.; Damaceanu, M.-D.; Asandulesa, M.; Rusu, D.; Butnaru, I. Optimization of Nanocomposite Films Based on Polyimide–MWCNTs towards Energy Storage Applications. Energies 2023, 16, 3739. https://doi.org/10.3390/en16093739
Chiriac AP, Damaceanu M-D, Asandulesa M, Rusu D, Butnaru I. Optimization of Nanocomposite Films Based on Polyimide–MWCNTs towards Energy Storage Applications. Energies. 2023; 16(9):3739. https://doi.org/10.3390/en16093739
Chicago/Turabian StyleChiriac, Adriana Petronela, Mariana-Dana Damaceanu, Mihai Asandulesa, Daniela Rusu, and Irina Butnaru. 2023. "Optimization of Nanocomposite Films Based on Polyimide–MWCNTs towards Energy Storage Applications" Energies 16, no. 9: 3739. https://doi.org/10.3390/en16093739
APA StyleChiriac, A. P., Damaceanu, M. -D., Asandulesa, M., Rusu, D., & Butnaru, I. (2023). Optimization of Nanocomposite Films Based on Polyimide–MWCNTs towards Energy Storage Applications. Energies, 16(9), 3739. https://doi.org/10.3390/en16093739