European Climate Policy in the Context of the Problem of Methane Emissions from Coal Mines in Poland
Abstract
:1. Introduction
2. Methane as One of the Main Greenhouse Gases
- Through de-methanation systems;
- Through ventilation shafts.
3. Study Method
4. Results of the Analysis
4.1. The Problem of Methane Emissions from Coal Mines in Poland
4.2. The Current Use of Methane from Coal Mines in Poland
4.3. Commercial Opportunities of Using Methane from Polish Hard Coal Mines
- Be added (auxiliary) to power plants where the high combustion temperature is provided by another primary fuel;
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bohumil, H.; Joanna, P.; Łukasz, W.; Jakub, S.; Petra, M.; Patrycja, P.; Iveta, S.; Katarzyna, T.-O.; Jiri, K.; Barbora, H.; et al. Low Carbon Economy in the Context of Developing the Automotive, Construction, and Tourism Sector; Akademia WSB Publisher: Dąbrowa Górnicza, Poland, 2022. [Google Scholar]
- Bluszcz, A.; Manowska, A. Differentiation of the Level of Sustainable Development of Energy Markets in the European Union Countries. Energies 2020, 13, 4882. [Google Scholar] [CrossRef]
- Ovaere, M.; Proost, S. Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package. Energy Policy 2022, 168, 113085. [Google Scholar] [CrossRef]
- Markowska, K.; Sękala, A.; Stecuła, K.; Kawka, T.; Sirovitskiy, K.; Pankova, O.; Vnukova, N.; Shulyak, M.; Kharchenko, S.; Shchur, T.; et al. Comparison of the Sustainability and Economic Efficiency of an Electric Car and an Aircraft—A Case Study. Sustainability 2023, 15, 1238. [Google Scholar] [CrossRef]
- Proost, S. Looking for winning policies to address the climate issue in EU-aviation. J. Air Transp. Manag. 2024, 115, 102534. [Google Scholar] [CrossRef]
- Dupont, C.; Moore, B.; Boasson, E.L.; Gravey, V.; Jordan, A.; Kivimaa, P.; Kulovesi, K.; Kuzemko, C.; Oberthür, S.; Panchuk, D.; et al. Three decades of EU climate policy: Racing toward climate neutrality? Wiley Interdiscip. Rev. Clim. Chang. 2024, 15, e863. [Google Scholar] [CrossRef]
- Paleari, S. The EU policy on climate change, biodiversity and circular economy: Moving towards a Nexus approach. Environ. Sci. Policy 2024, 151, 103603. [Google Scholar] [CrossRef]
- Jensen, A.; Nielsen, H.Ø.; Russel, D. Diffusion of climate policy integration in adaptation strategies: Translating the EU mandate into UK and Danish national contexts. Reg. Environ. Chang. 2023, 23, 130. [Google Scholar] [CrossRef]
- Brad, A.; Schneider, E. Carbon dioxide removal and mitigation deterrence in EU climate policy: Towards a research approach. Environ. Sci. Policy 2023, 150, 103591. [Google Scholar] [CrossRef]
- Korosuo, A.; Pilli, R.; Abad Viñas, R.; Blujdea, V.N.; Colditz, R.R.; Fiorese, G.; Rossi, S.; Vizzarri, M.; Grassi, G. The role of forests in the EU climate policy: Are we on the right track? Carbon Balance Manag. 2023, 18, 15. [Google Scholar] [CrossRef]
- Weishaar, S.E.; Kim, E.; Tiche, F.G. Climate and Energy Law and Policy in the EU and East Asia: Transition and Policy Cooperation; Edward Elgar Publishing: Cheltenham, UK, 2023; pp. 1–220. [Google Scholar]
- Vogler, J. Global dimensions of EU climate, energy and transport policies. In Handbook on European Union Climate Change Policy and Politics; Edward Elgar Publishing: Cheltenham, UK, 2023; pp. 144–157. [Google Scholar]
- Zhang, X.-B.; Xu, J. Optimal policies for climate change: A joint consideration of CO2 and methane. Appl. Energy 2018, 211, 1021–1029. [Google Scholar] [CrossRef]
- Quelopana, A.; Órdenes, J.; Araya, R.; Navarra, A. Geometallurgical Detailing of Plant Operation within Open-Pit Strategic Mine Planning. Processes 2023, 11, 381. [Google Scholar] [CrossRef]
- Greenhouse Effect. Wikipedia. Available online: http://en.wikipedia.org/wiki/Greenhouse_effect (accessed on 4 February 2024).
- IEA Report: Global Methane Tracker. 2022. Available online: https://www.iea.org/reports/global-methane-tracker-2022/methane-and-climate-change (accessed on 4 February 2024).
- Shindell, D.; Ravishankara, A.R.; Kuylenstierna, J.C.I.; Michalopoulou, E.; Höglund-Isaksson, L.; Zhang, Y.; Seltzer, K.; Ru, M.; Castelino, R.; Faluvegi, G.; et al. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- CIREPL Paper: Świat OZE (Global RES). Available online: https://swiatoze.pl/metan-odpowiada-za-30-globalnego-ocieplenia-skad-wzial-sie-w-atmosferze-i-czy-jest-niebezpieczny/ (accessed on 4 February 2024).
