Trends in Hybrid Renewable Energy System (HRES) Applications: A Review
Abstract
:1. Introduction
- Loss of power supply probability (LPSP).
- Expected energy not supplied (EENS).
- Loss of load expectation (LOLE).
- Loss of energy expectation (LOEE).
- System average interruption frequency index (SAIFI).
- System average outage interruption duration index (SAIDI).
- LPSP is the probability of an unmet load over the entire energy demand of a stand-alone or grid-connected hybrid renewable energy system.
- EENS is the energy that a hybrid renewable energy system is supposed to provide.
- LOLE is also known as loss of load probability.
- LOLP is the number of hours per year that energy exceeds the capacity of the HRE generation system.
- The LOEE represents the total energy not delivered by the grid-connected or stand-alone hybrid renewable energy system.
2. Method
3. Results
4. Energy Dispatch Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abaye, A.E.J.S. System Analysis and Optimization of photovoltaic–wind hybrid system. System 2018, 5, 197–201. [Google Scholar]
- Kuang, Y.; Zhang, Y.; Zhou, B.; Li, C.; Cao, Y.; Li, L.; Zeng, L. A review of renewable energy utilization in islands. Renew. Sustain. Energy Rev. 2016, 59, 504–513. [Google Scholar] [CrossRef]
- Su, Z. World CO2 Emissions: Simple Analysis and its Relationship with Global Temperature Change. Highlights Sci. Eng. Technol. 2022, 25, 21–36. [Google Scholar] [CrossRef]
- Nature Reconnect. Conservation in a Changing Climate Logo; Land Trust Alliance Logo: Washington, DC, USA, 2021. [Google Scholar]
- Clark, M.A.; Domingo, N.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global Food System Emissions Could Preclude Achieving the 1.5 and 2 C Climate Change Targets. Sci. Adv. 2020, 370, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 2018, 90, 275–291. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, J.; Wang, Y. Techno-economic study of a distributed hybrid renewable energy system supplying electrical power and heat for a rural house in China. IOP Conf. Ser. Earth Environ. Sci. 2018, 127, 012001. [Google Scholar] [CrossRef]
- Shezan, S.; Al-Mamoon, A.; Ping, H. Performance investigation of an advanced hybrid renewable energy system in Indonesia. Environ. Prog. Sustain. Energy 2018, 37, 1424–1432. [Google Scholar] [CrossRef]
- Lian, J.; Zhang, Y.; Ma, C.; Yang, Y.; Chaima, E. A review on recent sizing methodologies of hybrid renewable energy systems. Energy Convers. Manag. 2019, 199, 112027. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Ahmadiahangar, R.; Husev, O.; Roasto, I.; Jalakas, T.; Blinov, A.J.I.A. Recent contributions, future prospects and limitations of interlinking converter control in hybrid AC/DC microgrids. IEEE Access 2021, 9, 7960–7984. [Google Scholar] [CrossRef]
- Peyghami, S.; Palensky, P.; Blaabjerg, F. An Overview on the Reliability of Modern Power Electronic Based Power Systems. IEEE Open J. Power Electron. 2020, 1, 34–50. [Google Scholar] [CrossRef]
- Wang, F.; Ji, S. Benefits of high-voltage SiC-based power electronics in medium-voltage power-distribution grids. Chin. J. Electr. Eng. 2021, 7, 1–26. [Google Scholar] [CrossRef]
- Kazerani, M.; Tehrani, K. Grid of hybrid AC/DC microgrids: A new paradigm for smart city of tomorrow. In Proceedings of the 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), Budapest, Hungary, 2–4 June 2020; pp. 175–180. [Google Scholar]
- Salehi, N.; Martinez-Garcia, H.; Velasco-Quesada, G.; Guerrero, J.M. A Comprehensive Review of Control Strategies and Optimization Methods for Individual and Community Microgrids. IEEE Access 2022, 10, 15935–15955. [Google Scholar] [CrossRef]
- Yamamoto, Y. Feed-in Tariffs and the Economics of Renewable Energy; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- González, A.B.P.; Silva, B.D.J.; Macia, Y.M.J.R.L. Transición energética en América Latina y el Caribe: Diálogos inter y transdisciplinarios en tiempos de pandemia por COVID-19. Rev. LIDER 2021, 23, 33–61. [Google Scholar]
- Caruana, M.E.C.; Pasciaroni, C.; Guzowski, C.; Castro, M.; Zabaloy, M.F.; Martin, M.M.I. Aprendizaje e innovación en las industrias de energía de fuentes renovables en Argentina: Mercado, tecnología, organización e instituciones. Rev. Tempo Mundo 2023, 32, 133–165. [Google Scholar]
- Khezri, R.; Mahmoudi, A.J.I.G. Review on the state-of-the-art multi-objective optimisation of hybrid standalone/grid-connected energy systems. IET Gener. Transm. Distrib. 2020, 14, 4285–4300. [Google Scholar] [CrossRef]
- Rathod, A.A.; Subramanian, B. Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities. Sustainability 2022, 14, 16814. [Google Scholar] [CrossRef]
- Martínez-Peralta, A.J.; Chere-Quiñónez, B.F.; Charcopa-Paz, L.E.; Orobio-Arboleda, T.J.; Alcívar-Vallejo, C.A. Configuración del diseño óptimo de un sistema de energía híbrido solar-eólica conectado a la red utilizando el software HOMER. Dominio Las Cienc. 2022, 8, 469–479. [Google Scholar]
- Nuvvula, R.S.S.; Devaraj, E.; Teegala, S.K. A hybrid multiobjective optimization technique for optimal sizing of BESS-WtE supported multi-MW HRES to overcome ramp rate limitations on thermal stations. Int. Trans. Electr. Energy Syst. 2021, 31, e13241. [Google Scholar] [CrossRef]
- Li, G.; Yuan, B.; Ge, M.; Xiao, G.; Li, T.; Wang, J.-Q. Capacity configuration optimization of a hybrid renewable energy system with hydrogen storage. Int. J. Green Energy 2022, 19, 1583–1599. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, B.; Chan, K.W.; Li, C.; Wu, Q.; Chen, B.; Xia, S. Distributed Multienergy Coordination of Multimicrogrids with Biogas-Solar-Wind Renewables. IEEE Trans. Ind. Inform. 2019, 15, 3254–3266. [Google Scholar] [CrossRef]
- Agajie, T.F.; Ali, A.; Fopah-Lele, A.; Amoussou, I.; Khan, B.; Velasco, C.L.R.; Tanyi, E. A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems. Energies 2023, 16, 642. [Google Scholar] [CrossRef]
- Khezri, R.; Mahmoudi, A.; Haque, M.H. Two-stage optimal sizing of standalone hybrid electricity systems with time-of-use incentive demand response. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 2759–2765. [Google Scholar]
- Khezri, R.; Mahmoudi, A.; Aki, H.; Muyeen, S.J.E. Optimal planning of remote area electricity supply systems: Comprehensive review, recent developments and future scopes. Energies 2021, 14, 5900. [Google Scholar] [CrossRef]
- Paliwal, P. A Technical Review on Reliability and Economic Assessment Framework of Hybrid Power System with Solar and Wind Based Distributed Generators. Int. J. Integr. Eng. 2021, 13, 233–252. [Google Scholar] [CrossRef]
- El Boujdaini, L.; Mezrhab, A.; Moussaoui, M.A.; Jurado, F.; Vera, D.J.E.E. Sizing of a stand-alone PV–wind–battery–diesel hybrid energy system and optimal combination using a particle swarm optimization algorithm. Electr. Eng. 2022, 5, 3339–3359. [Google Scholar] [CrossRef]
- Maghami, M.R.; Mutambara, A.G.O. Challenges associated with Hybrid Energy Systems: An artificial intelligence solution. Energy Rep. 2023, 9, 924–940. [Google Scholar] [CrossRef]
- Kharrich, M.; Kamel, S.; Abdeen, M.; Mohammed, O.H.; Akherraz, M.; Khurshaid, T.; Rhee, S.B. Developed approach based on equilibrium optimizer for optimal design of hybrid PV/wind/diesel/battery microgrid in Dakhla, Morocco. IEEE Access 2021, 9, 13655–13670. [Google Scholar] [CrossRef]
- Sharma, H.; Mishra, S. Hybrid optimization model for smart grid distributed generation using HOMER. In Proceedings of the 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 10–11 October 2019; pp. 94–99. [Google Scholar]
- Bappy, F.I.; Islam, J.; Podder, A.K.; Dipta, D.R.; Faruque, H.M.R.; Hossain, E. Comparison of different hybrid renewable energy systems with optimized PV configuration to realize the effects of multiple schemes. In Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019; pp. 1–6. [Google Scholar]
