Weather Forecast Control for Heating of Multi-Family Buildings in Comparison with Feedback and Feedforward Control
Abstract
:1. Introduction
- (1)
- Feedforward. This traditional strategy only considers outdoor temperatures.
- (2)
- Feedback. This strategy is based on feedforward but also considers measured indoor temperatures.
- (3)
- Model-based. This strategy processes various measurement data, such as indoor temperature (feedback) and weather, through algorithms in theoretical models of buildings. The technology can be adaptive so that it gradually learns to predict the required heating needs.
2. Materials and Methods
- -
- There are a limited number of radiator sizes on the market. The closest bigger size was chosen (this still applies).
- -
- Key figures of that time for heat sizing were based on outside temperatures that were too cold. More accurate meteorological measurements later indicated warmer temperatures.
- -
- A large thermal weight was not considered at that time. Heat demand calculations were only based on light construction (affected by short-term temperature drops).
- -
- Old standard values regarding thermal insulation (U-value) were used even after building codes began to require more insulation.
- -
- Old standard values regarding air leakage were used even when the windows, etc., became tighter.
2.1. Feedforward, Traditional Control (Case 1)
2.2. Feedback Control (Case 2)
- -
- Case 2A: P-controlled feedback.
- -
- Case 2B: PI-controlled feedback.
2.3. Model-Based Control (Case 3)
- -
- Case 3A. Model-based control without a weather forecast.
- -
- Case 3B. Model-based control with weather forecast.
- Building A: A model of a typical Swedish multi-family building from the 1970s, including typical internal heat loads and normally functioning local heat control (as in Case 1B). Building A delivered all the results.
- Building B: A twin to Building A in all respects, including the use of it. The heat control was the only difference. Building B only provided input to Equation (2).
- -
- Case 3Aa (without amplification/reduction)
- -
- Case 3Ab (with amplification/reduction)
2.4. Theoretical Perfect Local Control (Case 4)
2.5. Separate Sensitivity Analyses
2.5.1. Impact of Thermal Mass
2.5.2. Impact of Extended Margins for Forecasts and Modification of Weather Data
3. Results
3.1. Main Results
3.2. Results from Sensitivity Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Summary of the Building Model
Outer wall—long side (U = 0.41 W/m2K)
| Outer wall—short side (U = 0.41 W/m2K)
[Gothenburg City, 1968] | Partition wall (Heat transmission ignored)
|
Base plate (U = 0.7 W/m2K)
| Intermediate floor (Heat transmission ignored)
| Attic joist (U = 0.22 W/m2K)
|
Thermal Bridges | |
Factors for cold bridges made of various structural parts are specified below. Data were taken from course literature at Chalmers University of Technology [37], based on a Swedish standard [38], where suggested values for different aspects are given in ranges. The upper (inferior) part of the spans was chosen. | |
- Outer wall meets inner wall: 0.04 W/(m K) | |
- Outer wall meets outer wall: 0.06 W/(m K) | |
- Connections at windows: 0.05 W/(m K) | |
- Roof meets exterior wall 0.06 W/(m K) | |
- Basic construction meets outer wall: 0.87 W/(m K) | |
- External walls, general surcharge: 0.04 W/(m2 K) | |
- Outer wall meets inner joists: 0.17 W/(m K) A | |
A The value should be 0.05 W/(m K), but the stated value was increased to compensate for missing balconies. | |
Infiltration (air leakage) | |
The model was given a wind pressure-based infiltration corresponding to 0.8 l/(s∙m2) at a pressure difference of 50 Pa. A predefined “semi-exposed” wind pressure profile was chosen. | |
Windows | |
Coupled, 2-glass [36] | |
No external solar shading | [City of Gothenburg 1968] |
A number of living room windows were aired according to Table A1 | [39] |
A number of blinds in living rooms were used according to Table A2 | [39] |
• U = 2.2 W/m2K (same for glass and frame) | [1] |
• SHGC (solar factor) = 0.76 (absolute value) | [IDA ICE, default value] |
• T (directly transmitted proportion) = 0.6764 (abs. value) | [IDA ICE, default value] |
• Blinds between glass | [communication with retailer] |
• Solar radiation factor with blinds closed = 0.24 (80°) | [40] |
• Sun shading factor with half-open blind = 0.38 (45°) | [40] |
The window area corresponded to 25% of the wall area, distributed as follows: | |
• Bedroom window 1.3 × 1.4 m × 2 pcs | |
• Kitchen window 1.8 × 1.4 m | |
• Living room window 1.4 × 1.4 m × 2 pcs. | |
