Advancing Smart Lithium-Ion Batteries: A Review on Multi-Physical Sensing Technologies for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Multi-Physical Sensing Technologies for Lithium-Ion Batteries
2.1. Sensing of Electrical Signals
2.1.1. Electrochemical Impedance Spectroscopy
2.1.2. Sensing of Internal Electrode Potential
2.2. Sensing of Thermal Signals
2.3. Sensing of Mechanical Signals
2.4. Sensing of Acoustics Signals
2.5. Sensing of Gas Signals
2.5.1. Sensing of Gas Types
2.5.2. Sensing of Gas Pressure
3. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Kim, S.; Barnes, P.; Zhang, H.; Efaw, C.; Wang, Y.; Park, B.; Li, B.; Chen, B.; Evans, M.; Liaw, B.; et al. Calendar life of lithium metal batteries: Accelerated aging and failure analysis. Energy Storage Mater. 2024, 65, 103147. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, S.; Li, K.; Zhang, G.; Habetler, T. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. J. Power Sources 2019, 436, 226879. [Google Scholar] [CrossRef]
- Knobloch, A.; Kapusta, C.; Karp, J.; Plotnikov, Y.; Siegel, J.; Stefanopoulou, A. Fabrication of Multimeasurand Sensor for Monitoring of a Li-Ion Battery. J. Electron. Packag. 2018, 140, 031002. [Google Scholar] [CrossRef]
- Lu, X.; Tarascon, J.-M.; Huang, J. Perspective on commercializing smart sensing for batteries. eTransportation 2022, 14, 100207. [Google Scholar] [CrossRef]
- Cong, X.; Zhang, C.; Jiang, J.; Zhang, W.; Jiang, Y.; Zhang, L. A Comprehensive Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles. Energies 2021, 14, 1211. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- Tröltzsch, U.; Kanoun, O.; Tränkler, H.-R. Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochim. Acta 2006, 51, 1664–1672. [Google Scholar] [CrossRef]
- He, X.; Sun, B.; Zhang, W.; Fan, X.; Su, X.; Ruan, H. Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery. Energy 2022, 244, 123084. [Google Scholar] [CrossRef]
- Osaka, T.; Mukoyama, D.; Nara, H. Review—Development of Diagnostic Process for Commercially Available Batteries, Especially Lithium Ion Battery, by Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2015, 162, A2529–A2537. [Google Scholar] [CrossRef]
- Cannarella, J.; Arnold, C.B. Ion transport restriction in mechanically strained separator membranes. J. Power Sources 2013, 226, 149–155. [Google Scholar] [CrossRef]
- Lu, P.F.; Li, M.; Zhang, L.Q.; Zhou, L. A Novel Fast-EIS Measuring Method and Implementation for Lithium-ion Batteries. In Proceedings of the 2019 Prognostics and System Health Management Conference (Phm-Qingdao), Qingdao, China, 25–27 October 2019; pp. 1–6. [Google Scholar]
- Crescentini, M.; De Angelis, A.; Ramilli, R.; Angelis, G.; Tartagni, M.; Moschitta, A.; Traverso, P.; Carbone, P. Online EIS and Diagnostics on Lithium-Ion Batteries by Means of Low-Power Integrated Sensing and Parametric Modeling. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Petzl, M.; Danzer, M.A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries. J. Power Sources 2014, 254, 80–87. [Google Scholar] [CrossRef]
- Mei, W.; Jiang, L.; Liang, C.; Sun, J.; Wang, Q. Understanding of Li-plating on graphite electrode: Detection, quantification and mechanism revelation. Energy Storage Mater. 2021, 41, 209–221. [Google Scholar] [CrossRef]
- Liu, J.; Chu, Z.; Li, H.; Ren, D.; Zheng, Y.; Lu, L.; Han, X.; Ouyang, M. Lithium-plating-free fast charging of large-format lithium-ion batteries with reference electrodes. Int. J. Energy Res. 2021, 45, 7918–7932. [Google Scholar] [CrossRef]
