Analyzing the Effect of Nano-Sized Conductive Additive Content on Cathode Electrode Performance in Sulfide All-Solid-State Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Synthesis of NCM811
2.2. Material Characterization Method
2.3. Coin Cell Fabrication Method of ASSLBs
2.4. Electrochemical Characterization Method
3. Result and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blomgren, G.E. The Development and Future of Lithium ion Batteries. J. Electrochem. Soc. 2016, 164, A5019. [Google Scholar] [CrossRef]
- Kang, Y.; Deng, C.; Chen, Y.; Liu, X.; Liang, Z.; Li, T.; Hu, Q.; Zhao, Y. Binder-free Electrodes and their Application for Li-ion Batteries. Nanoscale Res. Lett. 2020, 15, 112. [Google Scholar] [CrossRef] [PubMed]
- Love, C.T.; Buesser, C.; Johannes, M.D.; Swider-Lyons, K.E. Innovating Safe Lithium-ion Batteries Through Basic to Applied Research. J. Electrochem. Energy Convers. Storage 2018, 15, 011006. [Google Scholar] [CrossRef]
- Finegan, D.P.; Darcy, E.; Keyser, M.; Tjaden, B.; Heenan, T.M.; Jervis, R.; Bailey, J.J.; Vo, N.T.; Magdysyuk, O.V.; Drakopoulos, M. Identifying the Cause of Rupture of Li-Ion Batteries During Thermal Runaway. Adv. Sci. 2018, 5, 1700369. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N. A Review of Lithium-ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D.P.; Zhang, J. Recent Advances in All-solid-state Rechargeable Lithium Batteries. Nano Energy 2017, 33, 363–386. [Google Scholar] [CrossRef]
- Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z. A Review of Composite Solid-state Electrolytes for Lithium Batteries: Fundamentals, Key Materials and Advanced Structures. Chem. Soc. Rev. 2020, 49, 8790–8839. [Google Scholar] [CrossRef]
- Miura, A.; Rosero-Navarro, N.C.; Sakuda, A.; Tadanaga, K.; Phuc, N.H.; Matsuda, A.; Machida, N.; Hayashi, A.; Tatsumisago, M. Liquid-phase Syntheses of Sulfide Electrolytes for All-solid-state Lithium Battery. Nat. Rev. Chem. 2019, 3, 189–198. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. High-energy Long-cycling All-solid-state Lithium Metal Batteries Enabled by Silver–carbon Composite Anodes. Nat. Energy 2020, 5, 299–308. [Google Scholar] [CrossRef]
- Tan, D.H.; Chen, Y.-T.; Yang, H.; Bao, W.; Sreenarayanan, B.; Doux, J.-M.; Li, W.; Lu, B.; Ham, S.-Y.; Sayahpour, B. Carbon-free High-loading Silicon Anodes Enabled by Sulfide Solid Electrolytes. Science 2021, 373, 1494–1499. [Google Scholar] [CrossRef]
- Park, N.-Y.; Park, G.-T.; Kim, S.-B.; Jung, W.; Park, B.-C.; Sun, Y.-K. Degradation Mechanism of Ni-rich Cathode Materials: Focusing on Particle Interior. ACS Energy Lett. 2022, 7, 2362–2369. [Google Scholar] [CrossRef]
- Zhang, S.S. Problems and their Origins of Ni-rich Layered Oxide Cathode Materials. Energy Stor. Mater. 2020, 24, 247–254. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A.; Zaghib, K.; Groult, H. Comparative Issues of Cathode Materials for Li-ion Batteries. Inorganics 2014, 2, 132–154. [Google Scholar] [CrossRef]
- Voronina, N.; Sun, Y.-K.; Myung, S.-T. Co-free Layered Cathode Materials for High Energy Density Lithium-ion Batteries. ACS Energy Lett. 2020, 5, 1814–1824. [Google Scholar] [CrossRef]
