Conjugate Radiation and Convection Heat Transfer Analysis in Solar Cooker Cavity Using a Computational Approach
Abstract
:1. Introduction
2. Mathematical Modelling and Simulation Methodology
2.1. Mathematical Modelling
2.2. Physical Model and Boundary Conditions
- ⮚
- , ,
- ⮚
- ,
- ⮚
- , , ,
- ⮚
- , ,
- ⮚
- , ,
2.3. Solution Procedure
3. Results and Discussion
3.1. Grid Independence Study
3.2. Verification of Numerical Procedure
3.3. Heat Transfer Characteristics with Radiation Ignored
3.4. Heat Transfer Characteristics with Radiation Considered
3.4.1. Effect of Emissivity
3.4.2. Effect of T*
3.4.3. Effect of Aspect Ratio (AR)
3.4.4. Effect of External Nusselt Number (Nuext)
3.4.5. Composition of Radiative and Convective Components
3.4.6. Heat Flow Characteristics
3.5. Development of Empirical Correlation
4. Conclusions and Future Work
4.1. Conclusions
4.2. Future Scope
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclatures
a | Gas absorption coefficient |
AR | Aspect ratio = height to top width ratio |
Gr | Grashof number = |
g | Gravitational Acceleration (m/s2) |
h | Heat transfer coefficient (W/m2/K) |
hext | External heat transfer coefficient over the top wall (W/m2/K) |
I | Radiation Intensity (energy per area of emitting surface per unit solid angle) |
k | Thermal Conductivity (W/m/K) |
lc | Characteristic length or height or top width for Ra, Gr and Nu(m) |
Nu | Nusselt number = |
Nuc | Average convective Nusselt number |
Nur | Average radiative Nusselt number |
Nut | Average total Nusselt number |
Nuext | External Nusselt number |
P | Pressure (Pa) |
Q | Heat transfer rate (W) |
Qc | Convective heat transfer rate (W) |
Qr | Radiative heat transfer rate (W) |
Qt | Total Heat transfer rate (W) |
Ra | Rayleigh number = |
T | Temperature (K) |
TC | Cold wall temperature (K) |
TH | Hot wall temperature (K) |
To | Mean temperature = (K) |
T∞ | Free stream temperature (K) |
ΔT | Temperature difference = TH − TC or TH − T∞(K) |
T* | Temperature ratio = or |
W | Width of the cavity (m) |
Wtop | Width of the cavity at top(m) |
Greek Symbols | |
α | Thermal diffusivity (m2/s) |
β | Coefficient of thermal expansion (K−1) |
ε | Emissivity |
εb | Emissivity of bottom surface |
σ | Stefan Boltzmann constant (5.67 × 10−8 W/m2K4) |
υ | Kinematic viscosity (m2/s) |
ρ | Density (kg/m3) |
Appendix A
T* | Density [kg/m3] | Specific Heat (Cp) [j/kg·K] | Thermal Conductivity [w/m·K] | Viscosity [kg/m·s] | Thermal Expansion Coefficient [1/K] | |
---|---|---|---|---|---|---|
Air | 1.33 | 1.01 | 1009 | 0.0297 | 2.084 × 10−5 | 0.002857 |
1.5 | 0.9412 | 1009.4 | 0.03154 | 2.3277 × 10−5 | 0.0026667 | |
1.67 | 0.8826 | 1013 | 0.033325 | 2.6042 × 10−5 | 0.0025 | |
Steel | 8030 | 502.48 | 16.27 | nil | nil | |
Glass | 2600 | 840 | 1.05 | nil | nil |
Appendix B
References
- Sahoo, S.S.; Singh, S.; Banerjee, R. Analysis of heat loss from a trapezoidal cavity used for linear Fresnel reflector system. Sol. Energy 2012, 86, 1313–1322. [Google Scholar] [CrossRef]
- Nayak, J.; Agrawal, M.; Mishra, S.; Sahoo, S.S.; Swain, R.K.; Mishra, A. Combined heat loss analysis of trapezoidal shaped solar cooker cavity using computational approach. Case Stud. Therm. Eng. 2018, 12, 94–103. [Google Scholar] [CrossRef]
