Reed Switch Overcurrent Protection: New Approach to Design
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Section
4. Results
5. Overcurrent Protection with Remote Selection of Setpoint
6. Discussion
7. Conclusions
8. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Selection of Overcurrent Protection Setpoint
Appendix A.1. Verification of the Reed Switch Overcurrent Protection
Appendix A.2. Calculation of the Overcurrent Protection
Appendix A.2.1. Working Cell 1 Is Free-Standing, without Neighboring Cell 2
Appendix A.2.2. Working Cell 1 with Neighboring Cell 2: Two-Phase Short Circuit between Phases A and C in the Electrical Installation Connected to Cell 2
Appendix A.2.3. Working Cell 1 with Neighboring Cell 2: Single-Phase Short Circuit in Phase A in the Electrical Installation Connected to Cell 2
References
- Andreev, J.V. Relay Protection and Automatics of Power Supply Systems, 4th ed.; Higher School: Moscow, Russia, 2008; 608p. [Google Scholar]
- Kazansky, V.E. Current Transformers in Relay Protection Circuits; Energiya: Moscow, Russia, 1969; 184p. [Google Scholar]
- D’yakov, A. Electric-power industry in the world in early 21st century (according to the materials of the 39th CIGRE session, Paris). Energ. Zarubezhom 2004, 4–5, 44–45. [Google Scholar]
- Shneerson, E.M. Digital Relay Protection; Energoatomizdat: Moscow, Russia, 2007. [Google Scholar]
- Sverdlovsk Plant of Current Transformers. Available online: https://www.cztt.ru/catalog/transformatory-toka/transformatory-toka-naruzhnoy-ustanovki/opornye1/10-kv-1/tol10iii/ (accessed on 28 February 2024).
- Karabanov, S.M.; Maisels, R.M.; Shoffa, V.N. Magnetically Operated Contacts (Reed Switches) and Products Based on Them; Publishing House Intellect: Dolgoprudny, Russia, 2011. [Google Scholar]
- Kletsel, M.Y.; Musin, V.V. About construction on reed switches of protections of high-voltage installations without current transformers. Elektrotekhnika 1987, 4, 11–13. [Google Scholar]
- Egiazaryan, G.A.; Stafeev, V.I. Magnetodiodes, Magnetotransistors and Their Applications; Radio and Communication: Moscow, Russia, 1987. [Google Scholar]
- Kotenko, G.I. Magnetoresistors. L: Energy. 1972. Available online: https://www.studmed.ru/kotenko-gi-magnitorezistory_3bed601fad0.html (accessed on 16 February 2024).
- Kobus, A.; Tushinsky, J. Hall Sensors and Magnetoresistors/per. from Polish, B.I. Tikhonova, K.B. Macidonian; Khomeriki, O.K., Ed.; Energy: Moscow, Russia, 1971. [Google Scholar]
- Kozhovich, L.A.; Bishop, M.T. «Modern Relay Protection with Current Sensors Based on the Rogowski Coil»//Modern Trends in the Development of Relay Protection and Automation of Power Systems: Collection of Articles. Report Int. Scientific and Technical Conf.; Scientific and Engineering Information Agency: Moscow, Russia, 2009; pp. 39–48. [Google Scholar]
- Kojovic’, L.A.; Bishop, M. Modern protection relay with current sensors based on the Rogowski coil. Modern trends in the development of relay protection and automation of power systems. In Proceedings of the CIGRE, Moscow, Russia, 7–10 September 2009. [Google Scholar]
- Kletsel, M.Y.; Zhantlesova, A.; Mayshev, P.; Mashrapov, B.; Issabekov, D. New filters for symetrical current components. Int. J. Electr. Power Energy Syst. 2018, 101, 85–91. [Google Scholar] [CrossRef]
- Kletsel, M.Y.; Musin, V.V. Selection of the operating current of the overcurrent protection without current transformers on reed switches. Ind. Power Eng. 1990, 4, 32–36. [Google Scholar]
- Elmitwally, A.; Gouda, E.; Eladawy, S. Optimal allocation of fault current limiters for sustaining overcurrent relays coordination in a power system with distributed generation. Alex. Eng. J. 2015, 54, 1077–1089. [Google Scholar] [CrossRef]