- Aly, A.M.; Kassem, A.M.; Sayed, K.; Aboelhassan, I. Design of Microgrid with Flywheel Energy Storage System Using HOMER Software for Case Study. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019; pp. 485–491. [Google Scholar]
- Cruz, S.; Lastra, N.; Patti, F.; Martinez, C.; Sosa, F.; Catuogno, C.; Frias, G.; Acosta, G.; Torres, L.; Poietti, L.; et al. Metodología de Diseño e Implementación de una Microrred Aislada para Escuelas Rurales. In Proceedings of the 3er Simposio Ibero-Americano en Microrredes Inteligentes con Integración de Energías Renovables, Itaipu, Brasil, 1–3 October 2019. [Google Scholar]
- Ishraque, M.F.; Shezan, S.A.; Nur, J.; Islam, M.S. Optimal sizing and performance investigation of a solar-wind-battery-DG based hybrid Microgrid system applicable to the remote school of Bangladesh. Authorea Prepr. 2020. [Google Scholar] [CrossRef]
- Mehta, S.; Basak, P. A case study on pv assisted microgrid using homer pro for variation of solar irradiance affecting cost of energy. In Proceedings of the 2020 IEEE 9th Power India International Conference (PIICON), Murthal, India, 28 February–1 March 2020; pp. 1–6. [Google Scholar]
- Yassim, H.M.; Kim, G.; Hussin, M.S.F.; Jaafar, R.; Maidin, N.; Rahman, M.H.A. Feasibility Study of a Grid Tied PV System for Universiti Teknikal Malaysia Melaka. ARPN J. Eng. Appl. Sci. 2020, 15, 1791–1796. [Google Scholar]
- Bohre, A.K.; Acharjee, P.; Sawle, Y. Analysis of grid connected hybrid micro-grid with different utility tariffs. In Proceedings of the 2021 1st International Conference on Power Electronics and Energy (ICPEE), Bhubaneswar, India, 2–3 January 2021; pp. 1–6. [Google Scholar]
- Venkatachalam, K.M.; Saravanan, V. Techno economic environmental assessment of hybrid renewable energy system in India. Int. J. Adv. Appl. Sci. 2021, 10, 343–362. [Google Scholar]
- Harijanto, P.; Yunus, M. Kajian PLTS on–grid pada gedung X Politeknik Negeri Malang untuk Melayani Beban Perkantoran Menggunakan Perangkat Homer Pro. J. Eltek 2021, 19, 96–104. [Google Scholar]
- Ahamed, A.F.; Vibahar, R.R.; Purusothaman, S.; Gurudevan, M.; Ravivarma, P. Optimization of Hybrid Microgrid of Renewable Energy Efficiency Using Homer Software. Rev. Geintec-Gest. Inov. Tecnol. 2021, 11, 3427–3441. [Google Scholar]
- Kumar, S.; Sethuraman, C.P.; Gopi, C. Sizing Optimization and Techno-Economic Analysis of a Hybrid Renewable Energy System Using HOMER Pro Simulation. J. Sci. Ind. Res. 2021, 80, 777–784. [Google Scholar]
- Errouhi, A.A.; Choukai, O.; Oumimoun, Z.; El Mokhi, C. Energy efficiency measures and technical-economic study of a photovoltaic self-consumption installation at ENSA Kenitra, Morocco. Energy Harvest. Syst. 2022, 9, 193–201. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Córdoba, A.; Escobar, E.; Pantoja, A.; Caicedo, E.F. Optimal sizing of a grid-connected microgrid and operation validation using HOMER Pro and DIgSILENT. Sci. Tech. 2022, 27, 28–34. [Google Scholar] [CrossRef]
- Munir, S.; Naveed, A.; Iqbal, R.T.; Usman, M. A case study on cost analysis and load estimation of hybrid renewable energy system using HOMER PRO. Eurasian J. Sci. Eng. Technol. 2022, 3, 103–108. [Google Scholar] [CrossRef]
- González, E.; Gualotuña, D.; Flores, J.F.Q. Diseño de una Micro-Red óptima mediante el uso del recurso solar fotovoltaico en la Universidad Politécnica Salesiana–Campus Sur, utilizando el software HOMER PRO. I+ D Tecnológico 2022, 18, 109–123. [Google Scholar] [CrossRef]
- Ropero-Castaño, W.; Muñoz-Galeano, N.; Caicedo-Bravo, E.F.; Maya-Duque, P.; López-Lezama, J.M. Sizing Assessment of Islanded Microgrids Considering Total Investment Cost and Tax Benefits in Colombia. Energies 2022, 15, 5161. [Google Scholar] [CrossRef]
- Farkas, T.; Unguresan, P.; Cretu, M.; Stet, D.; Czumbil, L.; Ceclan, A.; Muresan, C.; Polycarpou, A.; Micu, D.D. Hybrid Energy System Analysis for a Swimming Pool Complex using HOMER Pro. In Proceedings of the 2022 57th International Universities Power Engineering Conference (UPEC), Istanbul, Turkey, 30 August–2 September 2022; pp. 1–6. [Google Scholar]
- Bhuiya, K.M.S.; Rony, M.M.R.; Ahmed, S.; Udoy, S.B.; Masuk, N.I.; Diganta, A.C.; Hasan, M.H.; Islam, M.; Islam, M.A.; Shariar, A.S.; et al. A Case Study on Hybrid Power Systems Using HOMER Pro: Design, Optimization and Comparison of Different Configurations and Proposing the Best Configuration for a University Campus. In Proceedings of the International Conference on Mechanical, Industrial and Materials Engineering 2022 (ICMIME2022), Rajshahi, Bangladesh, 20–22 December 2022. [Google Scholar]
- Chisale, S.W.; Eliya, S.; Taulo, J. Optimization and design of hybrid power system using HOMER pro and integrated CRITIC-PROMETHEE II approaches. Green Technol. Sustain. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Ibrahim, L.Q.; Abid, A.J.; Obed, A.A.; Saleh, A.L.; Hassoon, R.J. A HOMER-Aided Study for PV System Design and Cost Analysis for a College Campus in Baghdad. J. Tech. 2023, 5, 95–107. [Google Scholar] [CrossRef]
- Cretu, M.; Mureşan, N.A.; Farkas, T.; Czumbil, L.; Darabant, L.; Micu, D.D. Analysis and simulation of a hybrid energy system using HOMER Pro for TUCN blocks of buildings. In Proceedings of the 2023 10th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 21–23 June 2023; pp. 1–6. [Google Scholar]
- Krishan, O.; Suhag, S. Techno-economic analysis of a hybrid renewable energy system for an energy poor rural community. J. Energy Storage 2019, 23, 305–319. [Google Scholar] [CrossRef]
- Iqbal, A.; Iqbal, M.T. Design and Analysis of a Stand-Alone PV System for a Rural House in Pakistan. Int. J. Photoenergy 2019, 2019, 4967148. [Google Scholar] [CrossRef]
- Mohamad, A.; Amin, N.A.M.; Razlan, Z.M. Simulation of a diesel generator-battery energy system for domestic applications at Pulau Tuba, Langkawi, Malaysia. IOP Conf. Ser. Mater. Sci. Eng. 2019, 670, 012076. [Google Scholar] [CrossRef]
- Nurunnabi, M.; Roy, N.K.; Hossain, E.; Pota, H.R. Size optimization and sensitivity analysis of hybrid wind/PV micro-grids-a case study for Bangladesh. IEEE Access 2019, 7, 150120–150140. [Google Scholar] [CrossRef]
- Godoy, J.L.; Schierloh, R.M.; Vega, J.R. Evaluación Económica de Micro-Redes Eléctricas con Generación Renovable. 2019. Available online: https://ri.conicet.gov.ar/handle/11336/128341 (accessed on 24 February 2024).
- Salisu, S.; Wazir, M.M.; Olatunji, M.O.; Mamunu, M.; Touqeer, J.A. Techno-Economic Feasibility Analysis of an Off-Grid Hybrid Energy System for Rural Electrification in Nigeria. Int. J. Renew. Energy Res. 2019, 9, 261–270. [Google Scholar]
- Jenkins, P.; Sonar, A.C. Feasibility Analysis of an Islanded Microgrid in Tohatchi, New Mexico Using HOMER Pro. Energy Power Eng. 2020, 12, 357–374. [Google Scholar] [CrossRef]
- Murty, V.V.; Kumar, A. Optimal Energy Management and Techno-economic Analysis in Microgrid with Hybrid Renewable Energy Sources. J. Mod. Power Syst. Clean Energy 2020, 8, 929–940. [Google Scholar] [CrossRef]
- Iskanderani, A.I.; Mehedi, I.M.; Ramli, M.A.; Islam, M.R. Analyzing the off-grid performance of the hybrid photovoltaic/diesel energy system for a peripheral village. Int. J. Photoenergy 2020, 2020, 7673937. [Google Scholar] [CrossRef]
- Oladigbolu, J.O.; Ramli, M.A.M.; Al-Turki, Y.A. Feasibility Study and Comparative Analysis of Hybrid Renewable Power System for off-Grid Rural Electrification in a Typical Remote Village Located in Nigeria. IEEE Access 2020, 8, 171643–171663. [Google Scholar] [CrossRef]
- Suresh, V.; Muralidhar, M.; Kiranmayi, R. Modelling and optimization of an off-grid hybrid renewable energy system for electrification in a rural areas. Energy Rep. 2020, 6, 594–604. [Google Scholar] [CrossRef]