- De Vahl Davis, G. Natural convection of Air in a square cavity: A benchmark numerical solution. Int. J. Numer. Methods Fluids 1983, 3, 249–264. [Google Scholar] [CrossRef]
- Behnia, M.; Reizes, J.A.; De Vahl Davis, G. Combined radiation and natural convection in a rectangular cavity with a transparent wall and containing a non-participating fluid. Int. J. Numer. Methods Fluids 1990, 10, 305–325. [Google Scholar] [CrossRef]
- Moghimi, M.; Mirgolbabaei, H.; Miansari, M.; Miansari, M. Natural convection in rectangular enclosures heated from below and cooled from above. Aust. J. Basic Appl. Sci. 2009, 3, 4618–4623. [Google Scholar]
- Ramesh, N.; Venkateshan, S.P. Effect of surface radiation on natural convection in a square enclosure. J. Thermophys. Heat Transf. 1999, 13, 299–301. [Google Scholar] [CrossRef]
- Nithyadevi, N.; Kandaswamy, P.; Lee, J. Natural convection in a rectangular cavity with partially active side walls. Int. J. Heat Mass Transf. 2007, 50, 4688–4697. [Google Scholar] [CrossRef]
- Ridouane, E.H.; Hasnaoui, M.; Amahmid, A.; Raji, A. Interaction between natural convection and radiation in a square cavity heated from below. Numer. Heat Transf. Part A 2004, 45, 289–311. [Google Scholar] [CrossRef]
- Ridouane, E.H.; Hasnaoui, M.; Campo, A. Effects of surface radiation on natural convection in a Rayleigh–Benard square enclosure: Steady and unsteady conditions. Heat Mass Transf. 2006, 42, 214–225. [Google Scholar] [CrossRef]
- Gad, M.A.; Balaji, C. Effect of surface radiation on RBC in cavities heated from below. Int. Commun. Heat Mass Transf. 2010, 37, 1459–1464. [Google Scholar] [CrossRef]
- Varol, Y.; Oztop, H.F.; Pop, I. Maximum density effects on buoyancy-driven convection in a porous trapezoidal cavity. Int. Commun. Heat Mass Transf. 2010, 37, 401–409. [Google Scholar] [CrossRef]
- Balaji, C.; Venkateshan, S.P. Interaction of surface radiation with free convection in a square cavity. Int. J. Heat Fluid Flow 1993, 14, 260–267. [Google Scholar] [CrossRef]
- Balaji, C.; Venkateshan, S.P. Correlations for free convection and surface radiation in a square cavity. Int. J. Heat Fluid Flow 1994, 15, 249–251. [Google Scholar] [CrossRef]
- Sagade, A.A.; Samdarshi, S.K.; Lahkar, P.J.; Sagade, N.A. Experimental determination of the thermal performance of a solar box cooker with a modified cooking pot. Renew. Energy 2020, 150, 1001–1009. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Faezian, A.; Mirzababaee, S.M.; Zamani, H. Parametric analysis and optimization of a portable evacuated tube solar cooker. Energy 2020, 194, 116816. [Google Scholar] [CrossRef]
- Coccia, G.; Aquilanti, A.; Tomassetti, S.; Comodi, G.; Di Nicola, G. Design, realization, and tests of a portable solar box cooker coupled with an erythritol-based PCM thermal energy storage. Sol. Energy 2020, 201, 530–540. [Google Scholar] [CrossRef]
- Bhave, A.G.; Kale, C.K. Development of a thermal storage e type solar cooker for high temperature cooking using solar salt. Sol. Energy Mater. Sol. Cell 2020, 208, 110394. [Google Scholar] [CrossRef]