- KOBiZE. KOBiZE 2023, Krajowy Raport Inwentaryzacyjny 2023. Warsow, 2023, Marc., Report Prepared by: Krajowy Ośrodek Bilansowania i Zarządzania Emisjami; Ministry of Climate: Warsaw, Poland, 2023.
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P.; et al. Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris agreement. Glob. Biogeochem. 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Report: Our World in Data. Available online: https://ourworldindata.org/atmospheric-concentrations (accessed on 4 February 2024).
- Report NOAA. Trends in Atmospheric Global Monitoring Laboratory Earth System Research Laboratories. Methane. Available online: https://gml.noaa.gov/ccgg/trends_ch4/#:~:text=Global%20CH4%20Monthly%20Means&text=The%20Global%20Monitoring%20Division%20of,et%20al.%2C%201994 (accessed on 4 February 2024).
- CIRE.PL. Centrum Informacji o Rynku Energii, Metan Jest Większym Problemem Niż CO2, Jest Plan Redukcji Emisji Metanu o 30 Proc. 3.11.2021, 13.00. Available online: https://www.cire.pl/artykuly/o-tym-sie-mowi/metan-jest-wiekszym-problemem-niz-co2-jest-plan-redukcji-emisji-metanu-o-30-proc (accessed on 4 February 2024).
- Kuśmierczyk-Michulec, J.; Baré., J. Global atmospheric monitoring of radionuclides and noble gases: Insights into the interhemispheric transport of anthropogenic emissions. Atmos. Environ. 2024, 319, 120304. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Steele, L.P.; Lang, P.M.; Masarie, K.A. The growth rate and distribution of atmospheric methane. J. Geophys. Res. 1994, 99, 17021–17043. [Google Scholar] [CrossRef]
- Masarie, K.A.; Tans, P.P. Extension integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res. 1995, 100, 11593–11610. [Google Scholar] [CrossRef]
- COM202. IPCC. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 3–32. [Google Scholar]
- Balcerowski, J.; Charkowska, Z. W poszukiwaniu źródeł Emisje metanu w polskim górnictwie węgla kamiennego i systemy raportowania. Instrat Policy Paper 01/2023, Warsow, Feb. 2023. Available online: https://instrat.pl/wp-content/uploads/2023/02/Instrat-Policy-Paper-01-2023-W-poszukiwaniu-zrodel.-Emisje-metanu-....pdf (accessed on 4 February 2024).
- Ocko, I.B.; Sun, T.; Shindell, D.; Oppenheimer, M.; Hristov, A.N.; Pacala, S.W.; Mauzerall, D.L.; Xu, Y.; Hamburg, S.P. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environ. Res. Lett. 2021, 16, 054042. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, H.; Yu, Z.; Li, C.; Ren, H.; Zhao, Y.; Huang, F.; Guo, Y.; Wan, M.; Tian, J. Managing Methane Emissions in Abandoned Coal Mines: Comparison of Different Recovery Technologies by Integrating Techno-Economic Analysis and Life-Cycle Assessment. Environ. Sci. Technol. 2023, 56, 13900–13908. [Google Scholar] [CrossRef]
- Harmsen, M.; van Vuuren, D.P.; Bodirsky, B.L.; Chateau, J.; Durand-Lasserve, O.; Drouet, L.; Fricko, O.; Fujimori, S.; Gernaat, D.E.H.J.; Hanaoka, T.; et al. The role of methane in future climate strategies: Mitigation potentials and climate impacts. Clim. Chang. 2020, 163, 1409–1425. [Google Scholar] [CrossRef]
- Shindell, D.; Fuglestvedt, J.; Collins, W. The social cost of methane: Theory and applications. Faraday Discuss. 2017, 200, 429–451. [Google Scholar] [CrossRef]
- IPCC. “Sumary for Policymakers” [“Podsumowanie dla Decydentów”] w: “Climate Change 2021: The Physical Science Basis”; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Royal Society, Ground-Level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications (RS1276 ed., 2008, Vol. 15/08). The Royal Society. Available online: https://royalsociety.org/topics-policy/publications/2008/ground-level-ozone/ (accessed on 4 February 2024).
- UNEP. Integrated Assessment of Black Carbon and Tropospheric Ozone; United Nations Environmental Programme: Nairobi, Kenya, 2011. [Google Scholar]
- Pujade-Lauraine, E.; Ledermann, J.A.; Selle, F.; Gebski, V.; Penson, R.T.; Oza, A.M.; Korach, J.; Huzarski, T.; Poveda, A.; Pignata, S.; et al. Olaparib tablets as maintenance therapy in patients with platinumsensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1274–1284. [Google Scholar] [CrossRef]
- Shoemaker, J.K.; Schrag, D.P.; Molina, M.J.; Ramanathan, V. What role for shortlived climate pollutants in mitigation policy? Science 2013, 342, 1323–1324. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.J.; Horowitz, L.W.; Naik, V.; Oshima, N.; O’Connor, F.M.; Turnock, S.; Shim, S.; Le Sager, P.; van Noije, T.; Tsigaridis, K.; et al. Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions. Environ. Res. Lett. 2021, 16, 034010. [Google Scholar] [CrossRef]
- Odpowiedzialny Biznes. Raport. Available online: https://odpowiedzialnybiznes.pl/aktualno%C5%9Bci/raport-90-emisji-szkodliwego-metanu-w-polsce-pochodzi-z-kopalni-wegla-kamiennego/ (accessed on 4 February 2024).