- Sieg, J.; Bandlow, J.; Mitsch, T.; Dragicevic, D.; Materna, T.; Spier, B.; Witzenhausen, H.; Ecker, M.; Sauer, D. Fast charging of an electric vehicle lithium-ion battery at the limit of the lithium deposition process. J. Power Sources 2019, 427, 260–270. [Google Scholar] [CrossRef]
- Epding, B.; Broda, A.; Rumberg, B.; Janke, H.; Kwade, A. Development of Durable 3-Electrode Lithium-Ion Pouch Cells with LTO Reference Mesh: Aging and Performance Studies. J. Electrochem. Soc. 2019, 166, A1550–A1557. [Google Scholar] [CrossRef]
- Fear, C.; Parmananda, M.; Kabra, V.; Carte, R.; Love, C.; Mukherjee, P. Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating. Energy Storage Mater. 2021, 35, 500–511. [Google Scholar] [CrossRef]
- Grandjean, T.; Barai, A.; Hosseinzadeh, E.; Guo, Y.; MeGordom, A.; Marco, J. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management. J. Power Sources 2017, 359, 215–225. [Google Scholar] [CrossRef]
- Cavalheiro, G.M.; Iriyama, T.; Nelson, G.J.; Huang, S.; Zhang, G. Effects of Nonuniform Temperature Distribution on Degradation of Lithium-Ion Batteries. J. Electrochem. Energy Convers. Storage 2020, 17, 021101. [Google Scholar] [CrossRef]
- Huang, J.; Albero Blanquer, L.; Bonefacino, J.; Logan, E.; Corte, D.; Delacourt, C.; Gallant, B.; Boles, S.; Dahn, J.; Tam, H.; et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat. Energy 2020, 5, 674–683. [Google Scholar] [CrossRef]
- Fleming, J.; Amietszajew, T.; Charmet, J.; Roberts, A.; Greenwood, D.; Bhaget, R. The design and impact of in-situ and operando thermal sensing for smart energy storage. J. Energy Storage 2019, 22, 36–43. [Google Scholar] [CrossRef]
- Zhu, S.; Han, J.; An, H.; Pan, T.; Wei, Y.; Song, W.; Chen, H.; Fang, D. A novel embedded method for in-situ measuring internal multi-point temperatures of lithium ion batteries. J. Power Sources 2020, 456, 227981. [Google Scholar] [CrossRef]
- Novais, S.; Nascimento, M.; Grande, L.; Domingues, M.; Antunes, P.; Alberto, N.; Leitão, C.; Oliveira, R.; Koch, S.; Kim, G.; et al. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors. Sensors 2016, 16, 1394. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Lee, S.-J.; Hung, Y.-M.; Hsieh, C.; Chang, Y.; Huang, H.; Lin, J. Integrated microsensor for real-time microscopic monitoring of local temperature, voltage and current inside lithium ion battery. Sens. Actuators A Phys. 2017, 253, 59–68. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, L.; Ge, S.; Wang, C.; Ehaffer, C.; Rahn, C. In Situ Measurement of Radial Temperature Distributions in Cylindrical Li-Ion Cells. J. Electrochem. Soc. 2014, 161, A1499–A1507. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Wei, X.; Wang, D.; Xu, W.; Jin, J.; Dai, H. Non-damaged lithium-ion batteries integrated functional electrode for operando temperature sensing. Energy Storage Mater. 2024, 65, 103160. [Google Scholar] [CrossRef]
- Su, Y.D.; Preger, Y.; Burroughs, H.; Sun, C.; Ohodnicki, P. Fiber Optic Sensing Technologies for Battery Management Systems and Energy Storage Applications. Sensors 2021, 21, 1397. [Google Scholar] [CrossRef]
- Zhang, X.; Shyy, W.; Marie Sastry, A. Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles. J. Electrochem. Soc. 2007, 154, A910–A916. [Google Scholar] [CrossRef]
- Yi, Y.B.; Wang, C.W.; Sastry, A.M. Compression of packed particulate systems: Simulations and experiments in graphitic Li-ion anodes. J. Eng. Mater. Technol.-Trans. ASME 2006, 128, 73–80. [Google Scholar] [CrossRef]
- Li, J.; Adewuyi, K.; Lotfi, N.; Park, J. A Single Particle-Based Battery Degradation Model including Chemical and Mechanical Degradation Physics. ECS Trans. 2017, 77, 1003–1014. [Google Scholar] [CrossRef]