- Oh, P.; Yun, J.; Choi, J.H.; Nam, G.; Park, S.; Embleton, T.J.; Yoon, M.; Joo, S.H.; Kim, S.H.; Jang, H. New Ion Substitution Method to Enhance Electrochemical Reversibility of Co-Rich Layered Materials for Li-Ion Batteries. Adv. Energy Mater. 2023, 13, 2202237. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, C.; Park, S.; Hwang, M.; Embleton, T.J.; Ko, K.; Jo, M.; Saqib, K.S.; Yun, J.; Jo, M. Improved Electrochemical Performance Using Well-dispersed Carbon Nanotubes as Conductive Additive in the Ni-rich Positive Electrode of Lithium-ion Batteries. Electrochem. Commun. 2023, 146, 107419. [Google Scholar] [CrossRef]
- Amin, R.; Chiang, Y.-M. Characterization of Electronic and Ionic Transport in Li1−xMi0.33Mn0.33Co0.33O2 (NMC333) and Li1−xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content. J. Electrochem. Soc. 2016, 163, A1512. [Google Scholar] [CrossRef]
- Choi, J.; Lee, C.; Park, S.; Embleton, T.J.; Ko, K.; Jo, M.; Saleem Saqib, K.; Yun, J.; Jo, M.; Son, Y. Analysis of Electrochemical Performance with Dispersion Degree of CNTs in Electrode According to Ultrasonication Process and Slurry Viscosity for Lithium-Ion Battery. Nanomaterials 2022, 12, 4271. [Google Scholar] [CrossRef]
- Liu, T.; Sun, S.; Zang, Z.; Li, X.; Sun, X.; Cao, F.; Wu, J. Effects of Graphene with Different Sizes as Conductive Additives on the Electrochemical Performance of a LiFePO4 Cathode. RSC Adv. 2017, 7, 20882–20887. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, P.; Qu, Z.; Yan, Y.; Lai, C.; Liu, T.; Zhang, S. Conductive Carbon Nanofiber Interpenetrated Graphene Architecture for Ultra-stable Sodium ion Battery. Nat. Commun. 2019, 10, 3917. [Google Scholar] [CrossRef]
- Embleton, T.J.; Yun, J.; Choi, J.H.; Kim, J.; Ko, K.; Kim, J.; Son, Y.; Oh, P. Lithium-enhanced Functionalized Carbon Nanofibers as a Mixed Electronic/Ionic Conductor for Sulfide All Solid-state Batteries. Appl. Surf. Sci. 2023, 610, 155490. [Google Scholar] [CrossRef]
- Xiao, Y.; Miara, L.J.; Wang, Y.; Ceder, G. Computational Screening of Cathode Coatings for Solid-state Batteries. Joule 2019, 3, 1252–1275. [Google Scholar] [CrossRef]
- Doerrer, C.; Capone, I.; Narayanan, S.; Liu, J.; Grovenor, C.R.; Pasta, M.; Grant, P.S. High Energy Density Single-Crystal NMC/Li6PS5Cl Cathodes for All-solid-state Lithium-metal Batteries. ACS Appl. Mater. Interfaces 2021, 13, 37809–37815. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.H.S.; Wu, E.A.; Nguyen, H.; Chen, Z.; Marple, M.A.T.; Doux, J.-M.; Wang, X.; Yang, H.; Banerjee, A.; Meng, Y.S. Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte. ACS Energy Lett. 2019, 4, 2418–2427. [Google Scholar] [CrossRef]
- Yoon, K.; Kim, J.-J.; Seong, W.M.; Lee, M.H.; Kang, K. Investigation on the Interface Between Li10GeP2S12 Electrolyte and Carbon Conductive Agents in All-solid-state Lithium Battery. Sci. Rep. 2018, 8, 8066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Leichtweiß, T.; Culver, S.P.; Koerver, R.; Das, D.; Weber, D.A.; Zeier, W.G.; Janek, J. The Detrimental Effects of Carbon Additives in Li10GeP2S12-based Solid-state Batteries. ACS Appl. Mater. Interfaces 2017, 9, 35888–35896. [Google Scholar] [CrossRef] [PubMed]
- Quemin, E.; Dugas, R.; Koç, T.; Hennequart, B.; Chometon, R.; Tarascon, J.-M. Decoupling Parasitic Reactions at the Positive Electrode Interfaces in Argyrodite-Based Systems. ACS Appl. Mater. Interfaces 2022, 14, 49284–49294. [Google Scholar] [CrossRef]