- Ember. Drugi Bełchatów. Metan Kopalniany w Polsce. Ember Climate. 2020. Available online: https://ember-climate.org/app/uploads/2022/01/Polish-Polands-Second-Belchatow.pdf (accessed on 4 February 2024).
- Krajowy Program Energetyki i Kopalń KPEiK/Energy Policy of Poland (EPP2040) until 2040, (Title in Polish) Polityka Energetyczna Polski do 2040 r. (PEP2040). Available online: https://www.gov.pl/web/klimat/polityka-energetyczna-polski (accessed on 4 February 2024).
- Terytorialny Plan Sprawiedliwej Transformacji Województwa Śląskiego 2030 i Umowy Społecznej dotyczącej transformacji sektora górnictwa węgla kamiennego oraz wybranych procesów transformacji woj. sląskiego. In Terytorialny Plan Sprawiedliwej Transformacji Województwa Śląskiego; Urząd Marszałkowski Województwa Śląskiego: Katowice, Poland, 2022. Available online: https://transformacja.slaskie.pl/images/Dokumenty/1646921120_terytorialny_plan_spr.04.pdf (accessed on 25 May 2023).
- Forum Energii, PEP 2040–Rekomendacje Eksperckiej Rady ds. Bezpieczeństwa Energetycznego. Available online: https://forum-energii.eu/pl/blog/pep-2040-rekomendacje-rady (accessed on 3 February 2024).
- Polski Komitet Energii Elektrycznej Polska ścieżka Transformacji Energetycznej Warszawa, Październik 2022. Available online: https://pkee.pl/publikacje/raport-ey-i-pkee-polska-sciezka-transformacji-energetycznej/ (accessed on 3 February 2024).
- Stasińska, B. Ograniczenie emisji metanu z kopalń węglowych poprzez katalityczne oczyszczanie powietrza wentylacyjnego. Polityka Energetyczna 2009, 12, 123–132. [Google Scholar]
- Nawrat, S.; Stopa, J. Pozyskanie i Wykorzystanie Energetyczne Metanu z Kopalń Węgla Kamiennego Szansą Ekonomiczną i Ekologiczną Dla Śląska i Polski (Capturing and Using Coal-Mine Methane for Energy Production—An Economic and Ecological Opportunity for Silesia and Poland), Jastrzębie Zdrój, 17 October 2022. Available online: https://orka.sejm.gov.pl/opinie9.nsf/nazwa/650_20221017_4/$file/650_20221017_4.pdf (accessed on 4 February 2024).
- Badyda, K. Możliwości zagospodarowania gazu kopalnianego w Polsce dla celów energetycznych. Energetyka 2008, 6, 416–423. [Google Scholar]
- Nawrat, S.; Gantnar, K. Ocena stanu i możliwości utylizacji metanu z powietrza wentylacyjnego podziemnych kopalń węgla kamiennego. Polityka Energetyczna 2008, 11, 69–84. [Google Scholar]
- Jureczka, J. Metan z Zaniechanych Złóż Węgla Kamiennego–Wsparcie Dla Transformacji Energetycznej. Państwowy Instytut Geologiczny (02 Listopad 2021). Available online: https://www.pgi.gov.pl/aktualnosci/display/13314-metan-z-zaniechanych-zloz-wegla-kamiennego-wsparcie-dla-transformacji-energetycznej.html (accessed on 27 May 2023).
- Gajdzik, B.; Wolniak, R.; Grebski, W. Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry. Energies 2023, 16, 3384. [Google Scholar] [CrossRef]
- Available online: https://informacje.pan.pl/71-media/materialy-prasowe/3136-innowacyjna-metoda-utylizacji-metanu-doceniona-na-swiecie (accessed on 2 February 2024).
