Particles Morphology of Mechanically Generated Oil Mist Mixtures of SAE 40 Grade Lubricating Oil with Diesel Oil in the Context of Explosion Risk in the Crankcase of a Marine Engine
Abstract
:1. Introduction
2. Materials and Methods
- A previously prepared sample of the test liquid was sprayed using a high-pressure pump and injector.
- The liquid was sprayed in the measurement zone between the Spraytec transmitter and receiver modules.
- The transmitter used a He-Ne (helium-neon) laser that passed through the spray in the measuring zone.
- The light detected was converted into electrical signals by a receiver that detected the light diffraction pattern produced by the sprayed liquid.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
%m(D) | the mass percentage of droplets with a diameter equal to or smaller D |
%V(D) | percentage by volume of droplets with a diameter equal to or smaller D |
A | total area of particles |
CIMAC | the International Council on Combustion Engines |
D | particle diameter |
d0 | atomizer slot diameter |
D[3,2] | Sauter diameter |
D[4,3] | De Brouckere diameter |
DS, D[2,0] | Surface diameter |
DV | percentile of the volume distribution of droplet size (diameter) |
DVol, D[3,0] | volume diameter |
F | the amount of laser light reaching the beam power detector |
F0 | the amount of laser light emitted by the transmitter |
HFFR | high-frequency reciprocating rig |
i | number of the size class with upper particle size xi |
IACS | International Association of Classification Societies |
IGC | International Gas Carrier Code |
IGF | International Code of Safety for Ship Using Gases or Other Low-flashpoint Fuels |
IMO | International Maritime Organization |
l0 | atomizer channel length |
n | the number of particles in i-th size class |
N | the number of size classes |
R | the residual value of the fit between the measured and calculated scattering data |
rXY | Pearson’s linear correlation coefficient of X and Y variables |
RMG | Regulation of the Minister of Economy on quality requirements for liquid fuels |
SAE | Society of Automotive Engineers |
SAE 40 | viscosity grades of lubricating oils according to the SAE J300-2021 standard |
SHD | engine shut down |
SLD | engine slow down |
SOLAS | International Convention for the Safety of Life at Sea |
SPAN | the relative width of the statistical distribution of droplet sizes in the mixture volume |
SSA | the specific surface area of the oil mist |
t | time, moment of data recording |
T | light transmission coefficient |
V | the total volume of particles |
X, Y | variables subjected to statistical analysis |
ρ | density of the tested oil mixture |
σX, σY | standard deviation of variables X and Y |
Appendix A. Tables
Parameter b | Min. Low-Shear-Rate Kinematic Viscosity (mm2/s) a at 100 °C | Max. Low-Shear-Rate KinematicViscosity (mm2/s) a at 100 °C | Min. High-Shear-Rate Viscosity (mPa∙s) a at 150 °C |
---|---|---|---|
Test methods and references | ASTM D445 or ASTM D7042 c | ASTM D445 or ASTM D7042 c | ASTM D4683, ASTM D4741, ASTM D5481, or CEC L-36-90 |
SAE 40 | 12.5 | <16.3 | 3.7 |
Category | Engine Types | Service Characteristics | Backward API Category Compatibility |
---|---|---|---|
CF | Category of engine oils intended for use in engines with direct injection and other compression ignition engines. Intended for off-road engines that use fuel containing more than 0.5% sulfur. | Provides control of: piston deposits, piston, ring, and liner scuffing, wear and corrosion of copper-containing bearings. | CD |
Appendix B
References
- Chybowski, L.; Jakubowski, A.; Żółkiewski, S. Analysis of the Relationship between Selected Ship and Propulsion System Characteristics and the Risk of Main Engine Turbocharger Explosion. J. Mar. Sci. Eng. 2023, 11, 360. [Google Scholar] [CrossRef]