- Palanikumar, G.; Shanmugan, S.; Chithambaram, V.; Gorjian, S.; Pruncu, C.I.; Essa, F.A.; Kabeel, A.E.; Panchal, H.; Janarthanan, B.; Ebadi, H.; et al. Thermal investigation of a solar box-type cooker with nano composite phase change materials using flexible thermography. Renew. Energy 2021, 178, 260–282. [Google Scholar] [CrossRef]
- Anilkumar, B.C.; Maniyeri, R.; Anish, S. Design, fabrication and performance assessment of a solar cooker with optimum composition of heat storage materials. Environ. Sci. Pollut. Res. 2021, 28, 63629–63637. [Google Scholar] [CrossRef]
- Cuce, P.M.; Kolayli, S.; Cuce, E. Enhanced performance figures of solar cookers through latent heat storage and low-cost booster reflectors. Int. J. Low-Carbon Technol. 2020, 15, 427–433. [Google Scholar] [CrossRef]
- Vishwakarma, A.; Sinha, S. Box type solar cooker with thermal storage: An overview. Energy Syst. 2022. [Google Scholar] [CrossRef]
- Panchal, H.; Sadasivuni, K.K. Investigation and performance analysis of Schefler reflector solar cooking system integrated with sensible and latent heat storage materials. Int. J. Ambient Energy 2020, 41, 1096–1105. [Google Scholar] [CrossRef]
- Nayak, J.; Sahoo, S.S.; Swain, R.K.; Mishra, A. Heat loss modeling and analysis of solar cooker cavity: An analytical approach. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 454–459. [Google Scholar] [CrossRef]
- Nayak, J.; Sahoo, S.S.; Swain, R.K.; Mishra, A.; Chakrabarty, S. Construction of Box Type Solar Cooker and Its Adaptability to Industrialized Zone. Mater. Today Proc. 2017, 4, 12565–12570. [Google Scholar] [CrossRef]
- Nayak, J.; Sahoo, S.S.; Swain, R.K.; Mishra, A.; Thomas, S. Thermal Performance Analysis of a Box-Type Solar Cooker with Finned Pot: An Experimental Approach. In Advances in Smart Grid and Renewable Energy; SenGupta, S., Zobaa, A.F., Sherpa, K.S., Bhoi, A.K., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2018; Volume 435. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Sadeghirad, R.; Zamani, H.; Kianifar, A.; Mirzababaee, S.M. The performance improvement of an indirect solar cooker using multi-walled carbon nanotube-oil nanofluid: An experimental study with thermodynamic analysis. Renew. Energy 2021, 165, 14–24. [Google Scholar] [CrossRef]
- Kumar, A.; Saxena, A.; Pandey, S.D.; Joshi, S.K. Design and performance characteristics of a solar box cooker with phase change material: A feasibility study for Uttarakhand region, India. Appl. Therm. Eng. 2022, 208, 118196. [Google Scholar] [CrossRef]
- Khallaf, A.M.; Tawfik, M.A.; El-Sebaii, A.A.; Sagade, A.A. Mathematical modeling and experimental validation of the thermal performance of a novel design solar cooker. Sol. Energy 2020, 207, 40–50. [Google Scholar] [CrossRef]
- El Moussaoui, N.; Talbi, S.; Atmane, I.; Kassmi, K.; Schwarzer, K.; Chayeb, H.; Bachiri, N. Feasibility of a new Design of a Parabolic Trough Solar Thermal Cooker (PSTC). Sol. Energy 2020, 201, 866–871. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Sadeghirad, R.; Zamani, H.; Kianifar, A.; Mirzababaee, S.M.; Faezian, A. Experimental study of a nano fluid-based in direct solar cooker: Energy and exergy analyses. Sol. Energy Mater. Sol. Cells 2021, 221, 110879. [Google Scholar] [CrossRef]
- Kajumba, P.K.; Okello, D.; Nyeinga, K.; Nydal, O.J. Experimental investigation of a cooking unit integrated with thermal energy storage system. J. Energy Storage 2020, 32, 101949. [Google Scholar] [CrossRef]