- Tobór-Osadnik, K.; Gajdzik, B.; Strzelec, G. Configurational Path of Decarbonisation Based on Coal Mine Methane (CMM): An econometric model for the Polish mining industry. Sustainability 2023, 15, 9980. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analysis of methane emission into the atmosphere as a result of mining activity. Int. Multidiscip. Sci. GeoConf. SGEM 2016, 3, 83–90. [Google Scholar]
- Kaczmarek, J. The Balance of Outlays and Effects of Restructuring Hard Coal Mining Companies in Terms of Energy Policy of Poland PEP 2040. Energies 2022, 15, 1853. [Google Scholar] [CrossRef]
- Lv, D.; Wu, Y.; Chen, J.; Li, Z.; Xia, Q. Improving CH4/N2 selectivity within isomeric Al-based MOFs for the highly selective capture of coal-mine methane. AIChE J. 2020, 66, e16287. [Google Scholar] [CrossRef]
- Niu, Z.; Cui, X.; Pham, T.; Lan, P.C.; Xing, H.; Forrest, K.A.; Wojtas, L.; Space, B.; Ma, S. A Metal–Organic Framework Based Methane Nano-trap for the Capture of Coal-Mine Methane. Angew. Chem.-Int. Ed. 2019, 58, 10138–10141. [Google Scholar] [CrossRef]
- Li, Q.; Ruan, M.; Lin, B.; Zhao, M.; Zheng, Y.; Wang, K. Molecular simulation study of metal organic frameworks for methane capture from low-concentration coal mine methane gas. J. Porous Mater. 2016, 23, 107–122. [Google Scholar] [CrossRef]
- Koroviaka, Y.; Pinka, J.; Tymchenko, S.; Rastsvietaiev, V.; Astakhov, V.; Dmytruk, O. Elaborating a scheme for mine methane capturing while developing coal gas seams. Min. Miner. Depos. 2020, 14, 21–27. [Google Scholar] [CrossRef]
- Siemek, J.; Macuda, J.; Łukańko, Ł.; Hendel, J. The technology of drilling wells for capturing methane from abandoned coal mines. Arch. Min. Sci. 2020, 65, 89–101. [Google Scholar]
- Szlązak, N.; Swolkień, J. Possibilities of capturing methane from hard coal deposits lying at great depths. Energies 2021, 14, 3542. [Google Scholar] [CrossRef]
- Duda, A. The Impact of Atmospheric Pressure Changes on Methane Emission from Goafs to Coal Mine Workings. Energies 2024, 17, 173. [Google Scholar] [CrossRef]
- Liu, Q.; Teng, F.; Zhang, L.-Y. The improvement and recalculation of China’s coal methane emission inventory based on a dynamic mine-level database. Clim. Chang. Res. 2023, 19, 704–713. [Google Scholar]
- Zhang, X.; Zhu, T.; Yi, N.; Yuan, B.; Li, C.; Ye, Z.; Zhu, Z.; Zhang, X. Study on Characteristics and Model Prediction of Methane Emissions in Coal Mines: A Case Study of Shanxi Province, China. Atmosphere 2023, 14, 1422. [Google Scholar] [CrossRef]
- Konkol, I.; Cebula, J.; Świerczek, L.; Sopa, J.; Sopa, J.; Cenian, A. Characterization of Deposits Formed in Gas Engines Fuelled by Coal Mine Methane. Materials 2023, 16, 2517. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gong, Y.; Fu, S.; Wang, L.; Cheng, Y. Research progress of methane purification from coal mine gas by variable pressure adsorption. Sci. Sin. Chim. 2023, 53, 992–1007. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Shi, Y.; Zhang, Y.; Shi, J.; Sun, P. Strategies for heat recovery in a reverse flow reactor designed to lessen coal mine methane emissions test, Energy Sources. Part A Recovery Util. Environ. Eff. 2023, 45, 8665–8685. [Google Scholar]
- Su, X.B.; Zhao, W.Z.; Wang, Q.; Yu, S.Y.; Song, J.X.; Wang, X.M.; Xia, D.P.; Fu, H.J.; Sun, C.Y.; Guo, H.G.; et al. Conception of key technologies for low⁃negative carbon emission reduction in the process of coalbed methane development from the CBM well, coal mine and goaf. Meitan Xuebao/J. China Coal Soc. 2023, 48, 335–356. [Google Scholar]
- Swolkień, J.; Fix, A.; Gałkowski, M. Factors influencing the temporal variability of atmospheric methane emissions from Upper Silesia coal mines: A case study from the CoMet mission. Atmos. Chem. Phys. 2022, 22, 16031–16052. [Google Scholar] [CrossRef]
- Smirnova, A.; Varnavskiy, K.; Nepsha, F.; Kostomarov, R.; Chen, S. The Development of Coal Mine Methane Utilization Infrastructure within the Framework of the Concept “Coal-Energy-Information”. Energies 2022, 15, 8948. [Google Scholar] [CrossRef]
- Meyer, A.G.; Lindenmaier, R.; Heerah, S.; Peischl, J.; Dubey, M.K. Using Multiscale Ethane/Methane Observations to Attribute Coal Mine Vent Emissions in the San Juan Basin From 2013 to 2021. J. Geophys. Res. Atmos. 2022, 127, e2022JD037092. [Google Scholar] [CrossRef]
- Wu, X.; Cui, J.; Tong, R.; Li, Q. Research on Methane Measurement and Interference Factors in Coal Mines. Sensors 2022, 22, 5608. [Google Scholar] [CrossRef]
- Sadavarte, P.; Pandey, S.; Maasakkers, J.D.; van der Gon, H.D.; Houweling, S.; Aben, I. A high-resolution gridded inventory of coal mine methane emissions for India and Australia. Elementa 2022, 10, 10. [Google Scholar] [CrossRef]
- Yin, F.; Nie, B.; Wei, Y.; Lin, S. Co-Production System Based on Lean Methane and Biogas for Power Generation in Coal Mines. Atmosphere 2022, 13, 803. [Google Scholar] [CrossRef]
