Enhancing Energy Efficiency and Resource Recovery in Wastewater Treatment Plants
Abstract
:1. Introduction
2. Historical Context and Current Energy Practices in WWTPs
2.1. Anaerobic Digestion and Biogas Production
2.2. Reduced Economic Efficiency of Biogas Stations
2.3. Harnessing Biogas for Energy
3. Biogas Upgrading Techniques and Their Efficiency
3.1. Water Scrubbing
3.2. Chemical Absorption
3.3. Pressure Swing Adsorption (PSA)
3.4. Membrane Separation
3.5. Cryogenic Separation
4. Biomethane for Grid Injection and Transportation Fuel
4.1. Biomethane for Grid Injection
4.2. Biomethane as Transport Fuel
Approach | Process Description | Key Advantages | Main Challenges |
---|---|---|---|
Direct combustion for electricity and heat | Biogas can be directly burned in boilers, engines, or turbines to generate electricity and heat, often in a combined heat and power (CHP) setup [60]. |
| |
Biogas upgrading | Upgraded biogas (biomethane) is injected into the natural gas grid, supplementing conventional natural gas supplies [69]. |
| |
Biomethane for transportation fuel | Biomethane is compressed (CNG) or liquefied (LNG) to fuel vehicles, offering a cleaner alternative to diesel and gasoline. |
5. Direct Electricity Generation via Microbial Fuel Cells
Advanced Oxidation Processes
6. Nanotechnology in Wastewater Treatment Plants
7. Socioeconomic and Environmental Implications
7.1. Economic Savings from Energy Recovery
7.2. Reduced Carbon Footprint and Environmental Benefits
7.3. Community Engagement and Perception
8. Associated WWTP Application Challenges and Solutions
9. Future Prospective
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pariente, M.I.; Segura, Y.; Molina, R.; Martínez, F. Wastewater treatment as a process and a resource. In Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels; Elsevier B.V.: Amsterdam, The Netherlands, 2020; pp. 19–45. [Google Scholar] [CrossRef]
- Okadera, T.; Syutsubo, K.; Yoochatchaval, W.; Ebie, Y.; Kubota, R. Water volume-and bod-based flow analysis for domestic wastewater treatment using wastewater inventories of Bangkok, Thailand. J. Water Environ. Technol. 2020, 18, 71–79. [Google Scholar] [CrossRef]
- Kubista, K.; Jackson, W.A.; Morse, A. Comprehensive trade study of biological systems for primary treatment in an integrated water processing system. In Proceedings of the 42nd International Conference on Environmental Systems 2012, ICES 2012, San Diego, CA, USA, 15–19 July 2012; Volume 15. [Google Scholar] [CrossRef]
- Weber, W.J.; Smith, E.H. Removing dissolved organic contaminants from water. Environ. Sci. Technol. 1986, 20, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Li, Y.; Li, X.; Luo, P.; Wang, H.; Robinson, Z.P.; Wang, X.; Wu, J.; Li, F. The feasibility and challenges of energy self-sufficient wastewater treatment plants. Appl. Energy 2017, 204, 1463–1475. [Google Scholar] [CrossRef]
- Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities; National Renewable Energy Lab: Golden, CO, USA, 2012. [Google Scholar] [CrossRef]
- Frijns, J.; Hofman, J.; Nederlof, M. The potential of (waste)water as energy carrier. Energy Convers. Manag. 2013, 65, 357–363. [Google Scholar] [CrossRef]
- Gao, H.; Scherson, Y.D.; Wells, G.F. Towards energy neutral wastewater treatment: Methodology and state of the art. Environ. Sci. Process. Impacts 2014, 16, 1223–1246. [Google Scholar] [CrossRef] [PubMed]
- Gandiglio, M.; Lanzini, A.; Soto, A.; Leone, P.; Santarelli, M. Enhancing the energy efficiency of wastewater treatment plants through co-digestion and fuel cell systems. Front. Environ. Sci. 2017, 5, 70. [Google Scholar] [CrossRef]
- Chae, K.J.; Ren, X. Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system. Appl. Energy 2016, 179, 565–574. [Google Scholar] [CrossRef]
- Siddiqui, M.I.; Rameez, H.; Farooqi, I.H.; Basheer, F. Recent Advancement in Commercial and Other Sustainable Techniques for Energy and Material Recovery from Sewage Sludge. Water 2023, 15, 948. [Google Scholar] [CrossRef]
- Nowak, O.; Enderle, P.; Varbanov, P. Ways to optimize the energy balance of municipal wastewater systems: Lessons learned from Austrian applications. J. Clean. Prod. 2015, 88, 125–131. [Google Scholar] [CrossRef]
- Demirbas, A.; Edris, G.; Alalayah, W.M. Sludge production from municipal wastewater treatment in sewage treatment plant. Util. Environ. Eff. 2017, 39, 999–1006. [Google Scholar] [CrossRef]
- Usepa, Ow, Owm, Wid, and Scib, Wastewater Management Fact Sheet: Energy Conservation. Available online: https://www.epa.gov/sustainable-water-infrastructure/energy-conservation-wastewater-management-fact-sheet#:~:text=This%20fact%20sheet%20provides%20information,processes%20for%20operations%20and%20maintenance (accessed on 12 March 2024).