- Walther, F.; Randau, S.; Schneider, Y.; Sann, J.; Rohnke, M.; Richter, F.H.; Zeier, W.G.; Janek, J. Influence of Carbon Additives on the Decomposition Pathways in Cathodes of Lithium Thiophosphate-Based All-Solid-State Batteries. Chem. Mater. 2020, 32, 6123–6136. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, H.; Zheng, C.; Xia, Y.; Liang, C.; Huang, H.; Gan, Y.; Tao, X.; Zhang, W. All-solid-state Batteries with Slurry Coated LiNi0.8Co0.1Mn0.1O2 Composite Cathode and Li6PS5Cl Electrolyte: Effect of Binder Content. J. Power Sources 2018, 391, 73–79. [Google Scholar] [CrossRef]
- Xia, Y.; Li, J.; Zhang, J.; Zhou, X.; Huang, H.; He, X.; Gan, Y.; Xiao, Z.; Zhang, W. Yttrium Stabilized Argyrodite Solid Electrolyte with Enhanced Ionic Conductivity and Interfacial Stability for All-solid-state Batteries. J. Power Sources 2022, 543, 231846. [Google Scholar] [CrossRef]
- Ye, Q.; Li, X.; Zhang, W.; Xia, Y.; He, X.; Huang, H.; Gan, Y.; Xia, X.; Zhang, J. Slurry-Coated LiNi0.8Co0.1Mn0.1O2–Li3InCl6 Composite Cathode with Enhanced Interfacial Stability for Sulfide-Based All-Solid-State Batteries. ACS Appl. Mater. Interfaces 2023, 15, 18878–18888. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yan, M.; Li, Y.; Vinado, C.; Yang, J. Separating Electronic and Ionic Conductivity in Mix-conducting Layered Lithium Transition-Metal Oxides. J. Power Sources 2018, 393, 75–82. [Google Scholar] [CrossRef]
- Uddin, M.-J.; Cho, S.-J. Reassessing the Bulk Ionic Conductivity of Solid-state Electrolytes. Sustain. Energy Fuels 2018, 2, 1458–1462. [Google Scholar] [CrossRef]
- Zuo, T.-T.; Walther, F.; Ahmed, S.; Rueß, R.; Hertle, J.; Mogwitz, B.; Volz, K.; Janek, J. Formation of an Artificial Cathode–Electrolyte Interphase to Suppress Interfacial Degradation of Ni-Rich Cathode Active Material with Sulfide Electrolytes for Solid-State Batteries. ACS Energy Lett. 2023, 8, 1322–1329. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, W.; Chen, X.; Das, D.; Ruess, R.; Gautam, A.; Walther, F.; Ohno, S.; Koerver, R.; Zhang, Q.; et al. Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solid-State Batteries. Adv. Energy Mater. 2021, 11, 2100654. [Google Scholar] [CrossRef]
- Oh, G.; Hirayama, M.; Kwon, O.; Suzuki, K.; Kanno, R. Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte. Chem. Mater. 2016, 28, 2634–2640. [Google Scholar] [CrossRef]
- Li, B.; Sun, Z.; Lv, N.; Hu, Y.; Jiang, L.; Zhang, Z.; Liu, F. Dual Protection of a Li–Ag Alloy Anode for All-Solid-State Lithium Metal Batteries with the Argyrodite Li6PS5Cl Solid Electrolyte. ACS Appl. Mater. Interfaces 2022, 14, 37738–37746. [Google Scholar] [CrossRef]
- Li, X.; Jin, L.; Song, D.; Zhang, H.; Shi, X.; Wang, Z.; Zhang, L.; Zhu, L. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 Cathode With High Discharge Capacity and Rate Performance for All-solid-state Lithium Battery. J. Energy Chem. 2020, 40, 39–45. [Google Scholar] [CrossRef]
- Ito, S.; Fujiki, S.; Yamada, T.; Aihara, Y.; Park, Y.; Kim, T.Y.; Baek, S.-W.; Lee, J.-M.; Doo, S.; Machida, N. A Rocking Chair Type All-solid-state Lithium ion Battery Adopting Li2O–ZrO2 Coated LiNi0.8Co0.15Al0.05O2 and a Sulfide Based Electrolyte. J. Power Sources 2014, 248, 943–950. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Yang, J.; Wang, J.; Yao, L.; Yao, X.; Cui, P.; Xu, X. Interface Re-engineering of Li10GeP2S12 Electrolyte and Lithium Anode for All-solid-state Lithium Batteries with Ultralong Cycle Life. ACS Appl. Mater. Interfaces 2018, 10, 2556–2565. [Google Scholar] [CrossRef]
