A Numerical Investigation of Supersonic Combustion Flow Control by Nanosecond-Pulsed Actuations
Abstract
:1. Introduction
2. Models and Methods
2.1. Governing Equations
2.2. Nanosecond Discharge Model
2.3. Geometry and Boundary Conditions
3. Results and Discussion
3.1. Baseline Combustion Flow
3.2. Perturbation Characteristics of Nanosecond-Pulsed Control
3.2.1. Temporal Variations of the Combustion Flow Field
3.2.2. Mass-Transportation Enhancement Effects
3.3. The Influences of Actuating Conditions
4. Conclusions
- The NS-SDBD actuator injects thermal power into the shear layer through direct near-wall heating and exerts flow perturbation through compression waves. By inputting repetitive pulses, flow temperature is increased, and the production of H2O is promoted;
- NS-SDBD actuation is able to increase the turbulent viscosity ratio, enhancing the turbulent diffusion of fuel. Such mass-transportation-enhancing effects result in the changed increments of flame height. The increase of energy input is conducive to the enlargement of the flame’s region;
- The combustion enhancement effect turns out to be most significant around the actuator, and gradually attenuates in the downstream region. Given the same power input, the actuation frequency has the greatest impact on combustion flow rate.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, W.; Du, Z.; Yan, L.; Xia, Z. Supersonic mixing in airbreathing propulsion systems for hypersonic flights. Prog. Aerosp. Sci. 2019, 109, 100545. [Google Scholar] [CrossRef]
- Li, L.; Huang, W.; Yan, L. Mixing augmentation induced by a vortex generator located upstream of the transverse gaseous jet in supersonic flows. Aerosp. Sci. Technol. 2017, 68, 77–89. [Google Scholar] [CrossRef]
- Shi, H.; Wang, G.; Luo, X.; Yang, J.; Lu, X.-Y. Large-eddy simulation of a pulsed jet into a supersonic crossflow. Comput. Fluids 2016, 140, 320–333. [Google Scholar] [CrossRef]
- Durasiewicz, C.; Singh, A.; Little, J.C. A Comparative Flow Physics Study of Ns-DBD vs Ac-DBD Plasma Actuators for Transient Separation Control on a NACA 0012 Airfoil. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar] [CrossRef]
- Chen, Z.; Wong, C.C.; Wen, C.-Y. Thermal effects on the performance of a nanosecond dielectric barrier discharge plasma actuator at low air pressure. Phys. Fluids 2023, 35, 017110. [Google Scholar] [CrossRef]
- Wang, J.-J.; Choi, K.-S.; Feng, L.-H.; Jukes, T.N.; Whalley, R.D. Recent developments in DBD plasma flow control. Prog. Aerosp. Sci. 2013, 62, 52–78. [Google Scholar] [CrossRef]
- Nishihara, M.; Takashima, K.; Rich, J.W.; Adamovich, I.V. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge. Phys. Fluids 2011, 23, 066101. [Google Scholar] [CrossRef]
- Kong, Y.; Wu, Y.; Zong, H.; Guo, S. Supersonic cavity shear layer control using spanwise pulsed spark discharge array. Phys. Fluids 2022, 34, 054113. [Google Scholar] [CrossRef]
- Ahn, S.; Chae, J.; Kim, H.-J.; Kim, K.H. Numerical Simulation of Streamer Physics in Nanosecond Pulsed Surface Discharges. Int. J. Aeronaut. Space Sci. 2021, 22, 547–559. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, Y.; Cui, W.; Li, Y.; Jia, M. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge. J. Phys. D Appl. Phys. 2013, 46, 355205. [Google Scholar] [CrossRef]
- Chen, Z.; Hao, L.; Zhang, B. A model for Nanosecond Pulsed Dielectric Barrier Discharge (NSDBD) actuator and its investigation on the mechanisms of separation control over an airfoil. Sci. China Technol. Sci. 2013, 56, 1055–1065. [Google Scholar] [CrossRef]
- Kinefuchi, K.; Starikovskiy, A.Y.; Miles, R.B. Numerical investigation of nanosecond pulsed plasma actuators for control of shock-wave/boundary-layer separation. Phys. Fluids 2018, 30, 106105. [Google Scholar] [CrossRef]
- Zheng, J.G.; Cui, Y.D.; Li, J.; Khoo, B.C. A note on supersonic flow control with nanosecond plasma actuator. Phys. Fluids 2018, 30, 040907. [Google Scholar] [CrossRef]
- Nagaraju, A.S.; Verma, K.A.; Pandey, K.M.; Das, D. Numerical analysis of plasma combustion in scramjet engine-A review. Mater. Today Proc. 2021, 45, 6838–6851. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, X.; Xi, W. Numerical Simulation of Plasma Jet Assisted Combustion Based on the Strut Combustor. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 3. [Google Scholar] [CrossRef]
- Shcherbanev, S.A.; Popov, N.A.; Starikovskaia, S.M. Ignition of high pressure lean H2:air mixtures along the multiple channels of nanosecond surface discharge. Combust. Flame 2017, 176, 272–284. [Google Scholar] [CrossRef]
- Sharma, A.; Subramaniam, V.; Solmaz, E.; Raja, L.L. Fully coupled modeling of nanosecond pulsed plasma assisted combustion ignition. J. Phys. D Appl. Phys. 2019, 52, 095204. [Google Scholar] [CrossRef]
- Yu, M.; Gu, H.; Chen, F. Influence of Plasma on the Combustion Mode in a Scramjet. Aerospace 2022, 9, 73. [Google Scholar]
- Zhou, S.; Nie, W.; Che, X. Numerical Modeling of Quasi-DC Plasma-Assisted Combustion for Flame Holding Cavity. Combust. Sci. Technol. 2016, 188, 1640–1654. [Google Scholar] [CrossRef]
- Dunn, I.; Ahmed, K.A.; Leiweke, R.J.; Ombrello, T.M. Optimization of flame kernel ignition and evolution induced by modulated nanosecond-pulsed high-frequency discharge. Proc. Combust. Inst. 2021, 38, 6541–6550. [Google Scholar] [CrossRef]
- Do, H.; Im, S.; Cappelli, M.A.; Mungal, M.G. Plasma assisted flame ignition of supersonic flows over a flat wall. Combust. Flame 2010, 157, 2298–2305. [Google Scholar] [CrossRef]
- Yadala, S.; Benard, N.; Kotsonis, M.; Moreau, E. Effect of dielectric barrier discharge plasma actuators on vortical structures in a mixing layer. Phys. Fluids 2020, 32, 124111. [Google Scholar] [CrossRef]
- Ali, M.; Fujiwara, T.; Leblanc, J.E. Influence of main flow inlet configuration on mixing and flameholding in transverse injection into supersonic airstream. Int. J. Eng. Sci. 2020, 38, 1161–1180. [Google Scholar] [CrossRef]
- Fan, X.; Wang, J.; Zhao, F.; Li, J.; Yang, T. Eulerian–Lagrangian method for liquid jet atomization in supersonic crossflow using statistical injection model. Adv. Mech. Eng. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Shang, H.; Chen, Y.; Liaw, P.; Chen, C.; Wang, T. Investigation of chemical kinetics integration algorithms for reacting flows, in: 33rd Aerospace Sciences Meeting and Exhibit. In Proceedings of the 33rd Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, NV, USA, 9–12 January 1995. [Google Scholar] [CrossRef]
- Segal, C.; Haj-Hariri, H.; McDaniel, J.C. Effects of chemical reaction model on calculations of supersonic combustion flows. J. Propuls. Power 1995, 11, 565–568. [Google Scholar] [CrossRef]
- Wei, B.; Wu, Y.; Liang, H.; Chen, J.; Zhao, G.; Tian, M.; Xu, H. Performance and mechanism analysis of nanosecond pulsed surface dielectric barrier discharge based plasma deicer. Phys. Fluids 2019, 31, 091701. [Google Scholar] [CrossRef]
- Ukai, T.; Russell, A.; Zare-Behtash, H.; Kontis, K. Temporal variation of the spatial density distribution above a nanosecond pulsed dielectric barrier discharge plasma actuator in quiescent air. Phys. Fluids 2018, 30, 116106. [Google Scholar] [CrossRef]
- Starikovskii, A.; Nudnova, M.; Kindusheva, S.; Aleksahdrov, N. Rate of Plasma Thermalization of Pulsed Nanosecond Surface Dielectric Barrier Discharge. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, Orlando, FL, USA, 4–7 January 2010. [Google Scholar] [CrossRef]
- Popov, N.A. Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism. J. Phys. D Appl. Phys. 2011, 44, 285201. [Google Scholar] [CrossRef]
- Starikovskiy, A.; Pancheshnyi, S. Dielectric Barrier Discharge Development at Low and Moderate Pressure Conditions. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar] [CrossRef]
- Roupassov, D.V.; Nikipelov, A.A.; Nudnova, M.M.; Starikovskii, A.Y. Flow Separation Control by Plasma Actuator with Nanosecond Pulsed-Periodic Discharge. AIAA J. 2009, 47, 168–185. [Google Scholar] [CrossRef]
- Xu, S.Y.; Cai, J.S.; Li, J. Modeling and simulation of plasma gas flow driven by a single nanosecond-pulsed dielectric barrier discharge. Phys. Plasmas 2016, 23, 103510. [Google Scholar] [CrossRef]
- Taira, K.; Brunton, S.L.; Dawson, S.T.M.; Rowley, C.W.; Colonius, T.; McKeon, B.J.; Schmidt, O.T.; Gordeyev, S.; Theofilis, V.; Ukeiley, L.S. Modal Analysis of Fluid Flows: An Overview. AIAA J. 2017, 55, 4013–4041. [Google Scholar] [CrossRef]
Reaction | Af,r | nf,r | Eaf,r |
---|---|---|---|
H2 + O2 = OH + OH | 1.70 × 1013 | 0 | 4.815 × 104 |
H + O2 = O + OH | 1.42 × 1014 | 0 | 1.64 × 104 |
OH + H2 = H2O + H | 3.16 × 107 | 1.80 | 3.03 × 103 |
O + H2 = OH + H | 2.07 × 1014 | 0 | 1.375 × 104 |
OH + OH = H2O + O | 5.50 × 1013 | 0 | 7.00 × 103 |
H + OH + M = H2O + M | 2.21 × 1022 | −2.00 | 0 |
H + H + M = H2 + M | 6.53 × 1017 | −1.00 | 0 |
Air Inlet | Fuel Injector | |||||||
---|---|---|---|---|---|---|---|---|
Ma∞ | p∞ | T∞ | c(O2) | c(N2) | Maj | pj | Tj | c(H2) |
2 | 100 kPa | 900 K | 0.23 | 0.77 | 1 | 300 kPa | 300 K | 1 |
Case No. | Energy per Pulse | Actuating Frequency | Number of Actuators |
---|---|---|---|
Case 1 | 0.6 mJ/cm | 50 kHz | 1 |
Case 2.1 | 1.2 mJ/cm | 50 kHz | 1 |
Case 2.2 | 0.6 mJ/cm | 100 kHz | 1 |
Case 2.3 | 0.6 mJ/cm | 50 kHz | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Wang, J.; Lan, J.; Li, K. A Numerical Investigation of Supersonic Combustion Flow Control by Nanosecond-Pulsed Actuations. Energies 2024, 17, 201. https://doi.org/10.3390/en17010201
Yan Y, Wang J, Lan J, Li K. A Numerical Investigation of Supersonic Combustion Flow Control by Nanosecond-Pulsed Actuations. Energies. 2024; 17(1):201. https://doi.org/10.3390/en17010201
Chicago/Turabian StyleYan, Yilun, Jiangfeng Wang, Jianying Lan, and Keyu Li. 2024. "A Numerical Investigation of Supersonic Combustion Flow Control by Nanosecond-Pulsed Actuations" Energies 17, no. 1: 201. https://doi.org/10.3390/en17010201
APA StyleYan, Y., Wang, J., Lan, J., & Li, K. (2024). A Numerical Investigation of Supersonic Combustion Flow Control by Nanosecond-Pulsed Actuations. Energies, 17(1), 201. https://doi.org/10.3390/en17010201