• Balcony door 0.9 × 2.2 m (40% window, the rest frame) | |
• Toilet window (gable) 0.7 × 0.6 m | |
Heating system | |
- District heating | [1] |
- Radiators with waterborne heating | [1] |
Ventilation | |
- Constant airflow | [1] |
- Exhaust airflow | [1] |
- 0.39 l/sm2 | [41] |
- Exhuast air from kitchen and bathroom | [Gothenburg city, 1968] |
Lighting | |
Design power: 151 W/apartment (see below) | [42] |
26% of max output daily at 23–07, 54% at 07–15, 100% at 15–23 | [42] |
By comparing a study on household electricity in Swedish multi-family buildings [42] with a study on the typical number of people (see under the section People), 790 kWh/household was obtained. This was then distributed as a loading curve in accordance with statistics from an end-use metering campaign based on 400 Swedish households [42]. | |
Appliances | |
Maximum power excluding lighting and washing: 434 W/apartment | [42] |
Maximum power at 15–23. 65% of maximum at 07–15. 47% of maximum at 23–07. | |
People | |
A total of 2.2. persons/apartment [personal communication with SCB, responsible for official statistics and for other government statistics] | |
Attendance weekdays 15 h/day, weekends 18 h/day | [43] |
In this study, attendance was equated with: | |
During weekdays, 33% are gone at 07–19 and 50% are gone at 19–21 | [assumption] |
On weekends, 50% is gone at 09–21. | [assumption] |
Metabolism: 1.2 ± (sensible: 70 W/m2 body) | [44] |
Clothing (CLO) during winter: 1.2, during summer: 0.5 | [INNOVA, 1996] |
Radiators | |
Under each window is a radiator with the same width as the window. | [practice] |
Each radiator has a height of 0.6 m | [common] |
Supply temp/return temp: 60/40 [own assumption] | [common] |
n (power curve exponent) = 1.28 | [IDA ICE, default value] |
P-band = 2 | [practice] |
Hot water circulation | |
Heating energy for domestic hot water: 30 kWh/m2 | [45] |
Heating energy for hot water circulation: 350 kWh/apartment | [45] |
Heat losses (converted to internal heat): 25 W/apartment | |
[communication with RISE, Swedish Research Institute] | |
Indoor temperature | |
Minimum allowed indoor temperature in any apartment: 20.0 °C. | [5] |
Average indoor temperature during heating season (Case 1B): 22.3 °C. | [1,2,3,4] |
Number of Living Room Windows Where | Living Room Windows in Different Directions | |||
---|---|---|---|---|
North | East | South | West | |
blinds are missing or completely drawn | 18 | 7 | 9 | 8 |
blinds are fully drawn but angled up | 0 | 10 | 7 | 9 |
blinds are fully drawn and closed | 0 | 1 | 2 | 1 |
Never/ Very Rarely | Rarely | Medium | Often | Very Often | |
---|---|---|---|---|---|
Number of ventilated apartments | 4 | 3 | 2 | 6 | 3 |
Clock | - | - | 07.30–08.30 17.30–18.00 | 06.30–07.30 17.30–18.30 | 07.00–19.00 |
Area proportion of the opening | - | - | 5.6% | 4.6% | 3.2% |
References
- Hjortsberg, M.; Svensson, O.; Thunborg, J.; Jönsson, B. Teknisk Status i den Svenska—Resultat Från Projektet BETSI; Boverket: Karlskrona, Sweden, 2010. [Google Scholar]
- Bagge, H.; Lindstrii, L.; Johansson, D. Brukarrelaterad Energianvändning; Resultat från Mätningar i 1300; Lägenheter: Lågan, Sweden, 2014. [Google Scholar]
- Boman, C.; Jonsson, B.; Skogberg, S. Mätning av Innetemperartur ELIB-Rapport Nr 4; Statens Institut för Byggnadsforskning: Gävle, Sverige, 1992. [Google Scholar]
- Teli, D.; Psomas, T.; Langer, S.; Trüschel, A.; Dalenbäck, J.O. Drivers of winter indoor temperatures in Swedish dwellings: Investigating the tails of the distribution. Chalmers och IVL. Build. Environ. 2021, 202, 108018. [Google Scholar] [CrossRef]
- Carlsson, J. Folkhälsomyndighetens Allmänna råd om Temperatur Inomhus; FoHMFS 2014:17; Folkhälsomyndigheten: Solna, Sweden, 2014. [Google Scholar]
- Mattsson, B.; Carlsson, A.; Seng Te Pluntke, S. Energi i Bebyggelse—Tekniska Egenskaper och Beräkningar—Resultat Från Projektet BETSI; Boverket: Karlskrona, Sweden, 2010. [Google Scholar]
- Lazos, D.; Sproul, A.B.; Kay, M. Optimisation of energy management in commercial buildings with weather forecasting inputs: A review. Renew. Sustain. Energy Rev. 2014, 39, 587–603. [Google Scholar] [CrossRef]
- Serale, G.; Fiorentini, M.; Capozzoli, A.; Bernardini, D.; Bemporad, A. Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: Problem formulation, applications and opportunities. Energies 2018, 11, 631. [Google Scholar] [CrossRef]
- Pfeiffer, C.F.; Skeie, N.O.; Perera, D.W.U. Control of Temperature and Energy Consumption in Buildings—A Review. 2014. Available online: http://hdl.handle.net/11250/2438435 (accessed on 30 December 2023).