- Kletsel, M.Y.; Mashrapov, B.E.; Isabekov, D.D.; Amrenova, D.T. Reed-Switch-Based Relay Protection without Current Transformers. Russ. Electr. Eng. 2022, 93, 247–253. [Google Scholar] [CrossRef]
- Issabekov, D.D. Resource-saving protections of power transformers against internal faults. E3S Web Conf. 2023, 434, 01041. [Google Scholar] [CrossRef]
- Paladhi, S.; Pradhan, A.K. Resilient protection scheme preserving system integrity during stressed condition. IET Gener. Transm. Distrib. 2019, 13, 3188–3194. [Google Scholar] [CrossRef]
- de Andrade Ferreira, R.S.; de Araujo, J.F.; Andrade, F.L.M.; Costa, E.G.; Guerra, F.C.F. Influence of electromagnetic forces in the gaps of a protective CT. IET Sci. Meas. Technol. 2018, 12, 872–877. [Google Scholar] [CrossRef]
- Zhu, K.; Han, W.; Lee, W.K.; Pong, P.W.T. On-Site Non-Invasive Current Monitoring of Multi-Core Underground Power Cables With a Magnetic-Field Sensing Platform at a Substation. IEEE Sens. J. 2017, 17, 1837–1848. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Q.; Khawaja, A.H. Interference-rejecting current measurement method with tunnel magnetoresistive magnetic sensor array. IET Sci. Meas. Technol. 2018, 12, 733–738. [Google Scholar] [CrossRef]
- Zhou, M.; Centeno, V.; Arun, J.S.T.; Phadke, G. Calibrating Instrument Transformers with Phasor Measurements. Electr. Power Compon. Syst. 2012, 40, 1605–1620. [Google Scholar] [CrossRef]
- Nascimento, I.M.; Brígida, A.C.S.; Baptista, J.M.; Costa, J.C.W.; Martinez, M.A.G.; Jorge, P.A.S. Novel optical current sensor for metering and protection in high power applications. Electr. Power Compon. Syst. 2016, 44, 148–162. [Google Scholar] [CrossRef]
- Gurevich, V. Electrical Relay. Device, Principle of Operation and Application; SOLON-PRESS: Moscow, Russia, 2011; p. 688. [Google Scholar]
- Isabekov, D. Device for Gas Protection of the Transformer on Magnetically Controlled Contacts. KZ Patent № 34422, 26 June 2020. Bulletin № 25. Available online: https://gosreestr.kazpatent.kz/Invention/Details?docNumber=287805 (accessed on 15 January 2024).
- Isabekov, D. Design for Oil Level Control in Transformer on Reed Switches. KZ Patent № 35386, 26 November 2021. Bulletin № 47. Available online: https://gosreestr.kazpatent.kz/Invention/Details?docNumber=330085 (accessed on 26 February 2024).
- Issabekov, D.D. Multipurpose Power System Protection Set that Provides Constant Remote Serviceability Control. In Proceedings of the 2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 16–20 May 2022; pp. 35–39. [Google Scholar] [CrossRef]
- Yury, I.; Martirosyan, A. The development of the soderberg electrolyzer electromagnetic field’s state monitoring system. Sci. Rep. 2024, 14, 3501. [Google Scholar] [CrossRef] [PubMed]
- Doroshev, K.I. Complete Switchgears 6–35 kV; Energoizdat: Moscow, Russia, 1982; 376p. [Google Scholar]
- Complete Distribution Device with Voltage 6–10, kV. KRU K-63. Technical Information; Open Public Association Siberian Plant “Electroshield”: Novosibirsk, Russia, 2015. [Google Scholar]
- Relay MKU 48. JSC “Irkutsk Relay Plant”. Available online: https://irzirk.ru/catalog/element/rele_mku_48s_ra4500136_ra0450002_tu/ (accessed on 10 January 2024).
- Order of the Minister of Energy of the Republic of Kazakhstan. Rules for the Device of Electrical Installations of the Republic of Kazakhstan: Approved by the Ministry of Energy of the Republic of Kazakhstan; Adilet, Ministry of Justice of the Republic of Kazakhstan: Astana, Kazakhstan, 2015. Available online: https://adilet.zan.kz/rus/docs/V1500010851 (accessed on 10 January 2024).
- Bessonov, L.A. Theoretical bases of electrical engineering. In Electromagnetic Field, 9th ed.; Gardariki: Moscow, Russia, 2001; 317p. [Google Scholar]
- Neklepaev, B.N.; Kryuchkov, I.P. Electrical Part of Power Stations and Substations: Reference Materials for Course and Diploma Design: A Textbook for Universities-4 Izdu, Rev; Energoatomizdat: Moscow, Russia, 1989; 608p, Available online: https://ofaze.ru/wp-content/uploads/2019/12/neklepaeva-spravochnik.pdf (accessed on 1 February 2024).
- Joint Stock Company “Ryazan Plant of Metalloceramic Devices”. Available online: http://www.rmcip.ru/reeds/product/id/19 (accessed on 7 February 2024).
- Shabad, M.A. Calculations of Relay Protection and Distribution Automation Networks, 3rd ed.; Energoarotizdat. Lenin r. Department: Leningrad, Russia, 1985; 296p, Available online: https://www.elec.ru/library/nauchnaya-i-tehnicheskaya-literatura/raschety-rza-raspr-setej/ (accessed on 12 March 2024).
No. | Component | Quantity |
---|---|---|
1 | Working (1) and neighboring cells (2) | 2 |
2 | Three-phase load transformer (10) | 1 |
3 | Power cables (12 and 13) | 2 |
4 | Current transformers (14) | 1 |
5 | Second current-carrying busbars (18) | 1 |
6 | Wires (21 and 24) | 2 |
7 | Inductance coils (23) | 1 |
8 | Current (22) and electromotive force recorders (25) | 2 |
9 | Plate (26) | 1 |
I, A | L, cm | |||
---|---|---|---|---|
0 | 22 | 45 | 68 | |
100 | 12/5 | 51/0.57 | 47/0.5 | 48/0.5 |
200 | 26/9 | 99/1 | 96/1 | 95/1 |
300 | 39/12 | 151/1.4 | 145/1.6 | 142/1.6 |
400 | 52/16 | 187/1.7 | 195/2.2 | 177/2.2 |
500 | 67/19 | 237/1.9 | 243/2.8 | 221/2.8 |
600 | 77/22.5 | 288/2.05 | 293/3.4 | 268/3.42 |
I, A | L, cm | |||
---|---|---|---|---|
0 | 22 | 45 | 68 | |
100 | 12/10 | 51/3.5 | 47/3 | 48/3 |
200 | 26/22 | 99/8 | 96/7 | 95/6.3 |
300 | 39/35 | 151/12 | 145/11 | 142/9 |
400 | 52/50 | 187/17 | 195/15 | 177/12 |
500 | 67/60 | 237/22 | 243/19 | 221/16 |
600 | 77/76 | 288/27 | 293/22.3 | 268/19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issabekov, D.D.; Mussayev, Z.B.; Markovskiy, V.P.; Kislov, A.P.; Urazalimova, D.S. Reed Switch Overcurrent Protection: New Approach to Design. Energies 2024, 17, 2481. https://doi.org/10.3390/en17112481
Issabekov DD, Mussayev ZB, Markovskiy VP, Kislov AP, Urazalimova DS. Reed Switch Overcurrent Protection: New Approach to Design. Energies. 2024; 17(11):2481. https://doi.org/10.3390/en17112481
Chicago/Turabian StyleIssabekov, Dauren Dzhambulovich, Zhassulan Bakutzhanovich Mussayev, Vadim Pavlovich Markovskiy, Aleksandr Petrovich Kislov, and Dariya Sansyzbayevna Urazalimova. 2024. "Reed Switch Overcurrent Protection: New Approach to Design" Energies 17, no. 11: 2481. https://doi.org/10.3390/en17112481
APA StyleIssabekov, D. D., Mussayev, Z. B., Markovskiy, V. P., Kislov, A. P., & Urazalimova, D. S. (2024). Reed Switch Overcurrent Protection: New Approach to Design. Energies, 17(11), 2481. https://doi.org/10.3390/en17112481