- Fofang, T.F.; Tanyi, E. Design and simulation of off-grid solar/mini-hydro renewable energy system using homer pro software: Case of Muyuka rural community. Int. J. Eng. Res. Technol. 2020, 9, 597–604. [Google Scholar]
- Gospodinova, D.; Dineff, P.; Milanov, K. Greenhouse Gas Emissions Assessment After Renewable Energy Sources Implementation in Bulgarian Grid-Connected Single-Family Houses by HOMER Pro Software. In Proceedings of the 2020 12th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 9–12 September 2020; pp. 1–6. [Google Scholar]
- Nugroho, O.V.; Pramono, N.F.; Hanafi, M.P.; Husnayain, F.; Utomo, A.R. Techno-economic analysis of hybrid Diesel-PV-Battery system and hybrid Diesel-PV-Wind-Battery system in Eastern Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 599, 012031. [Google Scholar] [CrossRef]
- Sunaina, H.K.C.; Gupta, S. Optimization and Simulation of Solar PV Based Hybrid System Using Homer Software. Int. J. Adv. Sci. Technol. 2020, 29, 715–728. [Google Scholar]
- Javed, M.S.; Ma, T.; Jurasz, J.; Canales, F.A.; Lin, S.; Ahmed, S.; Zhang, Y. Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island. Renew. Energy 2021, 164, 1376–1394. [Google Scholar] [CrossRef]
- Aditya, I.A.; Aisyah, S.; A Simaremare, A. Optimal sizing and sensitivity analysis of Hybrid Renewable Energy Systems: A case of Ur island in Indonesia. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1098, 042049. [Google Scholar] [CrossRef]
- Razmjoo, A.; Kaigutha, L.G.; Rad, M.V.; Marzband, M.; Davarpanah, A.; Denai, M. A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area. Renew. Energy 2021, 164, 46–57. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Sawle, Y. A comparative study of the optimal sizing and management of off-grid solar/wind/diesel and battery energy systems for remote areas. Front. Energy Res. 2021, 9, 752043. [Google Scholar] [CrossRef]
- Awopone, A.K. Feasibility analysis of off-grid hybrid energy system for rural electrification in Northern Ghana. Cogent Eng. 2021, 8, 1981523. [Google Scholar] [CrossRef]
- Hafedh, S.A. Feasibility study of hybrid energy system for off-grid electrification in rural areas. Diyala J. Eng. Sci. 2021, 14, 57–66. [Google Scholar] [CrossRef]
- Xu, Y.-P.; Ouyang, P.; Xing, S.-M.; Qi, L.-Y.; Khayatnezhad, M.; Jafari, H. Optimal structure design of a PV/FC HRES using amended Water Strider Algorithm. Energy Rep. 2021, 7, 2057–2067. [Google Scholar] [CrossRef]
- Ahmed, J.; Harijan, K.; Shaikh, P.H.; Lashari, A.A. Techno-economic Feasibility Analysis of an Off-grid Hybrid Renewable Energy System for Rural Electrification. J. Electr. Electron. Eng. 2021, 9, 7. [Google Scholar] [CrossRef]
- Akan, A.E. Techno-economic analysis of an off-grid hybrid energy system with Homer Pro. ICONTECH Int. J. 2021, 5, 56–61. [Google Scholar] [CrossRef]
- Kapoor, S.; Sharma, A.K. Techno-economic analysis by homer-pro approach of solar on-grid system for Fatehpur-Village, India. J. Phys. Conf. Ser. 2021, 2070, 012146. [Google Scholar] [CrossRef]
- Prakash, V.J.; Dhal, P.K. Techno-Economic Assessment of a Standalone Hybrid System Using Various Solar Tracking Systems for Kalpeni Island, India. Energies 2021, 14, 8533. [Google Scholar] [CrossRef]
- Almutairi, K.; Dehshiri, S.S.H.; Dehshiri, S.J.H.; Mostafaeipour, A.; Issakhov, A.; Techato, K. Use of a Hybrid Wind—Solar—Diesel—Battery Energy System to Power Buildings in Remote Areas: A Case Study. Sustainability 2021, 13, 8764. [Google Scholar] [CrossRef]
- Malanda, C.; Makokha, A.B.; Nzila, C.; Zalengera, C. Techno-economic optimization of hybrid renewable electrification systems for Malawi's rural villages. Cogent Eng. 2021, 8, 1910112. [Google Scholar] [CrossRef]
- Ribo-Perez, D.; Herraiz-Canete, A.; Alfonso-Solar, D.; Vargas-Salgado, C.; Gomez-Navarro, T. Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER. Renew. Energy 2021, 174, 501–512. [Google Scholar] [CrossRef]
- HAfrouzi, H.N.; Hassan, A.; Wimalaratna, Y.P.; Ahmed, J.; Mehranzamir, K.; Liew, S.C.; Malek, Z.A. Sizing and economic analysis of stand-alone hybrid photovoltaic-wind system for rural electrification: A case study Lundu, Sarawak. Clean. Eng. Technol. 2021, 4, 100191. [Google Scholar] [CrossRef]
- Hutasuhut, A.A.; Rimbawati; Riandra, J.; Irwanto, M. Analysis of hybrid power plant scheduling system diesel/photovoltaic/microhydro in remote area. J. Phys. Conf. Ser. 2022, 2193, 012024. [Google Scholar] [CrossRef]
- Ganjei, N.; Zishan, F.; Alayi, R.; Samadi, H.; Jahangiri, M.; Kumar, R.; Mohammadian, A. Designing and Sensitivity Analysis of an Off-Grid Hybrid Wind-Solar Power Plant with Diesel Generator and Battery Backup for the Rural Area in Iran. J. Eng. 2022, 2022, 4966761. [Google Scholar] [CrossRef]
- Rashid, M.U.; Ullah, I.; Mehran, M.; Baharom, M.N.R.; Khan, F. Techno-Economic Analysis of Grid-Connected Hybrid Renewable Energy System for Remote Areas Electrification Using Homer Pro. J. Electr. Eng. Technol. 2022, 17, 981–997. [Google Scholar] [CrossRef]
- Hossain, M.; Al Kayes, A.; Suny, R. Prospects and Design Assessment of a Hybrid Renewable Energy Microgrid for an Indigenous Community in Bangladesh. Doctoral Dissertation, Department of Electrical and Electronic Engineering, Islamic University of Technology, Gazipur, Bangladesh, 2022. [Google Scholar]
- Ozogbuda, J.C.; Iqbal, T. Sizing and Analysis of an Off-Grid Photovoltaic System for a House in Remote Nigeria. Jordan J. Electr. Eng. 2022, 8, 17–26. [Google Scholar] [CrossRef]
- Rice, I.K.; Zhu, H.; Zhang, C.; Tapa, A.R. A Hybrid Photovoltaic/Diesel System for Off-Grid Applications in Lubumbashi, DR Congo: A HOMER Pro Modeling and Optimization Study. Sustainability 2023, 15, 8162. [Google Scholar] [CrossRef]
- Ayan, O.; Turkay, B.E. Techno-Economic Comparative Analysis of Grid-Connected and Islanded Hybrid Renewable Energy Systems in 7 Climate Regions, Turkey. IEEE Access 2023, 11, 48797–48825. [Google Scholar] [CrossRef]
- García-García, J.; Osma-Pinto, G. Dimensionamiento y análisis de sensibilidad de una microrred aislada usando HOMER Pro. TecnoLógicas 2023, 26, e2565. [Google Scholar] [CrossRef]
- Kelly, E.; Nouadje, B.A.M.; Djiela, R.H.T.; Kapen, P.T.; Tchuen, G.; Tchinda, R. Off grid PV/Diesel/Wind/Batteries energy system options for the electrification of isolated regions of Chad. Heliyon 2023, 9, e13906. [Google Scholar] [CrossRef]
- Ramadhani, A.Z.; Facta, M.; Handoko, S. Analysis of Power Generation and Distribution of Hybrid Energy for Electricity Loads in Batakan Village. J. Eltikom 2023, 7, 79–92. [Google Scholar] [CrossRef]
- Ansari, M.S.; Srivastava, A.; Singh, A.; Gupta, A.; Faisal, A.; Jalil, M.F. To Design an Optimal Hybrid Energy System for Agatti Island in India. In Proceedings of the International Conference on Signals, Machines, and Automation, New Delhi, India, 5–6 August 2022; Springer: Singapore, 2022; pp. 223–233. [Google Scholar]
- Padrón, I.; Avila, D.; Marichal, G.N.; Rodríguez, J.A. Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago. Renew. Sustain. Energy Rev. 2019, 101, 221–230. [Google Scholar] [CrossRef]
- Osaretin, C.A.; Iqbal, T.; Butt, S. Optimal sizing and techno-economic analysis of a renewable power system for a remote oil well. AIMS Electron. Electr. Eng. 2020, 4, 132–153. [Google Scholar] [CrossRef]
- Yasin, A.; Alsayed, M. Optimization with excess electricity management of a PV, energy storage and diesel generator hybrid system using HOMER Pro software. Int. J. Appl. Power Eng.(IJAPE) 2020, 9, 267–283. [Google Scholar] [CrossRef]
- Suman, G.K.; Yadav, S.; Roy, O.P. HOMER Based Optimal Sizing of a PV/Diesel/Battery Hybrid System for a Laboratory Facility. In Proceedings of the 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, India, 5–7 March 2021; pp. 1–5. [Google Scholar]