- Mariano-Hernández, D.; Hernández-Callejo, L.; Zorita-Lamadrid, A.; Duque-Pérez, O.; García, F.S. A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. J. Build. Eng. 2021, 33, 101692. [Google Scholar] [CrossRef]
- Taheri, S.; Hosseini, P.; Razban, A. Model predictive control of heating, ventilation, and air conditioning (HVAC) systems: A state-of-the-art review. J. Build. Eng. 2022, 60, 105067. [Google Scholar] [CrossRef]
- Yao, Y.; Shekhar, D.K. State of the art review on model predictive control (MPC) in Heating Ventilation and Air-conditioning (HVAC) field. Build. Environ. 2021, 200, 107952. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F. Theory and applications of HVAC control systems—A review of model predictive control (MPC). Build. Environ. 2014, 72, 343–355. [Google Scholar] [CrossRef]
- Lomas, K.J.; Oliveira, S.; Warren, P.; Haines, V.J.; Chatterton, T.; Beizaee, A.; Prestwood, E.; Gething, B. Do domestic heating controls save energy? A review of the evidence. Renew. Sustain. Energy Rev. 2018, 93, 52–75. [Google Scholar] [CrossRef]
- Thieblemont, H.; Haghighat, F.; Ooka, R.; Moreau, A. Predictive control strategies based on weather forecast in buildings with energy storage system: A review of the state-of-the art. Energy Build. 2017, 153, 485–500. [Google Scholar] [CrossRef]
- Rockett, P.; Hathway, E.A. Model-predictive control for non-domestic buildings: A critical review and prospects. Build. Res. Inf. 2017, 45, 556–571. [Google Scholar] [CrossRef]
- Hilliard, T.; Kavgic, M.; Swan, L. Model predictive control for commercial buildings: Trends and opportunities. Adv. Build. Energy Res. 2016, 10, 172–190. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F.; Fung, A.S.; Raahemifar, K. Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy Build. 2017, 141, 96–113. [Google Scholar] [CrossRef]
- Mirakhorli, A.; Dong, B. Occupancy behavior based model predictive control for building indoor climate—A critical review. Energy Build. 2016, 129, 499–513. [Google Scholar] [CrossRef]
- Drgoňa, J.; Arroyo, J.; Figueroa, I.C.; Blum, D.; Arendt, K.; Kim, D.; Ollé, E.; Oravec, J.; Wetter, M.; Vrabie, D.; et al. All you need to know about model predictive control for buildings. Annu. Rev. Control 2020, 50, 190–232. [Google Scholar] [CrossRef]
- Privara, S.; Široký, J.; Ferkl, L.; Cigler, J. Model predictive control of a building heating system: The first experience. Energy Build. 2011, 43, 564–572. [Google Scholar] [CrossRef]
- Miezis, M.; Jaunzems, D.; Stancioff, N. Predictive control of a building heating system. Energy Procedia 2017, 113, 501–508. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Parisio, A.; Jones, C.N.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 2012, 45, 15–27. [Google Scholar] [CrossRef]
- Villegas Mier, O.; Dittmann, A.; Herzberg, W.; Ruf, H.; Lorenz, E.; Schmidt, M.; Gasper, R. Predictive Control of a Real Residential Heating System with Short-Term Solar Power Forecast. Energies 2023, 16, 6980. [Google Scholar] [CrossRef]