- Chybowski, L.; Twardochleb, M.; Wiśnicki, B. Multi-criteria Decision making in Components Importance Analysis applied to a Complex Marine System. Nase More 2016, 63, 264–270. [Google Scholar] [CrossRef]
- Herdzik, J. Problems of propulsion systems and main engines choice for offshore support vessels. Sci. J. Marit. Univ. Szczec. 2013, 36, 45–50. [Google Scholar]
- Sawicka, M.; Szczepanek, M. Legal conditions regarding the energy efficiency of fishing vessels. Sci. J. Marit. Univ. Szczec. 2013, 36, 170–174. [Google Scholar]
- Borkowski, J.; Kowalak, T.; Myśków, P. Vessel main propulsion engine performance evaluation. J. KONES 2012, 19, 53–60. [Google Scholar] [CrossRef]
- Kazienko, D.; Chybowski, L. Instantaneous Rotational Speed Algorithm for Locating Malfunctions in Marine Diesel Engines. Energies 2020, 13, 1396. [Google Scholar] [CrossRef]
- Ubowska, A.; Szczepanek, M. Engine rooms fire safety – fire-extinguishing system requirements. Sci. J. Marit. Univ. Szczec. 2016, 48, 51–57. [Google Scholar] [CrossRef]
- Krystosik-Gromadzińska, A. Engine room fire safety. Sci. J. Marit. Univ. Szczec. 2016, 47, 29–35. [Google Scholar] [CrossRef]
- Chybowska, D.; Chybowski, L.; Guze, S.; Wilczyński, P. A method for determining critical events during large disasters of production platforms. J. Loss Prev. Process Ind. 2021, 72, 104528. [Google Scholar] [CrossRef]
- MAN B&W. Diesel A/S Crankcase Explosions in Two-stroke Diesel Engines; MAN Burmeister and Wain: København, Denmark, 2002. [Google Scholar]
- Chybowski, L. Eksplozje w Skrzyniach Korbowych Silników Okrętowych—Przyczyny, Zapobieganie i Minimalizacja Skutków; Akademia Morska w Szczecinie: Szczecin, Poland, 2022. [Google Scholar]
- Rattenbury, N. Crankcase expolsions—A historical review—Where we are today. In Crankcase Explosions; IMAREST: London, UK, 2002; pp. 3–13. [Google Scholar]
- Rickaby, P.; Rattenbury, N.; Uebel, H.; Ohlsen, E.; Evans, D.J.; Milne, A.M.; Rose, D.J.; Heikamp, W.; Bowen, P.; Brunk, H. et al. Crankcase Explosions; IMAREST: London, UK, 2002. [Google Scholar]
- Burgoyne, J.; Newitt, D. Crankcase explosions in marine engines. J. Am. Soc. Nav. Eng. 1956, 68, 122–128. [Google Scholar]
- Chybowski, L.; Wiaterek, D.; Jakubowski, A. The Impact of Marine Engine Component Failures upon an Explosion in the Starting Air Manifold. J. Mar. Sci. Eng. 2022, 10, 1850. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Z.; Li, Q. A conceptual framework integrating numerical simulation with system theory based method for quantitative explosion process hazard analysis. Process Saf. Environ. Prot. 2022, 166, 202–211. [Google Scholar] [CrossRef]
- Shamsuddin, D.A.; Fekeri, A.M.; Muchtar, A.; Khan, F.; Khor, B.; Lim, B.; Rosli, M.; Takriff, M. Computational fluid dynamics modelling approaches of gas explosion in the chemical process industry: A review. Process Saf. Environ. Prot. 2023, 170, 112–138. [Google Scholar] [CrossRef]
- Wu, F.; Yu, H.; Pan, X.; Zang, X.; Hua, M.; Wang, H.; Jiang, J. Experimental study of methanol atomization and spray explosion characteristic under negative pressure. Process Saf. Environ. Prot. 2022, 161, 162–174. [Google Scholar] [CrossRef]
- Minkhorst, J. Crank Case Explosions in Diesel Engines, Studiecentrum TNO Voor Scheepsbouw en Navigatie; Maritime University of Szczecin: Delft, The Netherlands, 1957. [Google Scholar]
- Eckhoff, R. Explosion Hazards in the Process Industries; Elsevier: Houston, TX, USA, 2005. [Google Scholar] [CrossRef]
- Valčić, M. The Learning Resource for Marine Engineers www.marinediesels.co.uk, Warshash Maritime Academy, Warsash, Rjeka, n.d. Available online: https://www.scribd.com/doc/27517784/Marine-Diesels-Co-Uk (accessed on 30 April 2021).