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of its Applications and Health Implications. Water Air Soil Pollut. 2021, 232, 208. [Google Scholar] [CrossRef]
- Kamimura, H.; Kubo, T.; Minami, I.; Mori, S. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Tribol. Int. 2016, 40, 620–625. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.; Yuan, F.; Yang, Q. Optimization and control strategies of aeration in WWTPs: A review. J. Clean. Prod. 2023, 418, 138008. [Google Scholar] [CrossRef]
- (PDF) Opportunities for Process Control Optimisation in Irish Municipal Wastewater Treatment Plants. Available online: https://www.researchgate.net/publication/264895673_Opportunities_for_process_control_optimisation_in_Irish_municipal_wastewater_treatment_plants (accessed on 25 May 2024).
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, A.; Inayat, A.; Mahlia, T.; Ong, H.C.; Chia, W.Y.; et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef] [PubMed]
- Bray, R.T.; Jankowska, K.; Kulbat, E.; Łuczkiewicz, A.; Sokołowska, A. Ultrafiltration Process in Disinfection and Advanced Treatment of Tertiary Treated Wastewater. Membranes 2021, 11, 221. [Google Scholar] [CrossRef]
- An, Z.; Zhu, J.; Zhang, M.; Zhou, Y.; Su, X.; Lin, H.; Sun, F. Anaerobic membrane bioreactor for the treatment of high-strength waste/wastewater: A critical review and update. Chem. Eng. J. 2023, 470, 144322. [Google Scholar] [CrossRef]
- Zarei, M. Wastewater resources management for energy recovery from circular economy perspective. Water-Energy Nexus 2020, 3, 170–185. [Google Scholar] [CrossRef]
- Archana, K.; Visckram, A.; Kumar, P.S.; Manikandan, S.; Saravanan, A.; Natrayan, L. A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals. Fuel 2024, 358, 130298. [Google Scholar] [CrossRef]
- Ferguson, B.C.; Brown, R.R.; Frantzeskaki, N.; de Haan, F.J.; Deletic, A. The enabling institutional context for integrated water management: Lessons from Melbourne. Water Res. 2013, 47, 7300–7314. [Google Scholar] [CrossRef]
- Cardoso, B.J.; Rodrigues, E.; Gaspar, A.R.; Gomes, Á. Energy performance factors in wastewater treatment plants: A review. J. Clean. Prod. 2021, 322, 129107. [Google Scholar] [CrossRef]
- A Primer on Energy Efficiency for Municipal Water and Wastewater Utilities. 2012. Available online: https://www.esmap.org/sites/default/files/esmap-files/FINAL_EECI-WWU_TR001-12_Resized.pdf (accessed on 15 April 2024).