- Agyekum, E.B.; Ampah, J.D.; Afrane, S.; Adebayo, T.S.; Agbozo, E. A 3E, hydrogen production, irrigation, and employment potential assessment of a hybrid energy system for tropical weather conditions–Combination of HOMER software, shannon entropy, and TOPSIS. Int. J. Hydrogen Energy 2022, 47, 31073–31097. [Google Scholar] [CrossRef]
- Basheer, Y.; Waqar, A.; Qaisar, S.M.; Ahmed, T.; Ullah, N.; Alotaibi, S. Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro. Sustainability 2022, 14, 12440. [Google Scholar] [CrossRef]
- Dodo, U.A.; Ashigwuike, E.C.; Emechebe, J.N. Optimization of Standalone Hybrid Power System Incorporating Waste-to-electricity Plant: A Case Study in Nigeria. In Proceedings of the 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), Abuja, Nigeria, 15–17 May 2022; pp. 1–5. [Google Scholar]
- Vera, L.H.; Mayans, A.R.G.; Cáceres, M.; Firman, A.; Busso, A.J. Microrred Híbrida Aislada Para Acceso a la Electricidad: Estudio De Caso En El Nordeste Argentino. In Proceedings of the Congresso Brasileiro de Energia Solar—CBENS, Florianópolis, Brazil, 23–27 May 2022; pp. 1–9. [Google Scholar]
- Bahri, H.; Harrag, A.; Rezk, H. Optimal configuration and techno-economic analysis of hybrid photovoltaic/PEM fuel cell power system. J. New Mater. Electrochem. Syst. 2022, 25, 116–125. [Google Scholar] [CrossRef]
- Basheer, Y.; Qaisar, S.M.; Waqar, A.; Lateef, F.; Alzahrani, A. Investigating the Optimal DOD and Battery Technology for Hybrid Energy Generation Models in Cement Industry Using HOMER Pro. IEEE Access 2023, 11, 81331–81347. [Google Scholar] [CrossRef]
- De Carvalho, C.M.; Medina, D.O.G.; Lopes, J.C.; Sousa, T. Computer Modeling and Analysis of a Hybrid Renewable Energy System Grid-Connected Using Homer Pro. Simpósio Bras. Sist. Elétricos—SBSE 2020, 1–6. [Google Scholar] [CrossRef]
- Antonio Barrozo Budes, F.; Valencia Ochoa, G.; Obregon, L.G.; Arango-Manrique, A.; Ricardo Núñez Álvarez, J. Energy, economic, and environmental evaluation of a proposed solar-wind power on-grid system using HOMER Pro®: A case study in Colombia. Energies 2020, 13, 1662. [Google Scholar] [CrossRef]
- Miah, M.S.; Swazal, M.A.M.; Mittro, S.; Islam, M.M. Design of a grid-tied solar plant using homer pro and an optimal home energy management system. In Proceedings of the 2020 IEEE International Conference for Innovation in Technology (INOCON), Bangalore, India, 6–8 November 2020; pp. 1–7. [Google Scholar]
- Trujillo Sandoval, D.J.; Mosquera Velásquez, F.I.; García Torres, E.M. Análisis de viabilidad de microrredes eléctricas con alta penetración de recursos renovables en zonas urbanas: Caso de estudio condominios residenciales. Enfoque UTE 2021, 12, 19–36. [Google Scholar] [CrossRef]
- Himanshi Koli, M.P.S.C. Cost Effective Analysis of Hybrid Energy System with Pumped Hydro Storage using HOMER Pro. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2021, 10, 62–65. [Google Scholar] [CrossRef]
- Santos, L.H.S.; Silva, J.A.A.; López, J.C.; Arias, N.B.; Rider, M.J.; da Silva, L.C.P. Integrated optimal sizing and dispatch strategy for microgrids using HOMER Pro. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), Lima, Peru, 15–17 September 2021; pp. 1–5. [Google Scholar]
- Iqbal, T.; Ogbikaya, S. Design of a hybrid power system using Homer Pro and iHOGA. In Proceedings of the 30th IEEE NECEC Conference, St. John’s, NL, Canada, 18 November 2021. [Google Scholar]
- Khalil, L.; Bhatti, K.L.; Awan, M.A.I.; Riaz, M.; Khalil, K.; Alwaz, N. Optimization and designing of hybrid power system using HOMER pro. Mater. Today Proc. 2021, 47, S110–S115. [Google Scholar] [CrossRef]
- Gospodinova, D.; Dineff, P. Impact Assessment of the Renewable Energy Sources Implementation in Bulgarian Single-Family Houses on the Greenhouse Gas by HOMER Pro Software. Adv. Sci. Technol. Eng. Syst. J. 2021, 6, 362–368. [Google Scholar] [CrossRef]
- Islam, M.; Akanto, J.M.; Zeyad, M.; Ahmed, S.M. Optimization of Microgrid System for Community Electrification by using HOMER Pro. In Proceedings of the 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), Bangalore, India, 30 September–2 October 2021; pp. 1–5. [Google Scholar]
- Oladigbolu, J.O.; Al-Turki, Y.A.; Olatomiwa, L. Comparative study and sensitivity analysis of a standalone hybrid energy system for electrification of rural healthcare facility in Nigeria. Alex. Eng. J. 2021, 60, 5547–5565. [Google Scholar] [CrossRef]
- Seedahmed, M.M.; Ramli, M.A.; Bouchekara, H.R.; Milyani, A.H.; Rawa, M.; Budiman, F.N.; Muktiadji, R.F.; Hassan, S.M.U. Optimal sizing of grid-connected photovoltaic system for a large commercial load in Saudi Arabia. Alex. Eng. J. 2022, 61, 6523–6540. [Google Scholar] [CrossRef]
- Shah, S.; Mahajan, D.; Varun, R.; Jain, V.; Sawle, Y. Optimal Planning and Design of an Off-Grid Solar, Wind, Biomass, Fuel Cell Hybrid Energy System Using HOMER Pro. In Recent Advances in Power Systems: Select Proceedings of EPREC—2021; Springer: Singapore, 2022; pp. 255–275. [Google Scholar]
- Tay, G.; Acakpovi, A.; Adjei, P.; Aggrey, G.K.; Sowah, R.; Kofi, D.; Afonope, M.; Sulley, M. Optimal sizing and techno-economic analysis of a hybrid solar PV/wind/diesel generator system. IOP Conf. Ser. Earth Environ. Sci. 2022, 1042, 012014. [Google Scholar] [CrossRef]
- Hasan, G.T.; Mutlaq, A.H.; Salih, M.O. Investigate the optimal power system by using hybrid optimization of multiple energy resources software. Indones. J. Elec. Eng. Comp. Sci. 2022, 26, 9–19. [Google Scholar] [CrossRef]
- Rituraj, R.; Ali, S.; Varkonyi-Koczy, A.R. Modeling of a Microgrid System with Time Series Analysis using HOMER Grid Software and it’s Prediction using SARIMA Method. OSF Prepr. 2022. [Google Scholar] [CrossRef]
- Rahmat, M.A.A.; Hamid, A.S.A.; Lu, Y.; Ishak, M.A.A.; Suheel, S.Z.; Fazlizan, A.; Ibrahim, A. An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro. Sustainability 2022, 14, 13684. [Google Scholar] [CrossRef]
- Kiliç, M.Y.; Adali, S. Bir Apartmanın Yenilenebilir Enerji Sistem Maliyetinin HOMER Pro Kullanılarak Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilim. Derg. 2022, 11, 13–20. [Google Scholar] [CrossRef]
- Hou, Y.; Yan, Y. Optimized wind-light-storage configuration based on Homer pro. J. Phys. Conf. Ser. 2022, 2303, 012037. [Google Scholar] [CrossRef]
- Yazhini, K.; Aarthi, N. Optimal Sizing of Rural Microgrid using HOMER Pro Software. In Proceedings of the 2022 IEEE 7th International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Mangalore, India, 1–3 December 2022; Volume 7, pp. 455–460. [Google Scholar]
- Patil, A.; Mamatha, G.; Kulkarni, P.S.; Verma, A. Analysis of Hybrid Floating Photovoltaic and Hydro-Power plant with HOMER Pro Software. In Proceedings of the 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 14–17 December 2022; pp. 1–6. [Google Scholar]
- Ansari, M.S.; Gautam, A.; Tomar, B.; Gautam, M.; Jalil, M.F. To Design an Optimal PV/Diesel/Battery Hybrid Energy System for Havelock Island in India. In Proceedings of the International Conference on Signals, Machines, and Automation, New Delhi, India, 5–6 August 2022; Springer: Singapore, 2022; pp. 211–222. [Google Scholar]
- See, A.M.K.; Mehranzamir, K.; Rezania, S.; Rahimi, N.; Afrouzi, H.N.; Hassan, A. Techno-economic analysis of an off-grid hybrid system for a remote island in Malaysia: Malawali island, Sabah. Renew. Sustain. Energy Transit. 2022, 2, 100040. [Google Scholar] [CrossRef]
- Flores, J.F.Q.; Yánez, S.F.; Mendoza, G.A.; Vaca, E.A. Diseño óptimo de una micro-red para maximizar la generación de potencia eléctrica en Paragachi y Wildtecsa modelado en Homer Pro. I+ D Tecnol. 2023, 19, 5–14. [Google Scholar] [CrossRef]
- Memon, S.A.; Upadhyay, D.S.; Patel, R.N. Optimization of solar and battery-based hybrid renewable energy system augmented with bioenergy and hydro energy-based dispatchable source. iScience 2023, 26, 105821. [Google Scholar] [CrossRef]