- Cannarella, J.; Arnold, C.B. Stress evolution and capacity fade in constrained lithium-ion pouch cells. J. Power Sources 2014, 245, 745–751. [Google Scholar] [CrossRef]
- Wünsch, M.; Kaufman, J.; Sauer, D.U. Investigation of the influence of different bracing of automotive pouch cells on cyclic liefetime and impedance spectra. J. Energy Storage 2019, 21, 149–155. [Google Scholar] [CrossRef]
- Liu, X.M.; Arnold, C.B. Effects of Cycling Ranges on Stress and Capacity Fade in Lithium-Ion Pouch Cells. J. Electrochem. Soc. 2016, 163, A2501–A2507. [Google Scholar] [CrossRef]
- Barai, A.; Tangirala, R.; Uddin, K.; Chevalier, J.; Guo, Y.; McGordom, A.; Jenings, P. The effect of external compressive loads on the cycle lifetime of lithium-ion pouch cells. J. Energy Storage 2017, 13, 211–219. [Google Scholar] [CrossRef]
- Zhu, S.; Yang, L.; Wen, J.; Feng, X.; Zhou, P.; Xie, F.; Zhou, J.; Wang, Y. In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors. J. Power Sources 2021, 516, 230669. [Google Scholar] [CrossRef]
- Nascimento, M.; Ferreira, M.; Pinto, J. Simultaneous Sensing of Temperature and Bi-Directional Strain in a Prismatic Li-Ion Battery. Batteries 2018, 4, 23. [Google Scholar] [CrossRef]
- Oh, K.Y.; Epureanu, B.I.; Siegel, J.B.; Stefanopoulou, A.G. Phenomenological force and swelling models for rechargeable lithium-ion battery cells. J. Power Sources 2016, 310, 118–129. [Google Scholar] [CrossRef]
- Ladpli, P.; Kopsaftopoulos, F.; Chang, F.-K. Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators. J. Power Sources 2018, 384, 342–354. [Google Scholar] [CrossRef]
- Robinson, J.B.; Owen, R.E.; Kok, M.D.R.; Maier1, M.; Majasan1, J.; Braglia, M.; Stocker, R.; Amietszajew, T.; Roberts, A.J.; Bhaga, R. Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements. J. Electrochem. Soc. 2020, 167, 120530. [Google Scholar] [CrossRef]
- Deng, Z.; Huang, Z.; Shen, Y.; Huang, Y.; Ding, H.; Luscombe, A.; Johnson, M.B.; Harlow, J.; Gauthier, R.; Dahn, J. Ultrasonic Scanning to Observe Wetting and “Unwetting” in Li-Ion Pouch Cells. Joule 2020, 4, 2017–2029. [Google Scholar] [CrossRef]
- Meng, K.; Chen, X.; Zhang, W.; Zhang, W.; Chang, W.; Xu, J. A robust ultrasonic characterization methodology for lithium-ion batteries on frequency-domain damping analysis. J. Power Sources 2022, 547, 232003. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Yung, W.K.C.; Pecht, M. Ultrasonic Health Monitoring of Lithium-Ion Batteries. Electronics 2019, 8, 751. [Google Scholar] [CrossRef]
- Raghibi, M.; Xiong, B.; Phadke, S.; Anouti, M. Role of the electrolyte in gas formation during the cycling of a Gr//NMC battery as a function of temperature: Solvent, salt, and ionic liquid effect. Electrochim. Acta 2020, 362, 137214. [Google Scholar] [CrossRef]
- Schwenke, K.U.; Solchenbach, S.; Demeaux, J.; Lucht, B.L.; Gasteiger, H.A. The Impact of CO2 Evolved from VC and FEC during Formation of Graphite Anodes in Lithium-Ion Batteries. J. Electrochem. Soc. 2019, 166, A2035–A2047. [Google Scholar] [CrossRef]
- Ostanek, J.K.; Li, W.; Mukherjee, P.P.; Crompton, K.R. Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model. Appl. Energy 2020, 268, 114972. [Google Scholar] [CrossRef]
- Schmiegel, J.-P.; Leißing, M.; Weddeling, F.; Horsthemke, F.; Reiter, J.; Fan, Q.; Nowak, S.; Winter, M.; Placke, T. Novel In Situ Gas Formation Analysis Technique Using a Multilayer Pouch Bag Lithium Ion Cell Equipped with Gas Sampling Port. J. Electrochem. Soc. 2020, 167, 060516. [Google Scholar] [CrossRef]