- Chae, K.J.; Kang, J. Estimating the energy independence of a municipal wastewater treatment plant incorporating green energy resources. Energy Convers. Manag. 2013, 75, 664–672. [Google Scholar] [CrossRef]
- Solomon, C.G.; Salas, R.N.; Malina, D.; Sacks, C.A.; Hardin, C.C.; Prewitt, E.; Lee, T.H.; Rubin, E.J. Fossil-Fuel Pollution and Climate Change—A New NEJM Group Series. N. Engl. J. Med. 2022, 386, 2328–2329. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, I.; El-Shamy, A.M. Review on the escalating imperative of zero liquid discharge (ZLD) technology for sustainable water management and environmental resilience. J. Environ. Manag. 2024, 351, 119614. [Google Scholar] [CrossRef] [PubMed]
- Phelan, T.; Eng, B.; Eng, M. Development of an Auditing Methodology for Irish Wastewater Treatment Plants. Ph.D. Thesis, Dublin City University, Dublin, Ireland, 2016. [Google Scholar]
- Liu, Y.; Gu, J.; Zhang, M. Energy use and challenges in current wastewater treatment plants. In A-B Processes: Towards Energy Self-Sufficient Municipal Wastewater Treatment; IWA Publishing: London, UK, 2020; pp. 1–28. [Google Scholar] [CrossRef]
- Hornung, A. Transformation of Biomass: Theory to Practice. In Transformation of Biomass: Theory to Practice; John Wiley & Sons Ltd.: Birmingham, UK, 2014; Volume 9781119973270, pp. 1–350. [Google Scholar] [CrossRef]
- Kovačić, Đ.; Lončarić, Z.; Jović, J.; Samac, D.; Popović, B.; Tišma, M. Digestate Management and Processing Practices: A Review. Appl. Sci. 2022, 12, 9216. [Google Scholar] [CrossRef]
- S, K.K.; Ibrahim, M.H.; Quaik, S.; Ismail, S.A. An Introduction to Anaerobic Digestion of Organic Wastes. In Prospects of Organic Waste Management and the Significance of Earthworms; Springer: Cham, Switzerland, 2016; pp. 23–44. [Google Scholar] [CrossRef]
- Yadav, M.; Joshi, C.; Paritosh, K.; Thakur, J.; Pareek, N.; Masakapalli, S.K.; Vivekanand, V. Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab. Eng. 2021, 69, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Ali Al-Maqtari, Q.; AL-Ansi, W.; Ali Mahdi, A. Microbial enzymes produced by fermentation and their applications in the food industry—A review. Int. J. Agric. Innov. Res. 2019, 8, 2319–2473. [Google Scholar]
- Parawira, W. Enzyme research and applications in biotechnological intensification of biogas production. Crit. Rev. Biotechnol. 2012, 32, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.; Jones, R.J.; Oram, L.; Massanet-Nicolau, J.; Guwy, A. Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective. Fermentation 2022, 8, 325. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; El-Mashad, H.M.; Chen, C.; Liu, G.; Zhang, R. Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production. Sci. Total. Environ. 2021, 763, 143007. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas Production and Applications in the Sustainable Energy Transition. J. Energy 2022, 2022, 8750221. [Google Scholar] [CrossRef]
- Liebetrau, J.; Sträuber, H.; Kretzschmar, J.; Denysenko, V.; Nelles, M. Anaerobic digestion. Adv. Biochem. Eng. Biotechnol. 2019, 166, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Demirel, B.; Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Bio/Technol. 2008, 7, 173–190. [Google Scholar] [CrossRef]
- Sarker, S.; Lamb, J.J.; Hjelme, D.R.; Lien, K.M. A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants. Appl. Sci. 2019, 9, 1915. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Li, L.; Peng, X.; Wang, X.; Wu, D. Anaerobic digestion of food waste: A review focusing on process stability. Bioresour. Technol. 2018, 248, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Mokrane, C.; Adouane, B.; Benzaoui, A. Composition and Stoichiometry Effects of Biogas as Fuel in Spark Ignition Engine. Int. J. Automot. Mech. Eng. 2018, 15, 5036–5052. [Google Scholar] [CrossRef]
- Rafiee, A.; Khalilpour, K.R.; Prest, J.; Skryabin, I. Biogas as an energy vector. Biomass Bioenergy 2020, 144, 105935. [Google Scholar] [CrossRef]
- Schnürer, A. Biogas production: Microbiology and technology. Adv. Biochem. Eng. Biotechnol. 2016, 156, 195–234. [Google Scholar] [CrossRef] [PubMed]
- Understanding Laboratory Wastewater Tests: I. Organics (BOD, COD, TOC, O&G)|UGA Cooperative Extension. Available online: https://extension.uga.edu/publications/detail.html?number=C992 (accessed on 22 May 2024).