- Gu, Z.; Zhou, Y. Economic Verification of Hybrid Energy Utilizations with HOMER Pro. IOP Conf. Ser. Earth Environ. Sci. 2020, 582, 012009. [Google Scholar] [CrossRef]
- Jasim, A.M.; Jasim, B.H.; Baiceanu, F.-C.; Neagu, B.-C. Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System. Mathematics 2023, 11, 1248. [Google Scholar] [CrossRef]
- Alhousni, F.K.; Alnaimi, F.B.I.; Okonkwo, P.C.; Ben Belgacem, I.; Mohamed, H.; Barhoumi, E.M. Photovoltaic Power Prediction Using Analytical Models and Homer-Pro: Investigation of Results Reliability. Sustainability 2023, 15, 8904. [Google Scholar] [CrossRef]
- Noman, N.A.; Islam, M.S.; Habib, M.A.; Debnath, S.K. The Techno-Economic Feasibility Serves to Optimize the PV-Wind-Hydro Hybrid Power System at Tangail in Bangladesh. Int. J. Educ. Manag. Eng. 2023, 3, 19–32. [Google Scholar]
- Alghamdi, O.A.; Alhussainy, A.A.; Alghamdi, S.; AboRas, K.M.; Rawa, M.; Abusorrah, A.M.; Alturki, Y.A. Optimal techno-economic-environmental study of using renewable energy resources for Yanbu city. Front. Energy Res. 2023, 10, 1115376. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Hasan, M.R.; Al Hasan, S.; Aziz, M.; Hoque, M.E. Feasibility Study of the Grid-Connected Hybrid Energy System for Supplying Electricity to Support the Health and Education Sector in the Metropolitan Area. Energies 2023, 16, 1571. [Google Scholar] [CrossRef]
- Ahmed, R.; Das, B.K.; Tushar, M.S.H.K. Investigation of a grid-integrated hybrid energy system for residential and electric vehicle (3-wheeler) loads under schedule grid outage. Alex. Eng. J. 2023, 80, 241–258. [Google Scholar] [CrossRef]
- Homer Pro 3.16. 2018. Available online: https://support.ul-renewables.com/homer-manuals-pro/total_net_present_cost.html (accessed on 24 February 2024).
- Lambert, T.; Gilman, P.; Lilienthal, P. Micropower system modeling with HOMER. Integr. Altern. Sources Energy 2006, 1, 379–385. [Google Scholar]
- Khan, A.A.M.; Farooq, Z.; Durrani, A.M. Techno-Economic Evaluation of On-Grid Battery Energy Storage System at Peshawar using Homer Pro. In Proceedings of the 2022 International Conference on Emerging Technologies in Electronics, Computing and Communication (ICETECC), Jamshoro, Pakistan, 7–9 December 2022; pp. 1–4. [Google Scholar]
Year | Quantity | Percentage |
---|---|---|
2019 | 11 | 10% |
2020 | 17 | 15% |
2021 | 29 | 26% |
2022 | 33 | 30% |
2023 | 20 | 18% |
Total | 110 | 100% |
Ref | Year | Configurations | Electrical Data | Country | COE USD/kW·h | NPC USD | O&M USD/kW/a | C.I. USD | RF (%) |
---|---|---|---|---|---|---|---|---|---|
[31] | 2019 | PV/BM/GS/CONV | 4443.15 kWh/d 2005.11 kW | India | 6.43 M | 168 M | 6.43 M | 85 M | 87 |
PV/BM/GS/CONV | 6.92 M | 169 M | 6.92 M | 79.6 M | 85 | ||||
PV/BM/BS/GS | 6.47 M | 170 M | 6.47 M | 86.3 M | 87 | ||||
[32] | 2019 | PV1/PV2/BS/CONV | 5005.95 kWh/d 967 kW | Bangladesh | 0.216 | 5.11 M | 3.3 M | ||
PV1/PV2/GS/BS/CONV | 0.203 | 5.39 M | 2.21 M | ||||||
PV3/DG/BS/CONV | 0.157 | 3.62 M | 825,625 | ||||||
PV4/DG/GS/BS/CONV | 0.153 | 3.63 M | 850,125 | ||||||
[33] | 2019 | PV/DG/CONV | 30,629 kWh/d 2838.34 kW | Egypt | 0.251 | 35.9 M | 21.58 M | 2.6 | |
PV/DG/BS/CONV | 0.2 | 28.5 M | 50.9 | ||||||
[34] | 2019 | PV/WT/DG/BS/CONV | 1.5 kWh/d 0.47 kW | Argentina | 4.65 | 597,256 | 3881 | 95,500 | 91.5 |
[35] | 2020 | PV/DG/BS/CONV | 6.87 kWh/d 3.3 kW | Bangladesh | 0.125 | 6191 | 2450 | 82.5 | |
PV/WT/DG/BS/CONV | 0.216 | 10,696 | 7451 | 88.7 | |||||
[36] | 2020 | PV/BS/GS/CONV | 11.27 kWh/d 2.39 kW | India | 3.03 | 21,166 | 3366 | 99 | |
PV/GS/CONV | 3.60 | 27,238 | 17,784 | 60 | |||||
GS | 7.50 | 39,883 | 30,852 | 0 | |||||
BS/GS/CONV | 9.87 | 52,495 | 32,862 | 0 | |||||
PV/GS/BS/CONV | 3.16 | 214,695 | 3418 | 99 | |||||
PV/GS/CONV | 3.71 | 277,002 | 18,037 | 58 | |||||
GS | 7.5 | 398,935 | 30,852 | 0 | |||||
BS/GS/CONV | 9.87 | 524,952 | 32,869 | 0 | |||||
[37] | 2020 | PV/GS/CONV | 48,194.08 kWh/d 3731.56 kW | Malaysia | 0.179 | 56,633,560 | 1,576,152 | 36,485,045 | |
PV/BS/GS/CONV | 0.181 | 56,941,060 | 1,756,303 | 35,929,942 | |||||
GS | 0.434 | 97,535,030 | 7,629,846 | 0 | |||||
BS/GS/CONV | 0.438 | 98,479,890 | 76,680,556 | 456,394 | |||||
[38] | 2021 | PV/DG/GS/BS/CONV | 13,830.6 kWh/d 420.7 MWh/a 5048.2 MWh/a 1488.52 kW | India | 4.37 | 234,514,437.4 | 525,520,706.4 | 17 | |
PV/DG/GS/BS/CONV | 2.3 | 229,285,321.1 | 17 | ||||||
[39] | 2021 | PV/WT/DG/BS/CONV | 11,335.51 kWh/d 1769.87 kW | India | 0.1266 | 28.94480 | 256,761.50 | 14.7531469 | 99.9 |
PV/DG/BS/CONV | 0.1268 | 28.9811403 | 256,590.00 | 14.7989397 | 99.9 | ||||
PV/WT/BS | 0.1338 | 0.589540 | 278,395.30 | 15.2021237 | 99.9 | ||||
PV/BS | 0.1338 | 30.601110 | 278,866.30 | 15.1876606 | 99.9 | ||||
[40] | 2021 | PV/GS/CONV | 77.6 kWh/d 20.06 kW | Indonesia | 382.78 | 145 M | 3.1 M | 105 M | |
PV/GS/BS/CONV | 487.58 | 183 M | 4.66 M | 123 M | |||||
[41] | 2021 | GS | 4696.98 kWh/d 579.50 kW | India | 6.35 | ||||
PV/GS | 5.57 | ||||||||
WT/GS | 5.4 | ||||||||
PV/WT/GS | 4.71 | ||||||||
[42] | 2021 | PV/WT/BM/BS/CONV | 256.33 kWh/d 71.37 kW | India | 0.159 | 184,687 | 6154 | 106,015 | |
[43] | 2022 | PV/GS | 45 kW | Morocco | 0.41 | ||||
[44] | 2022 | PV/DG/BS/CONV | 633 kW | Colombia | ≈0.55 | ≈500,000 | 52,111 | 329,400 | |
[45] | 2022 | PV/WT/GS/BS/CONV | 96.97 kWh/d 15.00 kW | Pakistan | 0.0344 | 13,510 | 15,700 | ||
PV/GS/BS/CONV | 0.0384 | 1427 | 11,146 | ||||||
WT/GS/BS/CONV | 0.0365 | 3351 | 855 | ||||||
[46] | 2022 | PV/DG/BS/CONV | 95.32 kWh/d | Ecuador | 0354 | 159,659.7 | 8752.753 | 46,508.33 | |
PV/DG/CONV | 0.796 | 358,191.8 | 26,703.06 | 12,987.5 | |||||
DG | 0.871 | 392,089.5 | 29,943.07 | 5000 | |||||
DG/BS/CONV | 0.880 | 396,020.1 | 30,049.22 | 7558.333 | |||||
[47] | 2022 | PV/DG/BS/CONV | 1.823 kWh/d 1.821 kWh/d | Colombia | 0.54 | 190 | 4974.51 | 111,737.24 | |
PV/BS/CONV | 0.84 | 405 | 2113.81 | 196,815.6 | |||||
[48] | 2022 | GS/PT | 643.00 kWh/d 69.00 Kw 5789 kWh/d 1588.86 kW | Romania | 0.115 | 396,397 | 21,020 | ||
PV/GS/PT/WT/mCHP/CONV | |||||||||
PV/GS/PT/mCHP/CONV | |||||||||
[49] | 2022 | PV/BS/CONV | 11.27 kWh/d 2.39 kW | India | 0.66 | ||||
PV/WT/GS/BS/CONV | 0.0895 | ||||||||
PV/DG/BS/CONV | 0.439 | ||||||||
WT/BS/CONV | 5.98 | ||||||||
WT/DG/BS/CONV | 0.716 | ||||||||
PV/WT/DG/BS/CONV | 0.434 | ||||||||
[50] | 2023 | DG/GS | 334.750 kWh/d 23.70 kW | Malawi | 0.01397 | 116,853 | 7752.3 | 9500 | |
PV/DG/GS/CONV | 0.1244 | 104,064 | 5771.75 | 24,137 | |||||
PV/BM/GS/CONV | 0.09508 | 79,511 | 3985.9 | 24,319 | |||||
PV/WT/BM/GS/CONV | 0.103 | 86,099 | 4061.33 | 29,858 | |||||
BM/GS | 0.1054 | 88,954 | 5701.53 | 10,000 | |||||
PV/GS/BS/CONV | 0.1428 | 118,475 | 4515.19 | 55,949 | |||||
[51] | 2023 | PV/GS/CONV | 200 kWh/d 52.95 kW | Iraq | 0.058 | 77,680 | 1460 | 59,018 | |
PV/DG1/DG2/BS1/BS2/CONV | |||||||||
[52] | 2023 | GS | 2594 kWh/d 196.22 kW | Romania | 0.2 | 2190 | 189.362 | 0 | |
WT/GS | 0.201 | 2200 | 188.836 | 15.000 | |||||
PV/GS/CONV | 0.184 | 2020 | 165.954 | 100.000 | |||||
PV/WT/GS/CONV | 0.185 | 2030 | 165.428 | 115.000 |
Ref | Year | Configurations | Electrical Data | Country | COE USD/kW·h | NPC USD | O&M USD/kW/a | C.I. USD | RF (%) |
---|---|---|---|---|---|---|---|---|---|
[53] | 2019 | PV/WT/BS | 50.50 kWh/d 13.9 kW 100.23 kWh/d 17.5 kW 17.53 kWh/d 5.0 kW | India | 0.288 M | 0.228 M | 4994 | 0.166 M | |
PV/BS | 0.302 M | 0.242 M | 5480 | 0.176 M | |||||
WT/BS | 0.746 M | 0.591 M | 10880 | 0.450 M | |||||
[54] | 2019 | PV/BS/CONV | 10.28 kW 0.77 kW | Pakistan | 0.199 | 9650.0 | 332.39 | 5353 | |
[55] | 2019 | DG/BS/CONV | 84 kWh/d 14 kW | Malaysia | 0.511 | 25,607 | 32,000 | ||
[56] | 2019 | WT/GS | 2687.54 kWh/d 394.98 kW 1521.37 kWh/d 233.4 kW | Bangladesh | 0.037 | 1,877,869 | 89.4 | ||
WT/GS | 0.43 | 2,049,735 | 89 | ||||||
PV/GS | 0.006 | 1,850,822 | 68 | ||||||