- The Hong Kong Special Administrative Region. Report of Investigation into the Engine Room Fire on Board Hong Kong Registered M.T. “An Tai Jiang” on 9 January 2009; Marine Department. Marine Accident Investigation Section: Hong Kong, China, 2009. [Google Scholar]
- Cicek, K.; Celik, M. Application of failure modes and effects analysis to main engine crankcase explosion failure on-board ship. Saf. Sci. 2013, 51, 6–10. [Google Scholar] [CrossRef]
- Wang, Z.-L.; You, J.-X.; Liu, H.-C.; Wu, S.-M. Failure Mode and Effect Analysis using Soft Set Theory and COPRAS Method. Int. J. Comput. Intell. Syst. 2017, 10, 1002. [Google Scholar] [CrossRef]
- Ünver, B.; Gürgen, S.; Sahin, B.; Altın, İ. Crankcase explosion for two-stroke marine diesel engine by using fault tree analysis method in fuzzy environment. Eng. Fail. Anal. 2019, 97, 288–299. [Google Scholar] [CrossRef]
- Wiaterek, D.; Chybowski, L. Assessing the topicality of the problem related to the explosion of crankcases in marine main propulsion engines (1972–2018). Sci. J. Marit. Univ. Szczec. 2022, 71, 33–40. [Google Scholar]
- Ehsan, M.; Rahman, M.; Hasan, M. Effect of Fuel Adulteration on Engine Crankcase Dilution. J. Mech. Eng. 2010, 41, 114–120. [Google Scholar] [CrossRef]
- Chybowski, L. Study of the Relationship between the Level of Lubricating Oil Contamination with Distillation Fuel and the Risk of Explosion in the Crankcase of a Marine Trunk Type Engine. Energies 2023, 16, 683. [Google Scholar] [CrossRef]
- Ferguson, G. Diesel Engine Crankcase Explosion Investigation; SAE Tech. Pap. 510104; SAE: Warrendale, PA, USA, 1951; pp. 1–28. [Google Scholar] [CrossRef]
- CIMAC. Guideline on the Relevance of Lubricationt Flash Point in Connection with Crankcase Explosions; CIMAC Working Group 8 ”Marine Lubricants”: Frankfurt, Germany, 2013. [Google Scholar]
- Graddage, M. Crankcase Explosions—Detection or Prevention ? In Crankcase Explosions; IMAREST: London, UK, 2002; pp. 126–147. [Google Scholar]
- Technomics International. Case Study—Fuel Dilution of Engine Oil in Locomotives. 2022. Available online: https://www.techenomics.net/case-studies/fuel-dilution-engine-oil/ (accessed on 8 June 2022).
- Porowski, R.; Kobylińska, A.; Dziechciarz, A. Kalbarczyk-Jedynak, Doświadczalne i numeryczne badania temperaturowych granic palności propanoli i ich mieszanin z olejem napędowym. Przem. Chem. 2019, 1, 44–48. [Google Scholar] [CrossRef]
- Krupowies, J. Badania Zmian Parametrów Fizykochemicznych Silnikowych Olejów Smarowych Eksploatowanychna Statkach Polskiej Żeglugi Morskiej, Studia Nr; Wyższa Szkoła Morska w Szczecinie: Szczecin, Poland, 1996. [Google Scholar]
- Chybowski, L. The Initial Boiling Point of Lubricating Oil as an Indicator for the Assessment of the Possible Contamination of Lubricating Oil with Diesel Oil. Energies 2022, 15, 7927. [Google Scholar] [CrossRef]
- MDPI. Peer-Review Record. Study of the Relationship between the Level of Lubricating Oil Contamination with Distillation Fuel and the Risk of Explosion in the Crankcase of a Marine Trunk Type Engine. Rev. Rep. 2023, 16, 683. Available online: https://www.mdpi.com/1996-1073/16/2/683/review_report (accessed on 16 February 2023).
- IACS. Requirements Concerning Machinery Installations; International Association of Classification Societies: London, UK, 2016. [Google Scholar]
- IMO. SOLAS—Consolidated Edition 2020; International Maritime Organization: London, UK, 2020. [Google Scholar]
- Nozdrzykowski, K.; Adamczak, S.; Grządziel, Z.; Dunaj, P. The Effect of Deflections and Elastic Deformations on Geometrical Deviation and Shape Profile Measurements of Large Crankshafts with Uncontrolled Supports. Sensors 2020, 20, 5714. [Google Scholar] [CrossRef] [PubMed]
- Nozdrzykowski, K. Applying Harmonic Analysis in the Measurements of Geometrical Deviations of the Crankshafts – Selecting Support Conditions. MAPE 2018, 1, 191–195. [Google Scholar] [CrossRef]
- Nozdrzykowski, K. Error Analysis of Graphical Interpretation of Circularity Profile. Sci. J. Marit. Univ. Szczec. 2006, 10, 329–338. [Google Scholar]
- Babrauskas, V. Ignition Handbook; Society of Fire Protection Engineers: Gaithersburg, MD, USA, 2003. [Google Scholar]
- FireNet Special Interest Network. Maritime Case Histories. 2009. Available online: http://fire.org.uk/marine/incidents.htm (accessed on 24 November 2009).