- Lyu, S.; Li, N.; Sun, L.; Jiao, S.; Chen, H.; Song, W. Rapid operando gas monitor for commercial lithium ion batteries: Gas evolution and relation with electrode materials. J. Energy Chem. 2022, 72, 14–25. [Google Scholar] [CrossRef]
- Cai, T.; Valecha, P.; Tran, V.; Engle, B.; Stefanopoulou, A.; Siegel, J. Detection of Li-ion battery failure and venting with Carbon Dioxide sensors. eTransportation 2021, 7, 100100. [Google Scholar] [CrossRef]
- Mei, W.; Liu, Z.; Wang, C.; Wu, C.; Liu, Y.; Liu, P.; Xia, X.; Xue, X.; Han, X.; Sun, J.; et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies. Nat. Commun. 2023, 14, 5251. [Google Scholar] [CrossRef]
Type of Signal | Type of Sensor | Diagram | Base Cost (System +One Sensor) | Location | Advantages | Disadvantages |
---|---|---|---|---|---|---|
Electrical | Compact dynamic EIS | USD 2000 | Internal | Compact | Impedance spectrum diverging | |
Internal potential | Implementation-dependent | Internal | Accurate detection of potential | Short lifespan | ||
Thermal | RTD | USD 200 | Internal | Accurate detection of temperature | Increase in internal impedance and impedes ionic transport | |
FBG | USD 10,000 | Internal/external | Accurate detection of temperature; multiplexing | Temperature and strain coupling; sealing problem | ||
Thermistor | USD 400 | Internal/external | Accurate detection of temperature | Increase in internal impedance and impedes ionic transport | ||
Mechanical | LVDT | USD 4000 | External | Accurate detection of pressure | Oversize | |
Film strain resistance sensor | USD 10,000~40,000 | External | Distributed monitoring | Expensive | ||
Mechanical | Inductive coil eddy current sensor | Implementation dependent | External | Accurate detection of volume | Gap required | |
Miniature film strain sensor | USD 4000 | Internal/external | Accurate detection of strain | Increase in internal impedance and impedes ionic transport | ||
FBG | USD 10,000 | Internal/external | Accurate detection of strain/multiplexing | Temperature and strain coupling; sealing problem | ||
Acoustic | Ultrasonic transmission imaging | Implementation dependent | External | Non-destructive testing of electrolyte content | Oversize | |
Ultrasonic-guided wave | USD 400 | External | Non-destructive testing of electrode structure | Limited detection range | ||
Gas | NDIR | USD 300 | External | Accurate detection of gas types | Postponement of information | |
FPI | USD 10,000 | Internal | Accurate detection of gas pressure | Sealing problem |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu, S.; Ma, X.-Y.; Jiang, J.; Yang, X.-G. Advancing Smart Lithium-Ion Batteries: A Review on Multi-Physical Sensing Technologies for Lithium-Ion Batteries. Energies 2024, 17, 2273. https://doi.org/10.3390/en17102273
Wang W, Liu S, Ma X-Y, Jiang J, Yang X-G. Advancing Smart Lithium-Ion Batteries: A Review on Multi-Physical Sensing Technologies for Lithium-Ion Batteries. Energies. 2024; 17(10):2273. https://doi.org/10.3390/en17102273
Chicago/Turabian StyleWang, Wenwei, Shuaibang Liu, Xiao-Ying Ma, Jiuchun Jiang, and Xiao-Guang Yang. 2024. "Advancing Smart Lithium-Ion Batteries: A Review on Multi-Physical Sensing Technologies for Lithium-Ion Batteries" Energies 17, no. 10: 2273. https://doi.org/10.3390/en17102273
APA StyleWang, W., Liu, S., Ma, X. -Y., Jiang, J., & Yang, X. -G. (2024). Advancing Smart Lithium-Ion Batteries: A Review on Multi-Physical Sensing Technologies for Lithium-Ion Batteries. Energies, 17(10), 2273. https://doi.org/10.3390/en17102273