- Bolt, A.; Dincer, I.; Agelin-Chaab, M. Investigation of a renewable energy based integrated system with carbon capturing for hydrogen, methane and other useful outputs. J. Clean. Prod. 2023, 422, 138572. [Google Scholar] [CrossRef]
- Anyanwu, U.O.; Okafor, O.C.; Nkwor, C.A. A Scheduling Model in Capturing Methane Gas from Methane Clathrates Deposits. J. Eng. Sci. 2023, 10, G1–G13. [Google Scholar] [CrossRef]
- Fukuhara, C.; Matsui, Y.; Tanebayashi, M.; Watanabe, R. A novel catalytic reaction system capturing solid carbon from greenhouse gas, combined with dry reforming of methane. Chem. Eng. J. Adv. 2021, 5, 100057. [Google Scholar] [CrossRef]
- Liu, B.; Yu, X.; Shi, W.; Shen, Y.; Zhang, D.; Tang, Z. Two-stage VSA/PSA for capturing carbon dioxide (CO2) and producing hydrogen (H2) from steam-methane reforming gas. Int. J. Hydrogen Energy 2020, 45, 24870–24882. [Google Scholar] [CrossRef]
- Ghannadi, M.; Dincer, I. A new system for hydrogen and methane production with post-combustion amine-based carbon capturing option for better sustainability. Energy Convers. Manag. 2024, 301, 118026. [Google Scholar] [CrossRef]
- Kumar, V.; Tiwari, A.K. Performance assessment of green hydrogen generation via distinct electrolytes dedicated to renewable energy. Desalination 2024, 582, 117651. [Google Scholar] [CrossRef]
- Sofiiskyi, K.; Petukh, O. The results of experimental research of the parameters of methane capturing by local degassing wells in the undermining area. E3S Web Conf. 2019, 109, 00097. [Google Scholar] [CrossRef]
- Nekhubvi, V.; Tinarwo, D. Methane capturing using anaerobic digestion technology: A way towards mitigating greenhouse gases in Limpopo Province, South Africa. Nat. Environ. Pollut. Technol. 2017, 16, 1243–1247. [Google Scholar]
- Cluff, D.L.; Kennedy, G.A.; Bennett, J.G.; Foster, P.J. Capturing energy from ventilation air methane a preliminary design for a new approach. Appl. Therm. Eng. 2015, 90, 1151–1163. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Zheng, S.; Shu, L.; Zhang, X. How efficient coal mine methane control can benefit carbon-neutral target: Evidence from China. J. Clean. Prod. 2023, 424, 138895. [Google Scholar] [CrossRef]
- Su, Z.; Xing, L.; Ali, H.E.; Alkhalifah, T.; Alturise, F.; Khadimallah, M.A.; Assilzadeh, H. Latest insights on separation and storage of carbon compounds in buildings towards sustainable environment: Recent innovations, challenges, future perspectives and application of machine learning. Chemosphere 2023, 329, 138573. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Zhao, W.; Tang, K.; Yang, K.; Zhao, G.; Zhu, S.; Ye, J.; Gu, S. High efficiency of boron doping and fast growth realized with a novel gas inlet structure in diamond microwave plasma chemical vapor deposition system. Carbon Lett. 2023, 34, 1115–1128. [Google Scholar] [CrossRef]
- Subbian, S.; Natarajan, P.; Murugan, C. Circular economy-based multi-objective decentralized controller for activated sludge wastewater treatment plant. Front. Chem. Eng. 2023, 5, 1235125. [Google Scholar] [CrossRef]
- Smirnova, A.D.; Shevtsov, A.G.; Chen, S. Analysis of factors affecting the coal seams distribution permeability in the southern part of the Tutuyasskaya Area of the Kuznetsk Basin, Russia. Sustain. Dev. Mt. Territ. 2022, 14, 657–665. [Google Scholar] [CrossRef]
- Wang, C.; Wang, R.; Zhou, W.; Li, F. The use of a novel spacer and ultralow-density cement system to control lost circulation in coalbed-methane wells. SPE Drill. Complet. 2015, 30, 76–85. [Google Scholar] [CrossRef]
- Qi, Q.-X.; Ji, W.-B.; Yuan, J.-H.; Cheng, Z.-H.; Liu, X.-G. In-situ observation on the floor-connected crack field and its effects on methane extraction. Meitan Xuebao/J. China Coal Soc. 2014, 39, 1552–1558. [Google Scholar]
- Puchkov, L.A.; Kaledina, N.O.; Kobylkin, S.S. System solutions of provision of methane safety of coal mines. Gorn. Zhurnal 2014, 5, 12–16. [Google Scholar]
- Tang, X.; Hu, M. On the resilience of bio-cemented silica sands in chemically reactive environment. Geomech. Energy Environ. 2024, 37, 100527. [Google Scholar] [CrossRef]
- Gierszewska, G.; Romanowska, M. Analiza Strategiczna Przedsiębiorstwa; Polskie Wydawnictwo Ekonomiczne: Warszawa, Poland, 2017. [Google Scholar]
- Tyrańska, M.; Walas-Trębacz, J. Wykorzystanie Metod Analizy Strategicznej w Przedsiębiorstwie; Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie: Kraków, Poland, 2010. [Google Scholar]
- Korski, J.; Tobór–Osadnik, K.; Wyganowska, M. Reasons of problems of the Polish hard coal mining in connection with restructuring changes in the period 1988–2014. Resour. Policy 2016, 48, 25–31. [Google Scholar] [CrossRef]
- Gosiewski, K.; Pawlaczyk-Kurek, A.; Manfred, J.; Wojdyła, A.; Kleszcz, T.; Machej, T.; Michalski, L. Realne możliwości utylizacji metanu z powietrza wentylacyjnego kopalń węgla kamiennego z odzyskiem energii. Pr. Nauk. Inst. Inżynierii Chem. Pol. Akad. Nauk 2021, 75–119. Available online: https://integro.biblioteka.sosnowiec.pl/ici/recorddetail?id=oai%3Abibliotekanauki.pl%3A2175685 (accessed on 4 February 2024).