- Swamy, T.; Chen, X.; Chiang, Y.-M. Electrochemical Redox Behavior of Li Ion Conducting Sulfide Solid Electrolytes. Chem. Mater. 2019, 31, 707–713. [Google Scholar] [CrossRef]
- Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. Adv. Energy Mater. 2016, 6, 1501590. [Google Scholar] [CrossRef]
- Nara, H.; Mukoyama, D.; Shimizu, R.; Momma, T.; Osaka, T. Systematic Analysis of Interfacial Resistance Between the Cathode Layer and the Current Collector in Lithium-ion Batteries by Electrochemical Impedance Spectroscopy. J. Power Sources 2019, 409, 139–147. [Google Scholar] [CrossRef]
- Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L. Interfaces in Solid-State Lithium Batteries. Joule 2018, 2, 1991–2015. [Google Scholar] [CrossRef]
- Luntz, A.C.; Voss, J.; Reuter, K. Interfacial Challenges in Solid-State Li Ion Batteries. J. Phys. Chem. Lett. 2015, 6, 4599–4604. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Huang, T.; Geng, Z.; Yu, A. Reducing Interfacial Resistance of a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte/Electrode Interface by Polymer Interlayer Protection. RSC Adv. 2020, 10, 10038–10045. [Google Scholar] [CrossRef]
Charge Capacity (mAh/g) | Discharge Capacity (mAh/g) | ICE (%) | Discharge Capacity @ 1st (mAh/g) | Discharge Capacity @ 50th (mAh/g) | Capacity Retention @ 50th (%) | |
---|---|---|---|---|---|---|
3 wt% CB | 240.7 | 185.4 | 77.0 | 145.1 | 95.9 | 66.1 |
5 wt% CB | 234.6 | 187.8 | 80.1 | 148.6 | 97.1 | 65.4 |
7 wt% CB | 242.9 | 189.5 | 78.0 | 153.5 | 68.4 | 44.6 |
Sample | Rbulk (Ω) | RGB (Ω) | RCT + SEI (Ω) | |
---|---|---|---|---|
After 50th cycle | 3 wt% CB | 27.4 | 56.8 | 250.8 |
5 wt% CB | 33.9 | 56.0 | 286.8 | |
7 wt% CB | 43.3 | 59.9 | 399.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.H.; Choi, S.; Embleton, T.J.; Ko, K.; Saqib, K.S.; Ali, J.; Jo, M.; Hwang, J.; Park, S.; Kim, M.; et al. Analyzing the Effect of Nano-Sized Conductive Additive Content on Cathode Electrode Performance in Sulfide All-Solid-State Lithium-Ion Batteries. Energies 2024, 17, 109. https://doi.org/10.3390/en17010109
Choi JH, Choi S, Embleton TJ, Ko K, Saqib KS, Ali J, Jo M, Hwang J, Park S, Kim M, et al. Analyzing the Effect of Nano-Sized Conductive Additive Content on Cathode Electrode Performance in Sulfide All-Solid-State Lithium-Ion Batteries. Energies. 2024; 17(1):109. https://doi.org/10.3390/en17010109
Chicago/Turabian StyleChoi, Jae Hong, Sumyeong Choi, Tom James Embleton, Kyungmok Ko, Kashif Saleem Saqib, Jahanzaib Ali, Mina Jo, Junhyeok Hwang, Sungwoo Park, Minhu Kim, and et al. 2024. "Analyzing the Effect of Nano-Sized Conductive Additive Content on Cathode Electrode Performance in Sulfide All-Solid-State Lithium-Ion Batteries" Energies 17, no. 1: 109. https://doi.org/10.3390/en17010109
APA StyleChoi, J. H., Choi, S., Embleton, T. J., Ko, K., Saqib, K. S., Ali, J., Jo, M., Hwang, J., Park, S., Kim, M., Hwang, M., Lim, H., & Oh, P. (2024). Analyzing the Effect of Nano-Sized Conductive Additive Content on Cathode Electrode Performance in Sulfide All-Solid-State Lithium-Ion Batteries. Energies, 17(1), 109. https://doi.org/10.3390/en17010109