- Hedegaard, R.E.; Pedersen, T.H.; Knudsen, M.D.; Petersen, S. Towards practical model predictive control of residential space heating: Eliminating the need for weather measurements. Energy Build. 2018, 170, 206–216. [Google Scholar] [CrossRef]
- Cesari, S.; Emmi, G.; Bottarelli, M. A weather forecast-based control for the improvement of PCM enhanced radiant floors. Appl. Therm. Eng. 2022, 206, 118119. [Google Scholar] [CrossRef]
- Cholewa, T.; Siuta-Olcha, A.; Smolarz, A.; Muryjas, P.; Wolszczak, P.; Guz, Ł.; Bocian, M.; Balaras, C.A. An easy and widely applicable forecast control for heating systems in existing and new buildings: First field experiences. J. Clean. Prod. 2022, 352, 131605. [Google Scholar] [CrossRef]
- Cholewa, T.; Siuta-Olcha, A.; Smolarz, A.; Muryjas, P.; Wolszczak, P.; Guz, Ł.; Bocian, M.; Sadowska, B.; Łokczewska, W.; Balaras, C.A. On the forecast control of heating system as an easily applicable measure to increase energy efficiency in existing buildings: Long term field evaluation. Energy Build. 2023, 292, 113174. [Google Scholar] [CrossRef]
- Piotrowska-Woroniak, J.; Szul, T.; Cieśliński, K.; Krilek, J. The Impact of Weather-Forecast-Based Regulation on Energy Savings for Heating in Multi-Family Buildings. Energies 2022, 15, 7279. [Google Scholar] [CrossRef]
- Tarragona, J.; Pisello, A.L.; Fernández, C.; de Gracia, A.; Cabeza, L.F. Systematic review on model predictive control strategies applied to active thermal energy storage systems. Renew. Sustain. Energy Rev. 2021, 149, 111385. [Google Scholar] [CrossRef]
- Zong, Y.; Su, W.; Wang, J.; Rodek, J.K.; Jiang, C.; Christensen, M.H.; You, S.; Zhou, Y.; Mu, S. Model predictive control for smart buildings to provide the demand side flexibility in the multi-carrier energy context: Current status, pros and cons, feasibility and barriers. Energy Procedia 2019, 158, 3026–3031. [Google Scholar] [CrossRef]
- Gustavsson, A.; Olsson, O.; Wahlman, E. Lågtemperatursystem i Existerande Byggnader; Rapport R29:1978; Byggforskningsrådet: Stockholm, Sweden, 1978. [Google Scholar]
- Kärkkäinen, A. Gasfri Påfyllning av Värme- och Kylsystem Samt Injustering av Radiatorsystem. Aaltouniversitetet, Tekniska Högskolan, Fakulteten för Ingenjörsvetenskaper och Arkitektur; Institutionen för Energiteknik: Espoo, Finland, 2010. [Google Scholar]
- Olsson, D.; Filipsson, P.; Trüschel, A. Feedback Control in Swedish Multi-Family Buildings for Lower Energy Demand and Assured Indoor Temperature—Measurements and Interviews. Energies 2023, 16, 6747. [Google Scholar] [CrossRef]
- Kragh, J.; Rose, J.; Knudsen Henrik, N.; Jensen, O.M. Possible explanations for the gap between calculated and measured energy consumption of new houses. Energy Procedia 2017, 132, 69–74. [Google Scholar] [CrossRef]
- Björk, C.; Kallstenius, P.; Reppen, L. Så Byggdes Husen 1880–2000; Fomas: Stockholm, Sweden, 2003; ISBN 9789173336185. [Google Scholar]
- Petersson B, Å. Tillämpad Byggnadsfysik; Studentlitteratur: Lund, Sweden, 2018; ISBN 9789144123936. [Google Scholar]
- SS-EN ISO 6946:2017; Byggkomponenter och Byggnadsdelar—Värmemotstånd och Värmegenomgångskoefficient—Beräkningsmetod. Svenk Standard: Stockholm, Sweden, 2017.