WT/GS | 0.053 | 1,690,032 | 96.8 | ||||||
PV/GS | 0.071 | 1,884,952 | 73.5 | ||||||
[57] | 2019 | PV/DG/BS/CONV | 30.00 kWh/d 5.05 kW | Argentina | 0.345 | 32.880 | 1.536 | 19.524 | 88.2 |
PV/DG/BS/CONV | 0.307 | 29.179 | 1.330 | 17.615 | 90.6 | ||||
PV/DG/BS/CONV | 0.017 | 120.750 | 1.777 | 100.000 | 74.4 | ||||
[58] | 2019 | PV/WT/BS/CONV | 197.74 kWh/d 27.87 kW | Pakistan | 0.137 | 127,345 | 4.522 | 68,882 | 100% |
PV/BS/CONV | 0.15 | 140,048 | 5.640 | 67,132 | 100% | ||||
[59] | 2020 | DG | 5416.6 kWh/d | USA | 0.644 | 658,092 | 87,136 | 0 | |
PV/DG/BS1 | 0.229 | 234,219 | 93 | ||||||
PV/DG/BS2 | 0.304 | 310,362 | 90.3 | ||||||
WT/DG/BS/ | 0.18 | 184,253 | 78.7 | ||||||
PV/WT/DG/BS | 0.16 | 164,048 | 83.1 | ||||||
[60] | 2020 | PV/WT/DG/BS | 170 kWh/d | India | 0.24932 | 199,850.8 | 11,081.2 | 64.8 | |
PV/DG/BS | 0.3982 | 319,414.8 | 13,700.6 | 57.8 | |||||
WT/DG/BS | 0.5296 | 424,570.3 | 21,335.1 | 28.8 | |||||
PV/WT/BS | 0.1293 | 103,661.7 | 1635.06 | 100 | |||||
PV/BS | 0.1240 | 99,427.02 | 1758.8 | 100 | |||||
WT/BS | 0.7273 | 583,120.8 | 9893.3 | 100 | |||||
DG/BS | 0.4266 | 342,131.3 | 25,224.1 | 0 | |||||
DG | 0.6263 | 502,348.3 | 37,969.2 | 0 | |||||
[61] | 2020 | DG | 63. 81 kWh/d 21.86 kW 166.92 kWh/d 22.81 kW 453 kWh/d 50.42 kW 722. 85 kWh/d 72.4 kW | Bangladesh | 0.449 0.3 0.34 | 135,337 235,953 769,966 | 15,000 92,749 203,420 | 9309 11,078 91,413 | |
PV/DG/BS | |||||||||
PV/BS | |||||||||
DG | |||||||||
DG/BS | |||||||||
PV/DG | |||||||||
PV/DG/BS | |||||||||
PV/BS | |||||||||
DG | |||||||||
[62] | 2020 | DG1/DG2 | 3853 kWh/d 421.89 kW | Nigeria | 0.1055 0.106 0.119 0.271 0.921 | 1 M 100,799 1.14 M 2.58 M 8.70 M | 383,820 | 91,339 183,377 112,686 344,390 464,975 | |
PV/DG1/DG2/BS | |||||||||
PV/WT/DG1/DG2/BS | |||||||||
PV/WT/DG1/DG2/HT/BS | |||||||||
[63] | 2020 | PV/WT/BM/BG/EL/BS/FC/CONV | 724.83 kWh/d 149.21 kW | India | 0.163 0.425 | 890,013 856,013 | |||
PV/WT/BM/BG/EL/FC/CONV | |||||||||
PV/WT/BM/BG/EL/BS/CONV | |||||||||
PV/WT/BM/BG/EL/CONV | |||||||||
[64] | 2020 | PV/HT/BS/CONV | 24,861 kWh/d 3000.9 kW | Cameroon | 0.1666 | 26.39 M | 11.7 M | 14.1 M | |
[65] | 2020 | GS | 13.93 kWh/d 0.73 kW | Bulgaria: | 0.1 | ||||
PV/GS/BS/CONV | 13.93 kWh/d 0.73 kW | Vidin | 0.218 | 67.8 | |||||
Montana | 0.211 | 68.8 | |||||||
Vratsa | 0.215 | 68.1 | |||||||
Pleven | 0.211 | 68.7 | |||||||
Lovech | 0.212 | 68.6 | |||||||
Sofia | 0.220 | 68.8 | |||||||
Pernik | 0.210 | 68.9 | |||||||
Kyustendil | 0.212 | 68.6 | |||||||
Pazardzhik | 0.212 | 68.8 | |||||||
Gabrovo | 0.216 | 68 | |||||||
Veliko | 0.313 | 68.6 | |||||||
Ruse | 0.195 | 71.1 | |||||||
Stara | 0.217 | 68 | |||||||
Plovdiv | 0.217 | 68 | |||||||
Haskovo | 0.212 | 68.7 | |||||||
Yambol | 0.217 | 68 | |||||||
Kardzali | 0.213 | 68.5 | |||||||
Smolyan | 0.219 | 67.7 | |||||||
Silistra | 0.209 | 69.1 | |||||||
PV/WT/GS/BS/CONV | 13.93 kWh/d 0.73 kW | Blagoevgrad | 0.212 | 75.4 | |||||
Razlog | 0.219 | 67.7 | |||||||
Targovishte | 0.198 | 78.6 | |||||||
Shumen | 0.197 | 79 | |||||||
Sliven | 0.201 | 78 | |||||||
Burgas | 0.216 | 79.4 | |||||||
Varna | 0.196 | 77.3 | |||||||
Dobrich | 0.198 | 78.6 | |||||||
[66] | 2020 | DG | 189.800 kWh/d 13.989 kW | Indonesia | 0.1968 | 283,965 | 13.63 M | ||
PV/DG/BS/CONV | 0.1154 | 224,233 | 8.1 M | ||||||
PV/WT/DG/BS/CONV | 0.1555 | 224,334 | 8.1 M | ||||||
[67] | 2020 | PV/BD/CONV | 3.00 kWh/d 0.36 kW | India | 0.637 | 9009 | 85.11 | 7909 | |
PV/WT/BS/CONV | 1.19 | 16,830 | 188.23 | 14,397 | |||||
WT/BS/CONV | 2.86 | 40,470 | 589.91 | 32,844 | |||||
[68] | 2021 | PV/BS | 255.6 kWh/d | China | |||||
PV/HPS | |||||||||
PV/BS/PS | |||||||||
WT/BS | |||||||||
WT/HPS | |||||||||
WT/BS/HPS | |||||||||
PV/PV/WT/BS | |||||||||
WT/HPS | |||||||||
PV/WT/BS/HPS | |||||||||
[69] | 2021 | PV/WT/DG/BS/CONV | 234.00 kWh/d 25.6 kW | Indonesia | 0.276 | 414,951 | 152,664 | ||
PV/DG/BS/CONV | 0.284 | 426,966 | 144,142 | ||||||
PV/WT/BS/CONV | 0.322 | 482,468 | 200,129 | ||||||
PV/BS/CONV | 0.326 | 488,567 | 196,824 | ||||||
DG | 0.499 | 749,792 | 24,500 | ||||||
[70] | 2021 | PV/WT/BS | 13,68 kWh/d 2,16 kW | Iran | 0.322 | 24,662 | 18,381 | 100 | |
PV/WT/FC | 0.617 | 47,233 | 32,727 | 100 | |||||
PV/WT/DG | 0.286 | 21,913 | 6895 | 28.3 | |||||
PV/WT/BS/FC | 0.403 | 30,854 | 24,170 | 100 | |||||
PV/WT/DG/BS | 0.151 | 11,576 | 6930 | 72.2 | |||||
PV/WT/DG/FC | 0.306 | 23,388 | 14,370 | 59.8 | |||||
PV/WT/DG/BS/FC | 0.231 | 17,648 | 12,127 | 66.1 | |||||
[71] | 2021 | PV/WT/DG/BS/CONV | 110 Kwh/d 11.04 kW | India | 0.321 | 166,400 | 9692 | 41,100 | |
PV/WT/DG/BS/CONV | 0.326 | 169,461 | 9911 | 41,335 | |||||
PV/WT/DG/BS/CONV | 0.295 | 153,131 | 8732 | 40,253 | |||||
PV/WT/DG/BS/CONV | 0.345 | 178,815 | 10,305 | 45,603 | |||||
PV/WT/DG/BS/CONV | 0.289 | 149,990 | 8683 | 37,736 | |||||
PV/WT/DG/BS/CONV | 0.266 | 138,197 | 8085 | 33,674 | |||||
[72] | 2021 | PV/DG/BS/CS | 183.68 kWh/d 37.81 kW 40.38 kWh/d 6.75 kW | Ghana | 0.399 | 296,552 | 20,569 | 109,846 | 40 |
DG/BS/CS | 0.523 | 388,358 | 35,458 | 66,500 | 0 | ||||
PV/BS/CS | 0.782 | 580,170 | 16,252 | 435,646 | 100 | ||||
DG | 0.902 | 669,394 | 70,992 | 25,000 | 0 | ||||
PV/DG/CONV | 0.998 | 740,800 | 71,516 | 91,650 | 0 | ||||
[73] | 2021 | PV/WT/BS/CONV | 30 kWh/d 1.6 kW | Iraq | 0.117 | 14,800 | 541 | 8590 | |
0.118 | 14,988 | 539 | 8810 | ||||||
[74] | 2021 | PV/FC/HT/EL | China | 133,000 | 2,180,000 | ||||
[75] | 2021 | PV/WT/BS/CONV | 197.74 kWh/d 27.84 kW | Pakistan | 0.137 | 127,345 | 4522 | 68,882 | 100 |
PV/BS/CONV | 0.15 | 140,048 | 5640 | 67,132 | 100 | ||||
[76] | 2021 | PV/WT/BS | 11.27 kWh 2.39 kW | Turkey | 0.521 | 94,705 | 974.3 | 48,750 | 100 |
0.495 | 89,992 | 929.51 | 46,150 | ||||||
CONV | 0.420 | 76,542 | 809.71 | 38,350 | |||||
0.409 | 74,436 | 800.06 | 36,700 | ||||||
[77] | 2021 | PV/GS/BS/CONV | 542.60 kWh/d 58.17 kW | India | 1.77 | 9.22 M | 124,389 | 7.68 M | 66.8 |
GS | 5.66 | 17 M | 1.31 M | 0 | 0 | ||||
[78] | 2021 | PV/DG/BS/CONV | 346.43 kWh/d 68.9 kW 80.87 kWh/d 7.44 kW | India | 0.223 | 449,574 | 89,659 | 208,988 | 91.6 |
WT/DG/BS/CONV | 0.410 | 827,473 | 1.06 | ||||||
PV/WT/DG/BS/CONV | 0.223 | 449,573 | 91.6 | ||||||
PV/WT/BS/CONV | 0.361 | 727,327 | 100 | ||||||
[79] | 2021 | PV/WT/DG/BS/CONV | 135 kWh/d 18 kW | Iran | 1.058 | 284,724 | 14,583 | 205,000 | 64 |
WT/DG/BS/CONV | 1.072 | 288,338 | 29,695 | 126,000 | 29 | ||||
PV/DG/BS/CONV | 1.079 | 290,343 | 24,391 | 157,000 | 37 | ||||
DG | 1.18 | 317,394 | 45,253 | 70,000 | 0 | ||||
WT/DG | 1.308 | 351,877 | 46,622 | 97,000 | 12 | ||||
PV/WT/BS/CONV | 1.338 | 360,023 | 5309 | 331,000 | 100 | ||||
PV/DG/CONV | 1.444 | 388,569 | 44,187 | 147,000 | 27 | ||||
PV/BS/CONV | 1.478 | 397,453 | 4656 | 372,000 | 100 | ||||
[80] | 2021 | PV/WT/BS/CONV | 14.53 kW 8.09 kW 6.4 kW | Malawi | 0.635 | 325,509 | 6219 | 228,700 | |
PV/BS/CONV | 0.625 | 167,213 | 3470 | 113,200 | |||||
PV/BS/CONV | 0.734 | 185,611 | 4170 | 120,700 | |||||
[81] | 2021 | PV/GS/BS/CONV | 1.26 kWh/a 1537 kWh/a | Honduras Zambia | 0.06 | 256,133 | 4.45 | 181,733 | |
0.48 | 564,697 | 160 | 429,400 | ||||||
[82] | 2021 | PV/WT/BS/CONV | Malesia | 221,329.97 | 294,156 | ||||
[83] | 2022 | PV/DG/BS/CONV | 5.3 kWh/d 0.78 kW 5 kWh/d 0.78 kW | Indonesia | 122,237 | 4675 M | |||
MH/DG | 19,715 | 2885 M | |||||||
[84] | 2022 | PV/DG/BS/CONV | 22 kWh/d 2.5 kW | Iran | 371 | 27,020 | 333 | 13,582 | |
PV/WT/DG/BS/CONV | 379 | 2728 | 14,492 | ||||||
PV/BS/CONV | 536 | 33,972 | 23,900 | ||||||
PV/WT/BS/CONV | 547 | 34,652 | 24,525 | ||||||
[85] | 2022 | PV/WT/BS/CONV | 980.76 kWh/d 99.02 kW | Pakistan | 0.0446 | 206,161 | 2813 | 169,800 | 100 100 |
PV/WT/DG/BS/CONV | 0.0416 | 192,353 | 2913 | 154,690 | |||||
PV/WT/BS/HG/FC/CONV | 0.0489 | 226,420 | 2997 | 187,670 | |||||
[86] | 2022 | PV/BS/CONV | 530.00 kWh/d 55.66 kW | Bangladesh | 6476 | 478,008 | 336,463 | ||
PV/DG/BS/CONV | 10,900 | 565,690 | 336,463 | ||||||