- Sun, D.; Liang, Y.; Huang, X.; Ran, Q. Progress and prospects of coalbed methane development and utilization in coal mining areas with large dip angle and multiple coal groups in Xinjiang. Meitan Kexue Jishu/Coal Sci. Technol. 2023, 51, 162–172. [Google Scholar]
- Kong, X.; Tang, Y.; Li, P.; Chen, B.; Ye, M. Thingking and utilization technology of coalbed methane in soft and low permeability coal seams in Huainan Mining Area. Meitan Kexue Jishu/Coal Sci. Technol. 2022, 50, 26–35. [Google Scholar]
- Qin, K.; Hu, W.; He, Q.; Lu, F.; Cohen, J.B. Individual coal mine methane emissions constrained by eddy covariance measurements: Low bias and missing sources. Atmos. Chem. Phys. 2024, 24, 3009–3028. [Google Scholar] [CrossRef]
- Varnavskiy, K.A.; Nepsha, F.S.; Kostomarov, R.V.; Chen, Q. Business Diversification of Coal Mining Enterprises Based on the Development of Coal Mine Methane Utilization Infrastructure. In Proceedings of the 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2022, Yekaterinburg, Russia, 11–13 November 2022; pp. 2060–2063. [Google Scholar]
- Liu, H.; Zhao, M.; Zhao, K.; Zhang, Q.; Zhang, X. Fine calculation of methane emissions and utilization amount from coal mines in Shanxi Province. Nat. Gas Ind. 2022, 42, 179–185. [Google Scholar]
- Ponnudurai, V.; Rajarathinam, R.; Muthuvelu, K.S.; Nalajala, R.K.; Arumugam, L. Investigation on the utilization of coal washery rejects by different microbial sources for biogenic methane production. Chemosphere 2022, 287, 132165. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, F.; Ling, Y.; Wei, K.; Kang, J. Overview and Outlook on Utilization Technologies of Low-Concentration Coal Mine Methane. Energy Fuels 2021, 35, 15398–15423. [Google Scholar] [CrossRef]
- Blinova, E.S.; Nevskaya, M.A. Methane utilization as a resource-saving method inthe coal industry. E3S Web Conf. 2021, 266, 06002. [Google Scholar] [CrossRef]
- Mahdevari, S. Coal mine methane: Control, utilization, and abatement. In Advances in Productive, Safe, and Responsible Coal Mining; Woodhead Publishing: Sawston, UK, 2018; pp. 179–198. [Google Scholar]
- Liu, J.; Sun, H.; Lei, Y.; Cao, J. Current situation and development trend of coalbed methane development and utilization technology in coal mine area. Meitan Xuebao/J. China Coal Soc. 2020, 45, 258–267. [Google Scholar]
- Noriega, R.; Pourrahimian, Y. A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning. Resour. Policy 2023, 77, 102727. [Google Scholar] [CrossRef]
- Pouresmaieli, M.; Ataei, M.; Nouri Qarahasanlou, A.; Barabadi, A. Integration of renewable energy and sustainable development with strategic planning in the mining industry. Results Eng. 2023, 20, 101412. [Google Scholar] [CrossRef]
- Pape, U.; Brandsen, T.; Pahl, J.B.; Pieliński, B.; Baturina, D.; Brookes, N.; Chaves-Ávila, R.; Kendall, J.; Matančević, J.; Petrella, F.; et al. Changing Policy Environments in Europe and the Resilience of the Third Sector. Voluntas 2020, 31, 238–249. [Google Scholar] [CrossRef]
- Gajdzik, B.; Sroka, W.; Vveinhardt, J. Energy intensity of steel manufactured utilising EAF technology as a function of investments made: The case of the steel industry in Poland. Energies 2021, 14, 5152. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Grebski, W.W. An Econometric Model of the Operation of the Steel Industry in Poland in the Context of Process Heat and Energy Consumption. Energies 2022, 15, 7909. [Google Scholar] [CrossRef]
- Gajdzik, B. Environmental aspects, strategies and waste logistic system based on the example of metallurgical company. Metalurgija 2009, 48, 63–67. [Google Scholar]
- Gajdzik, B. Comprehensive classification of environmental aspects in a manufacturing enterprise. Metalurgija 2012, 51, 541–544. [Google Scholar]
- Stuikyte, R.; Varentsov, I.; Cook, C.; Dvoriak, S. Measuring sustainability of opioid agonist therapy programs in the context of transition from global fund support. Harm Reduct. J. 2024, 21, 7. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, H.; Irshad, A.R.; Tanveer, M. Do innovation and renewable energy transition play their role in environmental sustainability in Western Europe? Humanit. Soc. Sci. Commun. 2024, 11, 22. [Google Scholar] [CrossRef]
- Bogner, K.; Kump, B.; Beekman, M.; Wittmayer, J. Coping with transition pain: An emotions perspective on phase-outs in sustainability transitions. Environ. Innov. Soc. Transit. 2024, 50, 100806. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Z. Digitalization, trust, and sustainability transitions: Insights from two blockchain-based green experiments in China’s electricity sector. Environ. Innov. Soc. Transit. 2024, 50, 100801. [Google Scholar] [CrossRef]
- Banerjee, S.; Roy, S.; Khatua, S. Game Theory Based Energy-aware Virtual Machine Placement towards Improving Resource Efficiency in Homogeneous Cloud Data Center. In Proceedings of the 2022 IEEE Calcutta Conference, CALCON 2022-Proceedings, Kolkata, India, 10–11 December 2022; pp. 293–298. [Google Scholar]
- Rentschler, J.; Flachenecker, F.; Kornejew, M. Assessing carbon emission savings from corporate resource efficiency investments: An estimation indicator in theory and practice, Environment. Dev. Sustain. 2020, 22, 835–861. [Google Scholar] [CrossRef]
Year | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
Growth (ppb) | 12.87 | 12.20 | 12.89 | 11.43 | 10.68 | 11.20 | 8.66 | 14.07 | 2.39 | 3.87 |
Uncertainty (ppb) | 0.84 | 0.84 | 0.72 | 0.73 | 0.47 | 0.57 | 0.49 | 0.56 | 0.47 | 0.63 |
Year | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
Growth (ppb) | 7.24 | 3.83 | 2.48 | 6.36 | 12.12 | 2.38 | −1.45 | −0.72 | 3.24 | 4.84 |
Uncertainty (ppb) | 0.62 | 0.52 | 0.42 | 0.69 | 0.64 | 0.61 | 0.53 | 0.45 | 0.56 | 0.60 |
Year | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
Growth (ppb) | −4.84 | 0.32 | 1.91 | 7.85 | 6.51 | 4.71 | 5.21 | 4.92 | 4.98 | 5.64 |
Uncertainty (ppb) | 0.42 | 0.43 | 0.51 | 0.64 | 0.44 | 0.56 | 0.70 | 0.59 | 0.46 | 0.57 |
Year | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
Growth (ppb) | 12.78 | 10.00 | 7.03 | 6.88 | 8.76 | 9.67 | 15.13 | 17.98 | 13.22 | |
Uncertainty (ppb) | 0.43 | 0.72 | 0.64 | 0.75 | 0.62 | 0.65 | 0.45 | 0.45 | 0.77 |
Type of Plants | Thermal Power Plant | Hard Coal Mines | Lignite Coal Mines | ||||||
---|---|---|---|---|---|---|---|---|---|
year | 2030 | 2035 | 2036 | to 2030 | to 2035 | to 2040 | to 2045 | to 2049 | 2036 |
number | 3 | 1 | 1 | 2 | 2 | 4 | 2 | 4 | 21 |
Advantage | Description |
---|---|
Mitigation of Greenhouse Gas Emissions | Prevents its release into the atmosphere, reducing the greenhouse effect and mitigating climate change. |
Utilization as a Clean Energy Source | Allows for its use in power generation or as a feedstock for industrial processes, contributing to cleaner energy production. |
Economic Incentives for Coal Mining Companies | Provides an economic incentive for coal mining companies to adopt methane capture technologies by offering a valuable energy resource. |
Alignment with Global Sustainability Goals | Supports international efforts to reduce methane emissions and the transition towards more sustainable and environmentally friendly practices. |
Enhanced Safety in Coal Mines | Reduces the risk of methane-related explosions in underground coal mines, promoting a safer working environment for miners. |
Responsible Resource Extraction and Management | Demonstrates a commitment to responsible mining practices by addressing environmental concerns associated with coal extraction. |
Environmental Stewardship | Contributes to environmental conservation by preventing the release of methane, a potent greenhouse gas, into the atmosphere. |
Reduction in Carbon Footprint | Significantly lowers the carbon footprint of coal mining operations, aligning with global efforts to combat climate change. |
Renewable Energy Resource | Allows for it to serve as a renewable energy resource, reducing dependence on non-renewable fossil fuels for energy production. |
Economic Diversification for Coal Industry | Offers economic diversification for the coal industry by turning methane emissions into a valuable energy commodity. |
Green Energy Portfolio Enhancement | Enhances the green energy portfolio of coal mining companies, promoting a positive image and attracting environmentally conscious stakeholders. |
Compliance with Environmental Regulations | Meets and exceeds regulatory requirements for reducing methane emissions, ensuring adherence to environmental standards. |
Technological Innovation and Development | Drives the development and implementation of advanced technologies for methane capture, fostering innovation within the mining industry. |
Global Leadership in Sustainable Practices | Positions coal mining companies as leaders in sustainable practices, contributing to a positive reputation within the global market. |
Community Relations and Social Responsibility | Demonstrates social responsibility by addressing environmental concerns, improving community relations, and fostering a positive relationship with local stakeholders. |
Long-term Viability of Coal Industry | Enhances the long-term viability of the coal industry by integrating environmentally friendly practices, adapting to changing energy trends. |
Problem | Description | Methods of Overcoming |
---|---|---|
Initial Investment Costs | The installation of methane capture systems requires a substantial upfront investment, which can be a financial challenge for coal mining operations. | Government incentives and subsidies: governments can provide financial incentives and subsidies to alleviate the initial investment burden, making methane capture more economically viable for coal mining companies. |
Operational and Maintenance Expenses | Ongoing operational and maintenance costs associated with maintaining methane capture systems may strain financial resources over time. | Long-term financial planning: implementing long-term financial planning can help coal mining companies manage operational and maintenance costs effectively, ensuring the sustained operation of methane capture systems. |
Technological Challenges | Developing and implementing effective methane capture technologies can pose technical challenges, leading to delays and potential setbacks. | Research and development investment: increased investment in research and development can address technological challenges, fostering the development of more efficient and cost-effective methane capture technologies. |
Variability in Methane Emissions | Methane emissions from coal mines can vary, making it challenging to design capture systems that are consistently effective across different conditions. | Adaptive system designs: designing methane capture systems with adaptability to varying emissions can enhance effectiveness across different mining conditions, ensuring a more consistent performance. |
Land Use and Infrastructure Constraints | Implementing methane capture systems may require significant land use and infrastructure modifications, facing resistance and logistical challenges. | Government infrastructure support: government support for infrastructure modifications can facilitate the implementation of methane capture systems, addressing land use and infrastructure constraints. |
Competition for Limited Resources | Coal mining companies may face competition for limited resources, diverting attention and funding away from methane capture initiatives. | Collaborative funding and partnerships: establishing partnerships and collaborative funding initiatives with industry stakeholders, research institutions, and environmental organizations can help share the financial load and overcome resource competition. |
Regulatory Compliance and Reporting Burden | Meeting regulatory requirements for methane capture may impose additional administrative burdens, leading to compliance challenges. | Streamlined regulatory processes: simplifying and streamlining regulatory processes can reduce the administrative burden on coal mining companies, encouraging compliance with methane capture requirements. |
Economic Viability in the Short Term | The economic viability of methane capture projects may be questioned in the short term, potentially hindering widespread adoption. | Integration with renewable energy initiatives: integrating methane capture projects with broader renewable energy initiatives can enhance the economic viability and contribute to a more sustainable energy portfolio, making them more attractive in the short term. |
Perception of Continued Fossil Fuel Use | Critics argue that investing in methane capture may perpetuate the use of fossil fuels, diverting focus from renewable energy alternatives. | Public awareness campaigns and education: conducting public awareness campaigns and education initiatives can address misconceptions, emphasizing the transitional nature of methane capture and its contribution to cleaner fossil fuel use. |
Public Resistance and Perception Issues | Local communities and the public may resist methane capture projects due to concerns about safety, aesthetics, or perceptions of environmental impact. | Stakeholder engagement and communication: proactive engagement with local communities, clear communication about the benefits, and addressing concerns can help overcome resistance and gain community support for methane capture projects. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdzik, B.; Tobór-Osadnik, K.; Wolniak, R.; Grebski, W.W. European Climate Policy in the Context of the Problem of Methane Emissions from Coal Mines in Poland. Energies 2024, 17, 2396. https://doi.org/10.3390/en17102396
Gajdzik B, Tobór-Osadnik K, Wolniak R, Grebski WW. European Climate Policy in the Context of the Problem of Methane Emissions from Coal Mines in Poland. Energies. 2024; 17(10):2396. https://doi.org/10.3390/en17102396
Chicago/Turabian StyleGajdzik, Bożena, Katarzyna Tobór-Osadnik, Radosław Wolniak, and Wiesław Wes Grebski. 2024. "European Climate Policy in the Context of the Problem of Methane Emissions from Coal Mines in Poland" Energies 17, no. 10: 2396. https://doi.org/10.3390/en17102396
APA StyleGajdzik, B., Tobór-Osadnik, K., Wolniak, R., & Grebski, W. W. (2024). European Climate Policy in the Context of the Problem of Methane Emissions from Coal Mines in Poland. Energies, 17(10), 2396. https://doi.org/10.3390/en17102396