- Engvall, K.; Corner, R.; Emenius, G.; Hult, M. Upplevd Inomhusmiljö och Hälsa i Stockholms Flerbostadshus 2005; Rapport 1: Hälsomässigt Hållbara Hus 3H projektet. Reviderad september 2009; Stockholms Stad: Stockholm, Sweden, 2009. [Google Scholar]
- Wall, M.; Bülow-Hübe, H. Solar Protection in Buildings—Part 2: 2000–2002; Rapport EBD-R—03/1; Lunds Universitet, Avdelningen för Konstruktion och Arkitektur: Lund, Sweden, 2003. [Google Scholar]
- Tolstoy, N.; Borgström, M.; Högberg, H.; Nilsson, J. Bostadsbeståndets Tekniska Egenskaper; ELIB-Rapport Nr 6, TN:29; Statens Institut för Byggforsknin: Gävle, Sweden, 1993. [Google Scholar]
- Zimmerman, J.P. End-Use Metering Campaign in 400 House[holds in Sweden—Assessment of the Potential Electricity Savings; Enertech: Pont de Barret, France, 2009. [Google Scholar]
- Levin, P.; Brukarindata för Energiberäkningar i Bostäder. Brukarindata för Energiberäkningar i Bostäder. Svebyprogrammet. Report. Projektrapport 2009-04-14. 2009. Available online: https://www.sveby.org/wp-content/uploads/2011/06/brukarindata_bostader.pdf (accessed on 1 January 2024).
- SS-EN 16798-1:2019; Byggnaders Energiprestanda—Ventilation för Byggnader—Del 1: Indataparametrar för Inomhusmiljö för Konstruktion och Bestämning av Byggnaders Energiprestanda Gällande Luftkvalitet, Termiskt Klimat, Belysning Och Akustik—Modul M1-6. Svenk Standard: Stockholm, Sweden, 2019.
- Aronsson, S. Fjärrvärmekunders Värme- och Effektbehov—Analys Baserad på Mätresultat Från Femtio Byggnader; Institutionen för Installationsteknik, Chalmers: Göteborg, Sweden, 1996; ISBN 9171973834. [Google Scholar]
I | II | III | IV | V | VI | VII | VIII | IX | ||
1A | X | |||||||||
1B | X | X | ||||||||
1C | X | X | ||||||||
2A | X | X | X | |||||||
2B | X | X | X | |||||||
3Aa | X | X | ||||||||
3Ab | X | X | ||||||||
3B | X | X | X | |||||||
4 | X | |||||||||
I | 50% thermostats | VI | Model (non-manipulatade weather data) | |||||||
II | 100% thermostats | VII | Model (manipulated weather data) | |||||||
III | Outdoor temperarture (single weather parameter) | |||||||||
IV | Indoor temperature (P) | VIII | Weather forecast | |||||||
V | Indoor temperature (PI) | IX | Ideal |
Version | Case 3Aa [kWh/m2] | Case 3Ab [kWh/m2] | Case 3B [kWh/m2] |
---|---|---|---|
Light | 146 | 146 | 146 |
Heavy | 140 | 137 | 137 |
Original | 140 | 139 | 138 |
Version | Case 3Aa [kWh/m2] | Case 3Ab [kWh/m2] | Case 3B [kWh/m2] |
---|---|---|---|
Extended margin | 146 | 142 | 141 |
Original | 140 | 139 | 138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olsson, D.; Filipsson, P.; Trüschel, A. Weather Forecast Control for Heating of Multi-Family Buildings in Comparison with Feedback and Feedforward Control. Energies 2024, 17, 261. https://doi.org/10.3390/en17010261
Olsson D, Filipsson P, Trüschel A. Weather Forecast Control for Heating of Multi-Family Buildings in Comparison with Feedback and Feedforward Control. Energies. 2024; 17(1):261. https://doi.org/10.3390/en17010261
Chicago/Turabian StyleOlsson, Daniel, Peter Filipsson, and Anders Trüschel. 2024. "Weather Forecast Control for Heating of Multi-Family Buildings in Comparison with Feedback and Feedforward Control" Energies 17, no. 1: 261. https://doi.org/10.3390/en17010261
APA StyleOlsson, D., Filipsson, P., & Trüschel, A. (2024). Weather Forecast Control for Heating of Multi-Family Buildings in Comparison with Feedback and Feedforward Control. Energies, 17(1), 261. https://doi.org/10.3390/en17010261