PV/WT/BS/CONV | 11,909 | 569,914 | 319,453 | ||||||
PV/WT/DG/BS/CONV | 13,355 | 658,652 | 377,786 | ||||||
[87] | 2022 | PV/BS/CONV | 3.40 kWh/d 1.26 kW | Nigeria | 0.25 | 4003 | 100 | ||
PV/DG/BS/CONV | 0.258 | 4146 | 97.1 | ||||||
DG/BS/CONV | 0.672 | 10,785 | 0 | ||||||
PV/DG/CONV | 3.18 | 51,093 | --- | ||||||
[88] | 2023 | PV/DG/BS/CONV | 11.27 Kwh/d 2.39 kW | Congo | 0.11 | ||||
PV/BS/BV | 0.89 | ||||||||
[89] | 2023 | PV/WT/GS | 13.26 kWh/d 6.20 kW | Turkey | 0.01 0.051 | 2540 8951 | 3379.7 8140.1 | 40 87 | |
PV/WT/DG/BS | 0.198 0.346 | 23,372 40,858 | 341 | 1552.1 6312.5 | 20 91 | ||||
[90] | 2023 | PV/DG/BS/CONV | 50.5 kWh/d 9.28 kW | Colombia | 0.442 | 104,270 | 1385 | 21,700 | 32 |
[91] | 2023 | PV/DG/BS | 1312.0 kWh/d 144.0 kW | Amdjarass Am Timan Ari Bagrai Biltine Bol Fada Goz Beida Koumra Lai Mao Massakory Massenya Mongo Moussoro Pala Arabia | 0.389 | 2.52 M | 439 | 1.63 M | 99.2 |
PV/DG/BS | 0.367 | 2.38 M | 2.40 | 1.53 M | 100 | ||||
PV/BS | 0.380 | 2.46 M | 0 | 1.6 M | 100 | ||||
PV/WT/DG/BS/CONV | 0.416 | 2.69 M | 646 | 1.7 M | 97.6 | ||||
PV/BS/CONV | 0.38 | 2.46 M | 0 | 1.61 M | 100 | ||||
PV/DG/BS/CONV | 0.389 | 2.52 M | 439 | 1.63 M | 99.2 | ||||
PV/WT/DG/BS/CONV | 0.406 | 2.63 M | 692 | 1.63 M | 97.3 | ||||
PV/DG/BS/CONV | 0.375 | 2.43 M | 2.10 | 1.8 M | 100 | ||||
PV/BS/CONV | 0.370 | 2.40 M | 0 | 1.56 M | 100 | ||||
PV/BS/CONV | 0.373 | 2.42 M | 0 | 1.56 M | 100 | ||||
PV/BS/CONV | 0.397 | 2.57 M | 0 | 1.71 M | 100 | ||||
PV/DG/BS/CONV | 0.379 | 2.45 M | 1.8 | 1.59 M | 100 | ||||
PV/BS/CONV | 0.375 | 2.43 M | 0 | 1.55 M | 100 | ||||
PV/DG/BS/CONV | 0.373 | 2.42 M | 2.10 | 1.56 M | 100 | ||||
PV/DG/BS/CONV | 0.388 | 2.51 M | 439 | 1.63 M | 99.2 | ||||
PV/WT/DG/BD/CONV | 0.369 | 2.39 M | 2.40 | 1.54 M | 100 | ||||
[92] | 2023 | PV/WT/GS/BS/CONV | 12,742.40 kWh/d 1821.05 kW 15,928 kWh/d 2276.28 kW | Indonesia | 1.241 | 74.7 B | 5.36 B | ||
1.264 | 95.0 B | 5.36 B | |||||||
[93] | 2023 | PV/DG/BS/CONV | 21,589.04 kWh/d 3209.49 kW | India | 9.77 | 995 M | 128.41 M | 679 M | 90 |
9.86 | 1 B | 90 |
Ref | Year | Configurations | Electrical Data | Country | COE USD/kW·h | NPC USD | O&M USD/kW/a | C.I. USD | RF (%) |
---|---|---|---|---|---|---|---|---|---|
[94] | 2019 | PV/WT/DG/BS/CONV | 250 kWh/d 16 kW Max | Spain | 0.404 | 473,013 | 17,993 | 243,000 | 96 |
0.408 | 560,247 | 23,448 | 260,000 | 92 | |||||
[95] | 2020 | PV/BS/CONV | 32.43 kWh/d 4.44 kW 60.11 kWh/d 4.55 kW | Canada | 0.425 | 64,969 | 47,932 | 1318 | 100 |
PV/WT/BS/CONV | |||||||||
WT/BS/CONV | 0.585 | 89,512 | 70,563 | 1466 | 100 | ||||
PV/BS/CONV | |||||||||
PV/WT/BS/CONV | 1.03 | 157,555 | 133,474 | 1863 | 100 | ||||
WT/BS/CONV | |||||||||
[96] | 2020 | PV/DG/BS/CONV | 300 kWh/d 43.98 kW 48.70 kWh/d 13.11 kW | Palestine | 0.438 | 636,150 | 84% 87% | ||
PV/BS/CONV | 0.521 | 731,927 | |||||||
PV/DG/CONV | 0.568 | 820,902 | |||||||
DG | 0.609 | 962,084 | |||||||
DG/BS/CONV | 0.666 | 10.7 M | |||||||
[97] | 2021 | PV/DG/BS/CONV | 54.00 kWh/d 15.07 kW | India | 0.655 | 165,137 | |||
PV/BS/CONV | 0.813 | 197,152 | |||||||
PV/DG/CONV | 0.364 | 91,676 | |||||||
[98] | 2022 | HYD/BS | 1500 kWh/d 205 kW | Ghana | 0.06 | 509,202 | 18,318 | 272,391 849,298 | |
HYD/HPS | 0.10 | 787,523 | 32,185 | ||||||
PV/HRY/BS | 0.14 | 1.14 M | 22,606 | ||||||
PV/HYD/HPS | 0.16 | 1.34 M | 32,296 | ||||||
PV/HPS | 0.31 | 2.53 M | 85,700 | ||||||
[99] | 2022 | PV/HYD/FC/CONV | 432 MWh/d 816 MWh/d 888 MWh/d 432 MWh/d 744 MWh/d | Pakistan | 0.266 | 575 M | 40.8 M | 14.8 M | |
DG | 0.248 | 1010 | 61.1 M | 175 M | |||||
PV/BS/CONV | 0.248 | 1100 | 66.1 M | 190 M | |||||
PV/DG/CONV | 0.49 | 540 M | 32.5 M | 94.5 M | |||||
0.248 | 923 M | 55.6 M | 159 M | ||||||
[100] | 2022 | PV/BM/BS/CONV | 27,523.34 kWh/d 4602.2 kW | Nigeria | 0.4128 | 116.73 M | 2.17 M | ||
[101] | 2022 | PV/DG/BS/CONV | 1006.0 kWh/d 112.84 kW | Argentina | 0.329 | 2.42 M | 902,460 | 93.5 | |
PV/BS/CONV | 0.517 | 1.31 M | 902,460 | 100 | |||||
[102] | 2022 | PV/EL/FC/TH/CONV | 47 kWh/d 5.4 kW | Argerlia | 0.259 | 64,384 | 19.26 | 35,850 | |
[103] | 2023 | PV/DG/GS/BS/CONV | 18 MW 34 MW 37 MW 18 MW 32 MW | Pakistan | 0.24 | 519.6 M | |||
981.4 M | |||||||||
1 B | |||||||||
519.6 M | |||||||||
894.8 M |
Ref | Year | Configurations | Electrical Data | Country | COE USD/kW·h | NPC USD | O&M USD/kW/a | C.I. USD | RF (%) |
---|---|---|---|---|---|---|---|---|---|
[104] | 2020 | PV/GS/CONV | 823.25 kWh/d 106.14 kW | Brazil | 0.469 | 3.74 | 161,253 | 567,023 | 55.6% |
PV/WT/GS/CONV | 0.548 | 4.38 | 163,626 | 116 M | 56.6% | ||||
[105] | 2020 | PV/WT/GS/CONV | 24,000 kWh/h 1833.4 kW | Colombia | 0.2 | 11.8 M | 94,410 | 9.3 M | |
[106] | 2020 | PV/GS | 14,887 kWh/d 1310.47 kW | Bangladesh | 5.3 | 15 M | 23.2 M | ||
[107] | 2021 | PV/DG/BS/CONV | 112.49 kW/d 26.88 kW | Ecuador | 0.83 | 183.52 | 12.51 | 37.32 | |
PV/BS/CONV | |||||||||
0.67 | 319.69 | 13.92 | 157.05 | ||||||
0.85 | 406.16 | 15.06 | 230.2 | ||||||
PV/GS/BS/CONV | 1.72 | 824.71 | 30.65 | 466.44 | |||||
0.09 | 44.74 | 3.74 | 1.03 | ||||||
0.32 | 271.91 | 10.55 | 148.64 | ||||||
[108] | 2021 | PV/DG/BS/CONV | 14,767.33 kWh/d 1294.20 kW | India | 0.3965 | 309,432.90 | 70,361.33 | 255,549.5 | |
[109] | 2021 | PV/GS/BS/CONV | 5333.93 kWh/d 514.05 kW | Brazil | 0.1000 | 1.81 M | |||
0.0999 | 1.82 M | ||||||||
0.0999 | 1.82 M | ||||||||
[110] | 2021 | PV/WT/BS/CONV | 50.77 kWh/d 10.45 kW | Canada | 0.48 | 34,149.8 | 9578.77 | 23,064.72 | 100 |
[111] | 2021 | PV/WT/GS/BS/CONV | 165.44 kWh/d 20.46 kW | Pakistan | 0.3 | 180,026 | 18,116 | ||
[112] | 2021 | PV/WT/GS/BS/CONV | 13.93 kWh/d 0.73 kW | Bulgaria | 20,800 | 69 | |||
[113] | 2021 | DG | 165.44 kWh/d 47.57 kW | Bangladesh | 3.94 | 3.08 M | 23,5621 | 31,800 | 0 |
PV/DG/BS/CONV | 1.07 | 833,844 | 44,235 | 261,991 | 86 | ||||
PV/WT/DG/BS/CONV | 1.01 | 791,531 | 39,866 | 276,164 | 88.5 | ||||
[114] | 2021 | PV/DG//BS/CONV | 23 kWh/d 3 kW | Nigeria | 0.258 | 11,000 | |||
PV/WT/BS/CONV | 0.45 | ||||||||
DG/BS/CONV | 0.30 | ||||||||
PV/BS/CONV | 0.37 | ||||||||
DG | 0.41 | ||||||||
[115] | 2022 | PV/GS/CONV | 24,961.08 kWh/d 1461.40 kW | Saudi Arabia | 0.115 | 14.20 | 1 M | 3 M | 44.6 |
PV/GS/BS/CONV | 0.117 | 15.30 | 48.6 | ||||||
GS/BS | 0.163 | 19.10 | 0 | ||||||
GS | 0.163 | 19.20 | 0 | ||||||
[116] | 2022 | PV/WT/DG/BM/EL/BS/FC/CONV | 2426.44 kWh/d 405.71 k | India | 0.138 | 1.58 M | 182,039 | 940,932 | |
[117] | 2022 | DG/CONV | 25.55 kWh/d 2.9 kW 105.00 kWh/d 8.03 kW | Ghana | 0.487 | 150,486 | 22,292 | 59,986 | |
PV/WT/DG/CONV | 0.39 | 118,788 | 12,658 | ||||||
[118] | 2022 | PV/WT/DG/BS | 21 kWh/d5.9 kW | Iraq | 0.225 | 22,302 | 3448 | 10,520 | 100 |
[119] | 2022 | PV/WT/DG/BS/CONV | 241,022.37 kWh/d 2105.55 kW 908.91 kWh/d 70.18 kW | Hungry | 3.22 | 29,403 | |||
[120] | 2022 | PV/DG/GS/BS/CONV | 11.26 kWh/d 2.09 kW | Malaysia | 0 0.377 0.051 | 7256.74 −299,762.16 −637,870.28 −642,247.46 | −8689.23 −522,416.71 | 17,564 203,121.5 | |
PV/WT/GS/DG/BS/CONV1 | |||||||||
WT/DG/GS/BS/CONV | |||||||||
PV/WT/GS/DG/BS/CONV2 | |||||||||
[121] | 2022 | PV/GS/CONV | 18.00 kWh/d | Turkey | 0.562 | 38,310.04 | 10,645.88 | ||
[122] | 2022 | PV/WT/BS/CONV | China | 129,765 | ≈2905.4 | 94,198 | |||
PV/BS/CONV | 211,083 | 3383 | 174,974 | ||||||
DG/BS/CONV | 3.84 M | 3468 | 19,484 | ||||||
PV/WT/DG/BS/CONV | 140,836 | 4182.6 | 90,122 | ||||||
PV/DG/BS/CONV | 227,898 | 4864.2 | 206,448 | ||||||
[123] | 2022 | DG | 61.33 kWh/d 5.76 kW | India | 58.55 | 16.9 M | 280,320 | 83,200 | 0 |
PV/DG/CONV | 44.77 | 13 M | 1.52 M | 188,512 | 11.1 | ||||
PV/BS/CONV | 10.99 | 3.18 M | 2.5 M | 0 | 100 | ||||
PV/DG/BS/CONV | 9.29 | 2.69 M | 2 M | 5120 | 97.5 | ||||
PV/WT/DG/BS/CONV | 7.94 | 2.3 M | 1.71 M | 4672 | 98.2 | ||||
PV/GS/BS/CONV | 1.65 | 1.65 M | 1.97 M | ---- | 80.1 | ||||
[124] | 2022 | PV/GS/CONV | 11.26 kWh/d 2.09 kW | India | 6.4 | 44.4 | |||