- Veluchamy, C.; Kalamdhad, A.S. Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review. Bioresour. Technol. 2017, 245, 1206–1219. [Google Scholar] [CrossRef]
- Nkuna, R.; Roopnarain, A.; Rashama, C.; Adeleke, R. Insights into organic loading rates of anaerobic digestion for biogas production: A review. Crit. Rev. Biotechnol. 2022, 42, 487–507. [Google Scholar] [CrossRef]
- Theuerl, S.; Klang, J.; Prochnow, A. Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review. Energies 2019, 12, 365. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, R.; Wang, B.; Zhang, S. Modeling and optimization of anaerobic digestion of corn stover on biogas production: Initial pH and carbon to nitrogen ratio. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 1497–1503. [Google Scholar] [CrossRef]
- Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies 2019, 12, 1106. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hasan, M.F.; Saat, A.; Wahid, M.A. Economics of biogas plants and solar home systems: For household energy applications. J. Adv. Res. Fluid Mech. Therm. Sci. 2017, 33, 14–26. [Google Scholar]
- Rajendran, K.; Aslanzadeh, S.; Johansson, F.; Taherzadeh, M.J. Experimental and economical evaluation of a novel biogas digester. Energy Convers. Manag. 2013, 74, 183–191. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Du, M.A.; Huang, I.-T.; Liu, I.-H.; Chang, E.-E.; Chiang, P.-C. Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: A review. J. Clean. Prod. 2015, 108, 409–421. [Google Scholar] [CrossRef]
- Tang, J.; Pu, Y.; Zeng, T.; Hu, Y.; Huang, J.; Pan, S.; Wang, X.C.; Li, Y.; Abomohra, A.E.-F. Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor: Performance and membrane filtration properties. Bioresour. Technol. 2022, 345, 126470. [Google Scholar] [CrossRef] [PubMed]
- Adeosun, T.A.; Amosu, C.O.; Omitogun, O.A.; Amusa, O.M.; Morenikeji, B.A. Renewable Energy for Sustainable Development in Developing Countries: Benefits to the Environment. J. Energy Res. Rev. 2023, 13, 11. [Google Scholar] [CrossRef]
- Gumisiriza, R.; Hawumba, J.F.; Okure, M.; Hensel, O. Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda. Biotechnol. Biofuels 2017, 10, 1–29. [Google Scholar] [CrossRef]
- Atelge, M.R.; Senol, H.; Djaafri, M.; Hansu, T.A.; Krisa, D.; Atabani, A.; Eskicioglu, C.; Muratçobanoğlu, H.; Unalan, S.; Kalloum, S.; et al. A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes. Sustainability 2021, 13, 11515. [Google Scholar] [CrossRef]
- Kohse-Höinghaus, K. Combustion, Chemistry, and Carbon Neutrality. Chem Rev. 2023, 123, 5139–5219. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.; Casisi, M.; Micheli, D.; Reini, M. A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario. Energies 2021, 14, 5338. [Google Scholar] [CrossRef]
- Oyedepo, S.O.; Fakeye, B.A. Waste Heat Recovery Technologies: Pathway to Sustainable Energy Development. J. Therm. Eng. 2021, 7, 324–348. [Google Scholar] [CrossRef]
- Gikas, P. Towards energy positive wastewater treatment plants. J. Environ. Manag. 2017, 203, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Erguvan, M.; MacPhee, D.W. Can a Wastewater Treatment Plant Power Itself? Results from a Novel Biokinetic-Thermodynamic Analysis. J 2021, 4, 614–637. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Tarannum, K.; