Optimization of Flywheel Rotor Energy and Stability Using Finite Element Modelling
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion for a Flywheel Single Rotor
3.1. Means to Reduce Localized Stresses—Models A and B
3.2. Impact of Shaft Diameter—Models C, D, and E
3.3. Impact of the Slope Angle on Top and Bottom Rotor Surfaces—Models F, G, H, I, J, and K
3.4. Impact of Varying Slope on Top and Bottom Rotor Surfaces—Models M, N, O, P, and Q
3.5. Adding Mass to the Rotor’s Edge
4. Double and Triple Flywheel Rotors
5. Vibration Modes’ Analyses for Stability
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- Model A:
- Model B:
- Model C:
- Model D:
- Model E:
- Model F:
- Model G:
- Model H:
- Model I:
- Model J:
- Model K:
- Model M:
- Model N:
- Model O:
- Model P:
- Model Q:
References
- Mutarraf, M.U.; Terriche, Y.; Niazi, K.A.K.; Vasquez, J.C.; Guerrero, J.M. Energy Storage Systems for Shipboard Microgrids—A Review. Energies 2018, 11, 3492. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Y.; Lei, G.; Zhu, J. A Review of Flywheel Energy Storage System Technologies. Energies 2023, 16, 6462. [Google Scholar] [CrossRef]
- Zhao, J.; Gu, Z.; Li, B.; Liu, X.; Li, X.; Chen, Z. Research on the Torque and Back EMF Performance of a High Speed PMSM Used for Flywheel Energy Storage. Energies 2015, 8, 2867–2888. [Google Scholar] [CrossRef]
- Ji, W.; Hong, F.; Zhao, Y.; Liang, L.; Du, H. Applications of Flywheels Energy Storage System on Load Frequency Regulation Combined with Power Generations: A review. Renew. Energy 2024, 223, 119975. [Google Scholar] [CrossRef]
- Fiske, O.J.; Ricci, M.R. Third Generation Flywheels For High Power Electricity Storage; LaunchPoint Technologies, Inc.: Goleta, CA, USA, 2016; Available online: https://www.launchpnt.com/hs-fs/hub/53140/file-14467597-pdf/docs/002_fiske_powerring.pdf (accessed on 1 August 2023).
- Kale, V.; Aage, N.; Secannel, M. Stress constrained topology optimization of energy storage flywheels using a specific energy formulation. J. Energy Storage 2023, 61, 106733. [Google Scholar] [CrossRef]
- Bankston, S.; Mo, C. Geometry Modification of Flywheels and its Effect on Energy Storage. Energy Res. J. 2015, 6, 54. [Google Scholar] [CrossRef]
- IRENA (International Renewable Energy Agency). Electricity Storage and Renewables: Costs and Markets to 2030; International Renewable Energy Agency: Masdar, United Arab Emirates, 2017; p. 58. [Google Scholar]
- Ribeiro, M.R. Sistema Armazenador de Energia Cinética SAEC—Estratégia de Controle e Simulações. Master’s Thesis, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em Engenharia, The Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, 2008. [Google Scholar]
- Fowler, T.K.; Post, R.F. Mechanical Stability of Multiple-Shell Energy Storage Rotors. In Proceedings of the Western Applied Mechanics Conference, Hampton, VA, USA, 18–21 June 1973. [Google Scholar]
- Post, R.F.; Fowler, T.K.; Post, S.F. A high-efficiency electromechanical battery. Proc. IEEE 1993, 81, 462–474. [Google Scholar] [CrossRef]
- Shi, C.; Wei, T.; Tang, X.; Zhou, L.; Zhang, T. Charging–Discharging Control Strategy for a Flywheel Array Energy Storage System Based on the Equal Incremental Principle. Energies 2019, 12, 2844. [Google Scholar] [CrossRef]
- Rocca, R.; Papadopoulos, S.; Rashed, M.; Prassinos, G.; Capponi, F.G.; Galea, M. Design Trade-Offs and Feasibility Assessment of a Novel One-Body, Laminated-Rotor Flywheel Switched Reluctance Machine. Energies 2020, 13, 5857. [Google Scholar] [CrossRef]
- Toh, C.-S.; Chen, S.-L. Design, Modeling and Control of Magnetic Bearings for a Ring-Type Flywheel Energy Storage System. Energies 2016, 9, 1051. [Google Scholar] [CrossRef]
- Sonsky, J.; Tesar, V. Design of a stabilised flywheel unit for efficient energy storage. J. Energy Storage 2019, 24, 100765. [Google Scholar] [CrossRef]
- Choudhury, S. Flywheel Energy Storage Systems: A Critical Review on Technologies, Applications, and Future Perspectives. Int. Trans. Electr. Energy Syst. 2021, 31, e13024. [Google Scholar] [CrossRef]
- Okou, R.; Sebitosi, A.B.; Pillay, P. Flywheel rotor manufacture for rural energy storage in sub-Saharan Africa. Energy 2011, 36, 6138–6145. [Google Scholar] [CrossRef]
- Rupp, A.; Baier, H.; Mertiny, P.; Secanell, M. Analysis of a flywheel energy storage system for light rail transit. Energy 2016, 107, 625–638. [Google Scholar] [CrossRef]
- Sun, B.; Li, B.; Xing, J.; Yu, X.; Xie, M.; Hu, Z. Analysis of the influence of electric flywheel and electromechanical flywheel on electric vehicle economy. Energy 2024, 295, 131069. [Google Scholar] [CrossRef]
- Bakkari, F.E.; Mounir, H. Compatible alternative energy storage systems for electric vehicles: Review of relevant technology derived from conventional systems. Energy 2024, 288, 129775. [Google Scholar] [CrossRef]
- Cronk, P.; van de Ven, J.; Strohmaier, K. Design optimization, construction, and testing of a hydraulic flywheel accumulator. J. Energy Storage 2021, 44, 103281. [Google Scholar] [CrossRef]
- Kress, G.R. Shape optimization of a flywheel. Struc. Multidiscip. Optim. 2000, 19, 74. [Google Scholar] [CrossRef]
- Ertz, G.; Twiefel, J.; Krack, M. Feasibility Study for Small Scaling Flywheel-Energy-Storage Systems in Energy Harvesting Systems. Energy Harvest. Syst. 2014, 1, 233–241. [Google Scholar] [CrossRef]
- Hedlund, M.; Lundin, J.; de Santiago, J.; Abrahamsson, J.; Bernhoff, H. Flywheel Energy Storage for Automotive Applications. Energies 2015, 8, 10636. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials Selection in Mechanical Design, 5th ed.; Elsevier Ltd.: Cambridge, MA, USA, 2017. [Google Scholar]
- Bai, Y.; Shen, B.; Zhang, S.; Zhu, Z.; Sun, S.; Gao, J.; Li, B.; Wang, Y.; Zhang, R.; Wei, F. Storage of Mechanical Energy Based on Carbon Nanotubes with High Energy Density and Power Density. Adv. Mater. 2019, 31, 1800680. [Google Scholar] [CrossRef] [PubMed]
- MatWeb—The Online Materials Information Resource. Available online: http://www.matweb.com (accessed on 1 August 2023).
- Bortoli, F.S.; Frajuca, C.; Magalhaes, N.S.; Duarte, E.N. A physical criterion for validating the method used to design mechanical impedance matchers for Mario Schenberg’s transducers. J. Phys. Conf. Ser. 2010, 228, 012001. [Google Scholar] [CrossRef]
- Nogueira, P.R.M. Otimização de Geometria e Material para Baterias Eletromecânicas. Master’s Thesis, The Federal Institute of São Paulo, Sao Paulo, Brazil, 2016. [Google Scholar]
- SOLIDWORKS. 2016. Available online: https://www.solidworks.com (accessed on 1 August 2023).
Model | Objective |
---|---|
A and B | Reduce localized stress in the interface between the shaft and the rotor |
C, D, and E | Study the impact of shaft diameter on the stress distribution and other rotor parameters |
F, G, H, I, J, and K | Study the impact of the slope angle of the top and bottom rotor surfaces on stress distribution and other rotor parameters |
M, N, O, P, and Q | Study the impact of varying slope as a function of the rotor radius on stress distribution and other rotor parameters |
R and S | Study Gaussian rotors regarding stress distribution and other rotor parameters |
T1 and T2 | Study of multiple Gaussian rotors regarding stress distribution, stability, and other rotor parameters |
U1 and U2 | Study of multiple reinforced Gaussian rotors regarding distribution, stability, and other rotor parameters |
Model | Shaft Height (mm) | Shaft Diameter (mm) | Rotor or Disk Diameter (mm) | Flywheel Total Mass (kg) | Slope Angle of Top and Bottom Surfaces (Degree) |
---|---|---|---|---|---|
A | 120 | 30 | 200 | 5893 | 0 |
B * | 120 | 30 | 200 | 6020 | 0 |
C | 270 | 30 | 200 | 8234 | 30 |
D | 270 | 50 | 200 | 8407 | 30 |
E | 270 | 60 | 200 | 8546 | 30 |
F | 300 | 50 | 200 | 7812 | 20 |
G | 300 | 50 | 200 | 8151 | 25 |
H | 300 | 50 | 200 | 8517 | 30 |
I | 300 | 50 | 200 | 8923 | 35 |
J | 300 | 50 | 200 | 9382 | 40 |
K | 300 | 50 | 200 | 9914 | 45 |
M ** | 300 | 50 | 200 | 8545 | 2 slopes with 60° and 30° |
N ** | 300 | 50 | 200 | 8642 | 2 slopes with 60° and 30° |
O ** | 300 | 50 | 200 | 8825 | 2 slopes with 60° and 30° |
P ** | 400 | 50 | 200 | 9335 | 5 slopes with 70°, 60°, 50°, 40°, and 30° |
Q ** | 400 | 50 | 200 | 8161 | continuously varying slope |
R ** | 130 | 30 | 200 | 960 | Gaussian shape |
Model | Maximum Rotation Speed (RPM) | Mass (kg) | Stored Energy (kJ) | Energy Density (kJ/kg) |
---|---|---|---|---|
A | 162,000 | 5.89 | 4234 | 716 |
B | 153,000 | 6.02 | 3791 | 630 |
C | 167,000 | 8.23 | 5501 | 666 |
D | 192,000 | 8.40 | 7351 | 875 |
E | 185,000 | 8.54 | 6858 | 803 |
F | 187,000 | 7.81 | 6491 | 832 |
G | 192,000 | 8.15 | 7070 | 868 |
H | 194,000 | 8.51 | 7510 | 882 |
I | 185,000 | 8.92 | 7081 | 792 |
J | 186,000 | 9.38 | 7434 | 792 |
K | 182,000 | 9.91 | 7488 | 756 |
M | 163,000 | 8.54 | 5285 | 619 |
N | 176,000 | 8.64 | 6174 | 716 |
O | 189,900 | 8.82 | 7247 | 821 |
P | 195,440 | 9.33 | 7722 | 828 |
Q | 204,820 | 8.16 | 7492 | 918 |
R | 279,180 | 0.96 | 1346 | 1393 |
RPM Max | Mass (kg) | Energy (kJ) | Energy Density (kJ/kg) | |
---|---|---|---|---|
Model Q | 205,000 | 8.161 | 7491 | 918 |
Model R | 279,000 | 0.968 | 1347 | 1392 |
Diamond 15 × 5 | 265,000 | 1.058 | 1532 | 1448 |
Diamond 15 × 10 | 259,000 | 1.109 | 1601 | 1451 |
Diamond 15 × 15 | 255,000 | 1.136 | 1635 | 1439 |
Diamond 20 × 5 | 259,000 | 1.098 | 1603 | 1459 |
Diamond 20 × 10 | 250,000 | 1.174 | 1704 | 1452 |
Diamond 20 × 15 | 240,000 | 1.238 | 1238 | 1382 |
Diamond 30 × 5 | 250,000 | 1.179 | 1746 | 1482 |
Diamond 30 × 10 | 227,000 | 1.315 | 1754 | 1335 |
Diamond 30 × 15 | 222,000 | 1.296 | 1656 | 1278 |
Max. Rotation (rpm) | Mass (kg) | Energy (J) | Energy Density (J/kg) | |
---|---|---|---|---|
Diamond 15 × 5 Triple | 268,080 | 3.08 | 4,777,717 | 1,549,471 |
Max. Rotation (rpm) | Mass (kg) | Energy (J) | Energy Density (J/kg) | |
---|---|---|---|---|
Diamond 15 × 5 Triple | 262,460 | 3.692 | 5,349,342 | 1,448,901 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppede, D.; da Silva Bortoli, F.; Moreira, J.M.L.; Magalhaes, N.S.; Frajuca, C. Optimization of Flywheel Rotor Energy and Stability Using Finite Element Modelling. Energies 2024, 17, 3042. https://doi.org/10.3390/en17123042
Coppede D, da Silva Bortoli F, Moreira JML, Magalhaes NS, Frajuca C. Optimization of Flywheel Rotor Energy and Stability Using Finite Element Modelling. Energies. 2024; 17(12):3042. https://doi.org/10.3390/en17123042
Chicago/Turabian StyleCoppede, Daniel, Fabio da Silva Bortoli, Joao Manoel Losada Moreira, Nadja Simao Magalhaes, and Carlos Frajuca. 2024. "Optimization of Flywheel Rotor Energy and Stability Using Finite Element Modelling" Energies 17, no. 12: 3042. https://doi.org/10.3390/en17123042
APA StyleCoppede, D., da Silva Bortoli, F., Moreira, J. M. L., Magalhaes, N. S., & Frajuca, C. (2024). Optimization of Flywheel Rotor Energy and Stability Using Finite Element Modelling. Energies, 17(12), 3042. https://doi.org/10.3390/en17123042