- Bistrović, M.; Ristov, P.; Komorčec, D. Prediction of potential fire hot spots by using a model based on a computerized real – time view with IR cameras on ships. Sci. J. Marit. Univ. Szczec. 2017, 50, 23–29. [Google Scholar] [CrossRef]
- Bonisławski, M.; Hołub, M.; Borkowski, T.; Kowalak, P. A Novel Telemetry System for Real Time, Ship Main Propulsion Power Measurement. Sensors 2019, 19, 4771. [Google Scholar] [CrossRef]
- DNV-GL. Rules for Classification. Ships Part 5 Ship Types Chapter 7 Liquefied Gas Tankers; DNV-GL: Oslo, Norway, 2018. [Google Scholar]
- Win, G.D. 2-Stroke Dual-Fuel Safety Concept; Winterthur Gas & Diesel: Winterthur, Switzerland, 2021. [Google Scholar]
- Ślesicki, O. Analiza Zabezpieczeń Przeciwpożarowych i Przeciwwybuchowych Stosowanych w Silnikach Sulzer Serii RTA, Praca Dyplomowa Inżynierska; Akademia Morska w Szczecinie, Wydział Mechaniczny ITESO: Szczecin, Poland, 2009. [Google Scholar]
- Hamied, M. Effectiveness of Crankcase-Oil Mist Detectors; University College of Southeast Norway, Bø, Kongsberg: Porsgrunn, Norway, 2016. [Google Scholar]
- Piotrowski, I.; Witkowski, K. Eksploatacja Okrętowych Silników Spalinowych; Akademia Morska w Gdyni: Gdynia, Poland, 2005. [Google Scholar]
- SAB. Operation Manual Part-No. 10980. Version 2.4, 11/2015 VISATRON® Oil Mist Detectors VN115/93, VN116/93, VN215/93, Schaller Automation; SAB: Blieskastel/Saarland, Germany, 2015. [Google Scholar]
- Wu, D.; Zhao, P.; Spitzer, S.; Krietsch, A.; Amyotte, P.; Krause, U. A review on hybrid mixture explosions: Safety parameters, explosion regimes and criteria, flame characteristics. J. Loss Prev. Process Ind. 2023, 82, 104969. [Google Scholar] [CrossRef]
- Islam, S. Crankcase Explosion Mechanism. 2014. Available online: https://www.slideshare.net/saiful12345660/crankcase-explosion-mechanism (accessed on 21 March 2021).
- Schaller Automation. Possibiliteies and Limits of the Prevention of Damage through the Monitoring of Crankcase Compartments; Schaller Automation: Blieskastel, Germany, 2009. [Google Scholar]
- Schaller Automation. Crankcase Explosion. 2020. Available online: https://schaller.sg/product/crankcase-explosion/ (accessed on 20 June 2022).
- Wiaterek, D.; Chybowski, L. Comparison of selected models useful in ranking the root causes of explosions in marine engine crankcases. Sci. J. Marit. Univ. Szczec. 2022, 72, 77–85. [Google Scholar]
- Brünnet, H.; Reppekus, D.; Theobald, M.; Kornatz, G. Formation and avoidance of crankcase explosions in large oil, dual-fuel and gas engines. In Proceedings of the 5th Rostock Large Engine Symposium, Rostock, Germany, 13–14 September 2018; pp. 280–297. [Google Scholar]
- El-Zahlanieh, S.; Jean, A.; Vignes, A.; Dufaud, O. A sneak peek into the phenomenology of fuel mist explosions: The key role of vapor fractions. J. Loss Prev. Process Ind. 2023, 83, 105029. [Google Scholar] [CrossRef]
- Krystosik-Gromadzińska, A. Affordable hybrid thermography for merchant vessel engine room fire safety. Sci. J. Marit. Univ. Szczec. 2019, 57, 21–26. [Google Scholar] [CrossRef]
- Herdzik, J. Remarks of the FMEA procedures for ships with dynamic positioning systems. Zesz. Nauk. Akad. Mor. W Gdyni 2015, 91, 47–53. [Google Scholar]
- Marine Diesels. Crankcase Explosions—Oil Mist Detection, (n.d.). Available online: http://www.marinediesels.info/members/CrankcaseExplosions/Oil_Mist_Detection.htm (accessed on 17 March 2021).
- Burgoyne, J.; Cohen, L. The effect of drop size on flame propagation in liquid aerosols. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1954, 225, 375–392. [Google Scholar] [CrossRef]
- Nozdrzykowski, K.; Grządziel, Z.; Grzejda, R.; Warzecha, M.; Stępień, M. An Analysis of Reaction Forces in Crankshaft Support Systems. Lubricants 2022, 10, 151. [Google Scholar] [CrossRef]
- Nozdrzykowski, K.; Grządziel, Z.; Dunaj, P. Determining geometrical deviations of crankshafts with limited detection possibilities due to support conditions. Measurement 2022, 187, 110430. [Google Scholar] [CrossRef]
- Łosiewicz, Z. Bezpieczeństwo pracy na morzu—Weryfikacja kompetencji załóg w realnych warunkach zagrożenia pożarowego statku. Autobusy 2016, 6, 260–263. [Google Scholar]
- Krystosik-Gromadzińska, A. Wybrane Problemy Kształtowania Bezpieczeństwa Pożarowego Siłowni Okrętowej; Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie: Szczecin, Poland, 2020. [Google Scholar]
- Herdzik, J. ISM Code on Vessels with or Without Impact on a Number of Incidents Threats. J. KONES. 2019, 26, 53–59. [Google Scholar] [CrossRef]
- Bejger, A.; Chybowski, L.; Gawdzińska, K. Utilising elastic waves of acoustic emission to assess the condition of spray nozzles in a marine diesel engine. J. Mar. Eng. Technol. 2018, 17, 153–159. [Google Scholar] [CrossRef]
- Klyus, O.; Zamiatina, N. Residual fuel atomization process simulation. Combust. Engines 2017, 169, 108–112. [Google Scholar] [CrossRef]
- Dyson, C.; Priest, M.; Lee, P. Simulating the Misting of Lubricant in the Piston Assembly of an Automotive Gasoline Engine: The Effect of Viscosity Modifiers and Other Key Lubricant Components. Tribol. Lett. 2022, 70, 49. [Google Scholar] [CrossRef]
- Avergård, P.; Lindström, F. Modelling of Crankcase Gas Behaviour in a Heavy-Duty Diesel Engine; Lund Institute of Technology: Lund, Sweden, 2003. [Google Scholar]
- Berthome, V.; Chalet, D.; Hetet, J.-F. Consequence of Blowby Flow and Idling Time on Oil Consumption and Particulate Emissions in Gasoline Engine. Energies 2022, 15, 8772. [Google Scholar] [CrossRef]
- HHerbst, M.; Priebsch, H. Simulation of Piston Ring Dynamics and Their Effect on Oil Consumption. In Proceedings of the SAE 2000 World Congress, Detroit, MI, USA, 6–9 March 2000; pp. 1–14. [Google Scholar] [CrossRef]
- Shell, P. Relationship Between Oil Consumption, Deposit Formation and Piston Ring Motion for Single-Cylinder Diesel Engines. In Proceedings of the International Congress & Exposition, Detroit, MI, USA, 24–28 February 1992; pp. 1–15. [Google Scholar] [CrossRef]
- Huizenga, P. What Does the 2nd Piston Ring Do? Purpose and Function Explained! Wiseco. 2020. Available online: https://wiseco.com/blog/2nd-ring-purpose-and-function-explained (accessed on 21 February 2022).
- Xiong, H.; Sun, W. Investigation of Droplet Atomization and Evaporation in Solution Precursor Plasma Spray Coating. Coatings 2017, 7, 207. [Google Scholar] [CrossRef]
- Li, T.; Nishida, K.; Hiroyasu, H. Droplet size distribution and evaporation characteristics of fuel spray by a swirl type atomizer. Fuel 2011, 90, 2367–2376. [Google Scholar] [CrossRef]
- SAB. Operation Manual Version 1.2 Visatron® VN301plus/VN301plusEX IACS UR M67/M10 Type Approved; Schaller Automation: Blieskastel, Germany, 2015; 301p. [Google Scholar]
- Concept Smoke Systems. Concept Oil Mist Generator (OMG). 2023. Available online: https://www.concept-smoke.co.uk/products/concept_omg.aspx (accessed on 25 February 2023).
- Hyrouki, H.; Toshikazu, K. Fuel droplet size distribution in diesel combustion chamber. Bull. JSME 1976, 19, 1064–1072. [Google Scholar]
- Society of Automotive Engineers. SAE J300-2021. Engine Oil Viscosity Classification; SAE International: Warrendale, PA, USA, 2021. [Google Scholar]
- API. Engine Oil Guide. 2013. Available online: https://www.api.org/~/media/files/certification/engine-oil-diesel/publications/mom_guide_english_2013.pdf (accessed on 26 February 2023).
- Oleje-Smary. AGIP Cladium 120 SAE 40 CD. 2022. Available online: https://oleje-smary.pl/pl/p/AGIP-Cladium-120-SAE-40-CD-20-litrow/188 (accessed on 12 July 2022).
- Orlen, S.P.; Napędowy, O. Ecodiesel Ultra B, D, F, Olej napędowy arktyczny klasy 2, Efecta Diesel B,D,F, Verva ON B,D,F, PKN Orlen S.A., Płock, 2022. Available online: https://www.orlen.pl/pl/dla-biznesu/produkty/paliwa/oleje-napedowe/ekodiesel-ultra-klasa-2 (accessed on 1 June 2022).
- Minister Gospodarki RP. Rozporządzenie Ministra Gospodarki z Dnia 9 Października 2015 r. w Sprawie Wymagań Jakościowych Dla Paliw Ciekłych; Ministerstwo Gospodarki RP: Warszawa, Poland, 2015. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150001680/O/D20151680.pdf (accessed on 1 April 2023).
- PKN Orlen, S.A. ZN-ORLEN-5 Manufacturer Standard—Przetwory naftowe. Olej napędowy EFECTA DIESEL; PKN Orlen S.A.: Płock, Poland, 2019. [Google Scholar]
- ISO 8217:2017; Petroleum products—Fuels (class F)—Specifications of Marine Fuels. 6th ed. ISO: Geneva, Switzerland, 2017.
- Piotrowski, I.; Witkowski, K. Okrętowe Silniki Spalinowe, 3rd ed.; Trademar: Gdynia, Poland, 2013. [Google Scholar]
- Kowalak, P.; Myśków, J.; Tuński, T.; Bykowski, D.; Borkowski, T. A method for assessing of ship fuel system failures resulting from fuel changeover imposed by environmental requirements. Eksploat. I Niezawodn. Maint. Reliab. 2021, 23, 619–626. [Google Scholar] [CrossRef]
- Oleje-Smary. AGIP Cladium 120 SAE 30 CD. 2022. Available online: https://oleje-smary.pl/pl/p/AGIP-Cladium-120-SAE-30-CD-20-litrow/186 (accessed on 12 July 2022).
- ITALCO (Far East) Pte Ltd. Product Data Sheet—Eni Cladium 120 (Series); ITALCO: Singapore, 2017. [Google Scholar]
- Chybowski, L. Lube Oil—Diesel Oil Mixes—Dataset. 2022. Available online: https://doi.org/10.17632/scbx3h2bmf.3 (accessed on 1 April 2023).
- Chybowski, L.; Szczepanek, M.; Gawdzińska, K.; Klyus, O. Morphology of Oil Mechanically Generated Mist from Mixes of Grade SAE 40 Lubricating Oil and Diesel Oil, Dataset. 2023. Available online: https://doi.org/10.17632/wtp6z3skgm.1 (accessed on 1 April 2023).
- Prendes-Gero, M.-B.; Álvarez-Fernández, M.-I.; Conde-Fernández, L.; Luengo-García, J.-C.; González-Nicieza, C. Experimental study of the characteristics of explosions generated by methane mixtures, as a function of the type of atmosphere and environmental conditions. J. Loss Prev. Process Ind. 2022, 80, 104878. [Google Scholar] [CrossRef]
- Malvern Instruments. Spraytec User Manual; Malvern Instruments: Worcestershire, UK, 2007. [Google Scholar]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Hahn, D. Light Scattering Theory. 2009 1-13. Available online: http://plaza.ufl.edu/dwhahn/RayleighandMieLightScattering.pdf (accessed on 26 February 2023).
- Jenkins, F.; White, H. Fundamentals of Optics, IV; McGraw-Hill Higher Education: Boston, MA, USA, 2001. [Google Scholar]
- Polmo. Naprawa Samochodów Star 266; WKiŁ: Warszawa, Poland, 1976. [Google Scholar]
- WSK, PRW3. Próbnik Wtryskiwaczy. 2023. Available online: http://www.wsk.com.pl/wtrysk_2.html (accessed on 26 January 2023).
- Angraini, N.; Kurniawati, A. Comparative Analysis of Fintech Software Quality Against MSMEs Using the ISO 25010:2011 Method. Int. Res. J. Adv. Eng. Sci. 2021, 6, 167–175. [Google Scholar]
- Barlow, R.; Proschan, F. Statistical Theory of Reliability and Life Testing: Probability Models; Holt, Rinehart and Winston: New York, NY, USA, 1974. [Google Scholar]
- Tian, J.; Chen, B.; Li, D. Light transmittance dynamics and spectral absorption characteristics during auxiliary cryogen spray cooling in laser dermatology. Lasers Med. Sci. 2022, 37, 2079–2086. [Google Scholar] [CrossRef]
- Gant, S. Generation of Flammable Mists from High Flashpoint Fluids: Literature Review; HSE: Buxton, UK, 2013. [Google Scholar]
- ISO 9276-2; Representation of Results of Particle Size Analysis—Part 2: Calculation of Average Particle Sizes/Diameters and Moments from Particle Size Distributions. ISO: Geneva, Switzerland, 2014.
- Anton Paar, Particle size distribution. 2023. Available online: https://wiki.anton-paar.com/pl-pl/particle-size-distribution/ (accessed on 6 February 2023).
- Azzopardi, B. Sauter Mean Diameter. In: A-to-Z Guid. to Thermodyn. Heat Mass Transf. Fluids Eng., Begellhouse, 2011. Available online: https://doi.org/10.1615/AtoZ.s.sauter_mean_diameter (accessed on 1 April 2023).
- Michalska-Pożoga, I.; Szczepanek, M. Analysis of Particles’ Size and Degree of Distribution of a Wooden Filler in Wood–Polymer Composites. Materials 2021, 14, 6251. [Google Scholar] [CrossRef] [PubMed]
- Risi, A.; Sante, R.; Colangelo, G. Optical Characterization of a Diesel Spray at High Temperature and Pressure. In XII Convegno Naz; A.I.VE.LA: Napoli, Italy, 2004; pp. 1–13. [Google Scholar]
- Sauter, J. Die Grössenbestimmung von Brennstoffteilchen, Forschungsarbeiten auf dem Gebiete des Ingenieurwesens (Mitteilung aus dem Laboratorium für technische Physik der Technischen Hochschule München), Heft 279; VDI-Verlag: Berlin, Germany, 1926. [Google Scholar]
- Sauter, J. Untersuchung der von Spritzvergasern Gelieten Zerstäubung, Forschungsarbeiten auf Dem Gebiete des Ingenieurwesens, Heft 312; VDI-Verlag: Berlin, Germany, 1928. [Google Scholar]
- United Technologies. Graviner, The MK7 Oil Mist Detector Presentation, Graviner. United Technologies: Hartford, CT, USA.
- Stocznia Szczecińska. Detektor o Wysokiej Czułości Typ 4 do Określania Stężenia Mgły Oplejowej. Typ Komparatorowy i Niwelacyjny; Stocznia Szczecińska: Szczecin, Poland, 1997. [Google Scholar]
- Włodarski, K.; Witkowski, K. Okrętowe Silniki Spalinowe. Podstawy Teoretyczne; Akademia Morska w Gdyni: Gdynia, Poland, 2006. [Google Scholar]
- Włodarski, J. Stany Eksploatacyjne Okrętowych Silników Spalinowych; Wydawnictwo Uczelniane WSM w Gdyni: Gdynia, Poland, 1998. [Google Scholar]
- Jääskeläinen, H. Oile Service Classifications, DieselNet Technol Guid. 2022. Available online: https://dieselnet.com/tech/lube_classifications.php (accessed on 26 February 2023).
Oil | Specification | Declared by the Manufacturer [83,90,91] | Measured Value [28] |
---|---|---|---|
Agip/Eni Cladium 120 SAE 40 API CF | Kinematic viscosity (according to EN ISO 3104) | 160 mm2/s at 40 °C | 159.90 mm2/s at 40 °C |
15.7 mm2/s at 100 °C | 15.21 mm2/s at 100 °C | ||
Viscosity index | 100 | 95.3 | |
Total base number | 12 mg KOH/g | ||
Flashpoint (marked in the closed crucible) | 235 °C | 178 °C | |
Pour point | −15 °C | ||
Density | 900 kg/m3 at 15 °C | 898.44 kg/m3 at 15 °C |
Specification | Declared by the Manufacturer [84] | Measured Value [28] |
---|---|---|
Cetane index | ≤51 | 52 |
Initial boiling point | 75–180 °C | 181 °C |
Boiling temperature range | 95% vol. distils to 360 °C | |
Flashpoint (determined in a closed crucible) | >56 °C | 65 °C |
Autoignition temperature (according to DIN51794:2003-05) | approx. 240 °C | |
Kinematic viscosity (according to EN ISO 3104) | 1.5–4.5 mm2/s (2.549 mm2/s) at 40 °C | 2.897 mm2/s at 40 °C |
approx. 2.151 mm2/s at 50 °C | 2.443 mm2/s at 50 °C | |
Density | 820-845 kg/m3 at 15 °C | 835.81 kg/m3 at 15 °C |
Relative vapor density | approx. 6 (air = 1) | |
Cloud point | −7 °C | |
Cold filter plugging point | −8 °C |
Parameter | Value |
---|---|
Environmental conditions: | |
Room air temperature | 20 °C |
Atmospheric pressure | 1007 hPa |
Injection parameters: | |
Injection pump | WSK PRW3M-00 (PO1B.100S) |
The maximum injection pump pressure | 40 MPa |
Measuring manometer class | 0.6 |
The scale interval value of the measuring manometer | 0.4 |
Atomizer type | D1LMK 148/1 |
Injected liquid temperature | 80 °C |
Injector opening pressure | 28 MPa |
The set dose of the injected liquid | 0.6 cm3 |
The time from opening the injector to conducting morphology testing of the liquid droplet suspension in the air | 0.0748 ms |
Parameter | Value |
---|---|
Instrument | Spraytec STP 5000—Open Spray |
Operator | Zetasizer |
Detector | 11 CQ-CDL |
Method of measurement | Laser-diffraction (small-angle scattering) |
Optical model | The Mie theory and the Fraunhofer approximation |
Aerosol concentration range | Multiple Dispersion Correction System |
Light source | Laser type He-Ne, 2 mW, 632.8 nm |
Lens | 300 mm |
Particulate refractive index | 1.46 + 0.000i |
Dispersant refractive index | 1.00 |
Path length | 9.1 mm |
Scatter start | 1 |
Scatter end | 36 |
Multiple scatter | On |
Scattering threshold | 1 |
Minimum size of particle | 0.1 μm |
Maximum size of particle | 2500 μm |
Measurement error | <±1% for Dv(<50% v/v) |
Trigger transmission | <90% |
Trigger delay | −50 ms |
Parameter | Value |
---|---|
Spray profile: | |
Type | Nozzle spray |
The offset of the center of the plume from the lens Z | 165 mm |
The offset of the center of the plume from the beam P | 0 mm |
The angle of the spray cone A | 13° |
The length of the spray cone B | 40 mm |
Direction of spray angle (0°—vertically upward, 180°—vertically downward) | 90° |
The geometry of the atomizer slot: | |
Atomizer slot diameter d0 | 0.34 mm |
Atomizer channel length l0 | 1.2 mm |
Atomizer channel ratio l0/d0 | 3.53 |
Number of holes | 3 |
Pearson’s rXY Coefficient Value | Interpretation of the Relationship between Two Variables |
---|---|
0.000 ≤ rXY < 0.200 | Very low correlation. No linear relationship. |
0.200 ≤ rXY < 0.400 | Low correlation. The relationship is clear. |
0.400 ≤ rXY < 0.600 | Moderate correlation. Significant relationship. |
0.600 ≤ rXY < 0.800 | High correlation. Significant relationship. |
0.800 ≤ rXY ≤ 1.000 | Very high correlation. Very high to full relationship. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chybowski, L.; Szczepanek, M.; Gawdzińska, K.; Klyus, O. Particles Morphology of Mechanically Generated Oil Mist Mixtures of SAE 40 Grade Lubricating Oil with Diesel Oil in the Context of Explosion Risk in the Crankcase of a Marine Engine. Energies 2023, 16, 3915. https://doi.org/10.3390/en16093915
Chybowski L, Szczepanek M, Gawdzińska K, Klyus O. Particles Morphology of Mechanically Generated Oil Mist Mixtures of SAE 40 Grade Lubricating Oil with Diesel Oil in the Context of Explosion Risk in the Crankcase of a Marine Engine. Energies. 2023; 16(9):3915. https://doi.org/10.3390/en16093915
Chicago/Turabian StyleChybowski, Leszek, Marcin Szczepanek, Katarzyna Gawdzińska, and Oleh Klyus. 2023. "Particles Morphology of Mechanically Generated Oil Mist Mixtures of SAE 40 Grade Lubricating Oil with Diesel Oil in the Context of Explosion Risk in the Crankcase of a Marine Engine" Energies 16, no. 9: 3915. https://doi.org/10.3390/en16093915
APA StyleChybowski, L., Szczepanek, M., Gawdzińska, K., & Klyus, O. (2023). Particles Morphology of Mechanically Generated Oil Mist Mixtures of SAE 40 Grade Lubricating Oil with Diesel Oil in the Context of Explosion Risk in the Crankcase of a Marine Engine. Energies, 16(9), 3915. https://doi.org/10.3390/en16093915