A Study of a Gain-Scheduled Individual Pitch Controller for an NREL 5 MW Wind Turbine
Abstract
:1. Introduction
2. NREL 5 MW Wind Turbine
3. Individual Pitch Controller and Its Problem
3.1. Individual Pitch Controller
3.2. Problem with Individual Pitch Controller
4. Gain Scheduling of Individual Pitch Controller
4.1. Gain Scheduling Method
4.2. Gain Scheduling Effects
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sawant, M.; Thakare, S.; Rao, A.P.; Feijóo-Lorenzo, A.E.; Bokde, N.D. A review on state-of-the-art reviews in wind-turbine-and wind-farm-related topics. Energies 2021, 14, 2041. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bossanyi, E.A. The design of closed loop controllers for wind turbines. Wind Energy 2000, 3, 149–163. [Google Scholar] [CrossRef]
- Bianchi, F.D.; Battista, H.D.; Mantz, R.J. Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design; Springer: London, UK, 2007. [Google Scholar]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Njiri, J.G.; Söffker, D. State-of-the-art in wind turbine control: Trends and challenges. Renew. Sustain. Energy Rev. 2016, 60, 377–393. [Google Scholar] [CrossRef]
- Novaes Menezes, E.J.; Araújo, A.M.; Bouchonneau da Silva, N.S. A review on wind turbine control and its associated methods. J. Clean Prod. 2018, 174, 945–953. [Google Scholar] [CrossRef]
- Bossanyi, E.A. Individual blade pitch control for load reduction. Wind Energy 2003, 6, 119–128. [Google Scholar] [CrossRef]
- Petrović, V.; Jelavić, M.; Baotić, M. Advanced control algorithms for reduction of wind turbine structural loads. Renew. Energy 2015, 76, 418–431. [Google Scholar]
- Han, Y.; Leithead, W.E. Combined wind turbine fatigue and ultimate load reduction by individual blade control. J. Phys. Conf. Ser. 2014, 524, 012062. [Google Scholar] [CrossRef]
- He, K.; Qi, L.; Zhang, L.; Chen, Y. Combined pitch and trailing edge flap control for load mitigation of wind turbines. Energies 2018, 11, 2519. [Google Scholar] [CrossRef]
- Morim, R.B.; de Morais Carnielutti, F.; da Rosa, L.D.; Ricardo Hubner, G.; Franchi, C.M.; Eduardo de Souza, C.; Pinheiro, H. Analysis of Wind Turbine Power Generation with Individual Pitch Control. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America), Gramado, Brazil, 15–18 September 2019; pp. 1–6. [Google Scholar]
- Selvam, K.; Kanev, S.; van Wingerden, J.W.; van Engelen, T. Feedback–feedforward individual pitch control for wind turbine load reduction. Int. J. Robust Nonlinear Control 2009, 19, 72–91. [Google Scholar] [CrossRef]
- Lu, Q.; Bowyer, R.; Jones, B.L. Analysis and design of Coleman transform-based individual pitch controllers for wind-turbine load reduction. Wind Energy 2015, 18, 1451–1468. [Google Scholar] [CrossRef]
- Park, S.; Nam, Y. Two LQRI based blade pitch controls for wind turbines. Energies 2012, 5, 1998–2016. [Google Scholar] [CrossRef]
- Routray, A.; Sivakumar, N.; Hur, S.H.; Bang, D.J. A comparative study of optimal individual pitch control methods. Sustainability 2023, 15, 10933. [Google Scholar] [CrossRef]
- Han, B.; Zhou, L.; Yang, F.; Xiang, Z. Individual pitch controller based on fuzzy logic control for wind turbine load mitigation. IET Renew. Power Gener. 2016, 10, 687–693. [Google Scholar] [CrossRef]
- Bossanyi, E.A. Further load reductions with individual pitch control. Wind Energy 2005, 8, 481–485. [Google Scholar] [CrossRef]
- van Engelen, T.; van der Hooft, E.L. Individual Pitch Control Inventory, Technical Report ECN-C-03-138; Energy Research Centre of the Netherlands (ECN): Petten, The Netherlands, 2003. [Google Scholar]
- van Solingen, E.; Navalkar, S.; van Wingerden, J.W. Experimental wind tunnel testing of linear individual pitch control for two-bladed wind turbines. J. Phys. Conf. Ser. 2014, 524, 012056. [Google Scholar] [CrossRef]
- Kallen, T.; Zierath, J.; Dickler, S.; Konrad, T.; Jassmann, U.; Abel, D. Repetitive individual pitch control for load alleviation at variable rotor speed. J. Phys. Conf. Ser. 2020, 1618, 022055. [Google Scholar] [CrossRef]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical Report NREL/TP-500-38060; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2009. [Google Scholar]
- DNV. Bladed User Manual, Version 4.9; Garrad Hassan & Partners Ltd.: Bristol, UK, 2018. [Google Scholar]
- International Electrotechnical Commission. IEC 61400-1 Wind Turbines—Part 1: Design Requirements, 4th ed.; International Electrotechnical Commission: Geneva, Switzerland, 2019. [Google Scholar]
- Nam, Y. Wind Turbine System Control, 1st ed.; GS Intervision: Seoul, Republic of Korea, 2013. [Google Scholar]
Specification | Value | Unit |
---|---|---|
Rated power | 5 | MW |
Rotor diameter | 126 | m |
Blade length | 61.5 | m |
Hub height | 90 | m |
Number of blade | 3 | |
Gearbox ratio | 97 | |
Rated rotor speed | 12.1 | rpm |
Rated wind speed | 11.4 | m/s |
Cut-out wind speed | 25 | m/s |
Fine pitch angle | 0 | rad |
Symbol | Description | Unit |
---|---|---|
Mtilt | Tilting moment | Nm |
My | Out-of-plane bending moment of the blade | Nm |
Myaw | Yawing moment | Nm |
θ | Rotor azimuth angles | rad |
β | Pitch angle | rad |
βCPC | Collective pitch angle | rad |
βIPC | Individual pitch angle | rad |
βtilt | Tilt angle | rad |
βyaw | Yaw angle | rad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, C.-W. A Study of a Gain-Scheduled Individual Pitch Controller for an NREL 5 MW Wind Turbine. Energies 2024, 17, 246. https://doi.org/10.3390/en17010246
Lim C-W. A Study of a Gain-Scheduled Individual Pitch Controller for an NREL 5 MW Wind Turbine. Energies. 2024; 17(1):246. https://doi.org/10.3390/en17010246
Chicago/Turabian StyleLim, Chae-Wook. 2024. "A Study of a Gain-Scheduled Individual Pitch Controller for an NREL 5 MW Wind Turbine" Energies 17, no. 1: 246. https://doi.org/10.3390/en17010246
APA StyleLim, C. -W. (2024). A Study of a Gain-Scheduled Individual Pitch Controller for an NREL 5 MW Wind Turbine. Energies, 17(1), 246. https://doi.org/10.3390/en17010246