PV/HT/CONV | 4.15 | 100 | |||||||
[125] | 2022 | PV/DG/DG1/DG2/BS/CONV | 19,424.65 kWh/d 2734.84 kW | India | 18.06 | 1.65 B | 182.39 M | 12.93 B | 73 |
[126] | 2022 | DG | 843.29 kWh/d | Malawi | 0.541 | 515,071 | 23,628 | 0 | |
PV/WT/DG/BS/CONV | 0.198 | 188,814 | 4907 | 81,854 | |||||
PV/DG/BS/CONV | 0.209 | 198,969 | 4774 | 94,892 | |||||
PV/WT/BS/CONV | 0358 | 340,809 | 3410 | 266,462 | |||||
[127] | 2023 | PV/GS/CONV | 11.26 kWh/d | Ecuador | 1.828 | ||||
[128] | 2023 | PV/HG/BM/BS | India | 0.106 | 17 M | ||||
PV/HG/BM/GS/BS | |||||||||
[129] | 2023 | PV/WT/DG | China | 0.164 | 10,015 | ||||
PV/WT/GT | 7.89 | 244.9 M | |||||||
PV/BG | 0.094 | 20,184 | |||||||
PV/DG | 0.178 | 98,911 | |||||||
WT/NG | 0.142 | 87.7 M | |||||||
HT/DG/EL | 0.07 | 92,441 | |||||||
PV/HT/DG | 0.087 | 179,741 | |||||||
PV/CONV | 0.67 | 5 B | |||||||
PV/HT | 0.092 | 3.2 M | |||||||
[130] | 2023 | PV/WT/DG/BM/BS/CONV | 300 kWh/d 12.5 kW | Iraq | 0.1192 | 32.01 | 2875 | ||
[131] | 2023 | PV/GS/BS/CONV | 2139.7 kWh/d 163.44 kW | Oman | |||||
[132] | 2023 | PV/DG/BS/HT | 2426.45 kWh/d 405.71 kW | Bangladesh | 0.271 | 3.11 M | 62,297 | 2.3 M | |
/CONV/HR | |||||||||
PV/DG/BS/HT | |||||||||
/CONV/EL/HR | |||||||||
PV/DG/BS/HT | 0.273 | 3.13 M | 62,327 | 2.32 M | |||||
/CONV/HR/HT | |||||||||
PV/DG/BS/HT | 0.273 | 3.13 M | 62,307 | 2.33 M | |||||
/CONV/EL/HR/HT | |||||||||
PV/WT/DG/BS | 0.275 | 3.15 M | 61,855 | 2.35 M | |||||
/HT/CONV/HR | |||||||||
PV/WT/DG/BS | 0.278 | 3.18 M | 60,899 | 2.41 M | |||||
/HT/CONV/HR | |||||||||
[133] | 2023 | PV/GS/BS/CONV | 200 kWh/d 21.9122 kW | Saudi Arabia | 0.00257 | 10.4 M | −8.37 M | 108 M | 88.6 |
[134] | 2023 | PV/DG/BS | 3250 kWh/d 240 kW 570 kWh/d 71.25 kW | Bangladesh | 0.0445 | 3,464,268 | 80.1 | ||
0.0291 | 2,301,523 | 79.5 | |||||||
0.0198 | 1,539,620 | 78.2 | |||||||
0.0512 | 3,717,828 | 80.9 | |||||||
0.0449 | 3,463,741 | 76.7 | |||||||
0.283 | 10,354,990 | 78.1 | |||||||
[135] | 2023 | PV/WT/GS/BS/CONV | 1940 kWh/d 424.80 kW 645 kWh/d 147.70 kW | Bangladesh | 0.0714 | 1.82 M | 815,883 | 54.3 | |
PV/GS/BS/CONV | 0.0720 | 1.81 M | 788,618 | 54.2 | |||||
PV/WT/DG/GS/BS/CONV | 0.0812 | 1.81 M | 569,575 | 42.7 | |||||
PV/DG/GS/BS/CONV | 0.082 | 1.81 M | 588,011 | 42.3 | |||||
PV/BS/CONV | 0.269 | 5.56 M | 1.81 M | 100 |
Financial Indicators | Equation | Description |
---|---|---|
Net Present Cost | Where Real Interest Rate, after taking into account the inflation rate, over the interest rate of the fuel and energy supply cost | |
Levelized cost of energy | Where Annual Energy Demand | |
Ref. | Year | Dispatch | Sensitivity Analysis |
---|---|---|---|
[31] | 2019 | LF | Based on wind and irradiation profiles. |
[94] | 2019 | LF | To study the impact of diesel price only on the optimal system design and also on the TNPC. Interest rate of 6%. Five values were considered: 0.31 USD/L, 0.50 USD/L, 0.7 USD/L, 0.8 USD/L, and 0.9 USD/L. |
[56] | 2019 | CC | The model defined the results according to the initial costs, NPC, COE, capacity shortage, dispatch types, and penetration and fraction of renewables. |
[59] | 2020 | CC | The life cycle cost (LCC). It consists of all maintenance and operating costs, including installation and the initial capital cost over the life of the system. Different scenarios were considered. |
[60] | 2020 | LF | A comparative analysis of various combinations of energy sources. |
[61] | 2020 | CC | Changes in annual wind speed and biomass fuel prices. |
[63] | 2020 | CC | Two types of scenarios. During daytime hours with a certain load and the other scenario was interrupted. |
[64] | 2020 | LF | The greenhouse gas emissions of the system in single-family homes were investigated, comparing the difference with the dispatch strategy when using different work strategies, depending on the greenhouse gas emissions and choosing the adequate dispatch strategy adequate. |
[105] | 2020 | LF | Daily load profile and renewable resource with an existing system of 13 generators. |
[106] | 2021 | LF | System cost changes with a fluctuation in solar radiation, wind speed, diesel price, operation and maintenance costs, capital costs, and replacement costs. |
[68] | 2021 | ML | The effect of changes in average solar radiation and average wind speed on the cost of energy and CO2 emissions. |
[69] | 2021 | CC | Examined the effect of the cost of diesel fuel, the intermittent nature of solar and wind energy, and the nominal discount rate, and determined the average scaled load per day. |
[73] | 2021 | LF | For different values of annual average solar radiation, average temperature, oscillation in average WS, rise and fall of fuel prices, and changing multiplication value of capital costs, the RC and O&M costs of photovoltaic systems were realized. |
[74] | 2021 | CC | The model defined the results according to the initial costs, NPC, COE, capacity shortage, dispatch and penetration types, and fraction of renewable energy. |
[75] | 2021 | CC | Summer and winter load profile. |
[78] | 2021 | CC | The sensitivity of the output systems was tested by varying wind speed and diesel pump rates. |
[82] | 2021 | CC | The details of the system’s battery storage status and energy flow were analyzed through the energy balance of various system configurations. This analysis showed the operating cost, fuel cost, COE, fuel consumption, and renewable fraction. |
[113] | 2022 | LF | PV size sensitivity versus O&M costs. |
[84] | 2022 | LF | Sensitivity to evaluate the behavior of the proposed system when the scaled annual average energy consumption per day is increased by 10% and 20% |
[118] | 2022 | LF | Sensitivity based on net current cost and lowest electricity cost. |
[85] | 2022 | LF | The lowest cost system can also be modified by adjusting the sensitivity settings. |
[121] | 2022 | CC LF | Microgrid optimization based on the dispatch strategy. |
[48] | 2022 | CC | Microgrid optimization based on the dispatch strategy. |
[122] | 2022 | CC LF LF CC | Prices change, load grows, or technology improves, and how a system design might adapt to different markets. |
[138] | 2022 | CC | The sensitivity variables for the simulation were the operating time of the diesel generators and the cost of fuel. |
[124] | 2022 | LF CC | Wind speed (m/s) and fuel consumption were considered as sensitivity variables. |
[101] | 2022 | CC LF | Sensitivity analysis was performed based on the abundance of renewable resources, such as solar irradiance and wind speed. |
[131] | 2023 | LF CC | Lowest and highest NPC values for each region. |
[51] | 2023 | CC | Fuel prices of USD0.51/L and USD1.02/L. |
[89] | 2023 | LF CC | It was carried out taking into account the different values of the inflation rate and the useful life of the project. |
[90] | 2023 | CC | Simulation of renewable energy configurations. |
[91] | 2023 | LF | The NPC, the system COE, and only diesel were considered for the sensitivity analysis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Uc, D.A.; de León Aldaco, S.E.; Aguayo Alquicira, J. Trends in Hybrid Renewable Energy System (HRES) Applications: A Review. Energies 2024, 17, 2578. https://doi.org/10.3390/en17112578
Pérez Uc DA, de León Aldaco SE, Aguayo Alquicira J. Trends in Hybrid Renewable Energy System (HRES) Applications: A Review. Energies. 2024; 17(11):2578. https://doi.org/10.3390/en17112578
Chicago/Turabian StylePérez Uc, Daniel Alejandro, Susana Estefany de León Aldaco, and Jesús Aguayo Alquicira. 2024. "Trends in Hybrid Renewable Energy System (HRES) Applications: A Review" Energies 17, no. 11: 2578. https://doi.org/10.3390/en17112578
APA StylePérez Uc, D. A., de León Aldaco, S. E., & Aguayo Alquicira, J. (2024). Trends in Hybrid Renewable Energy System (HRES) Applications: A Review. Energies, 17(11), 2578. https://doi.org/10.3390/en17112578