- Nayak, N.; Abu Jarir, H.; Al Ghassani, H. Solar Cooker Study under Oman Conditions for Late Evening Cooking Using Stearic Acid and Acetanilide as PCM Materials. J. Sol. Energy 2016, 2016, 2305875. [Google Scholar] [CrossRef]
- Saxena, A.; Cuce, E.; Tiwari, G.N.; Kumar, A. Design and thermal performance investigation of a box cooker with flexible solar collector tubes: An experimental research. Energy 2020, 206, 118144. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Bennamoun, L.; Simo-Tagne, M. Reviewing the exergy analysis of solar thermal systems integrated with phase change materials. Energies 2021, 14, 724. [Google Scholar] [CrossRef]
- Mofijur, M.; Mahlia, T.M.I.; Silitonga, A.S.; Ong, H.C.; Silakhori, M.; Hasan, M.H.; Putra, N.; Rahman, S. Phase change materials (PCM) for solar energy usages and storage: An overview. Energies 2019, 12, 3167. [Google Scholar] [CrossRef]
- Mlik, M.S.; Iftikhar, N.; Wadood, A.; Khan, M.O.; Asghar, M.U.; Khan, S.; Khurshaid, T.; Kim, K.C.; Rehman, Z.; Rizvi, S. Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alumasa PCM. Energies 2020, 13, 6169. [Google Scholar] [CrossRef]
- The Engineering Tool Box. Available online: https://www.engineeringtoolbox.com (accessed on 1 March 2023).
- ANSYS Fluent® Manual 2022. (accessed on 1 March 2023).
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Principles of Heat and Mass Transfer, 7th ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
Shape of Geometry | Top Wall Boundary Condition | |
---|---|---|
Case 1 | Rectangular | Isothermal |
Case 2 | Rectangular | External heat transfer |
Case 3 | Trapezoidal | Isothermal |
Case 4 | Trapezoidal | External heat transfer |
No. of Cells | Nuc | Nur |
---|---|---|
5625 | 1.062653 | 7.379869 |
8100 | 1.071471 | 7.546431 |
10,000 | 1.07445 | 7.578917 |
Rayleigh Number (Ra) | Simulated Value of Nusselt Number (Nu) | Benchmark Solution of Nusselt Number (Nu) by De Vahl Davis [3] | Error (in %) |
---|---|---|---|
103 | 1.123 | 1.118 | 0.51 |
104 | 2.223 | 2.243 | 0.89 |
105 | 4.601 | 4.509 | 2.04 |
106 | 9.026 | 8.817 | 2.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarangi, A.; Sarangi, A.; Sahoo, S.S.; Mallik, R.K.; Awad, M.M. Conjugate Radiation and Convection Heat Transfer Analysis in Solar Cooker Cavity Using a Computational Approach. Energies 2023, 16, 3868. https://doi.org/10.3390/en16093868
Sarangi A, Sarangi A, Sahoo SS, Mallik RK, Awad MM. Conjugate Radiation and Convection Heat Transfer Analysis in Solar Cooker Cavity Using a Computational Approach. Energies. 2023; 16(9):3868. https://doi.org/10.3390/en16093868
Chicago/Turabian StyleSarangi, Abhisek, Asish Sarangi, Sudhansu Sekhar Sahoo, Ramesh Kumar Mallik, and Mohamed M. Awad. 2023. "Conjugate Radiation and Convection Heat Transfer Analysis in Solar Cooker Cavity Using a Computational Approach" Energies 16, no. 9: 3868. https://doi.org/10.3390/en16093868
APA StyleSarangi, A., Sarangi, A., Sahoo, S. S., Mallik, R. K., & Awad, M. M. (2023). Conjugate Radiation and Convection Heat Transfer Analysis in Solar Cooker Cavity Using a Computational Approach. Energies, 16(9), 3868. https://doi.org/10.3390/en16093868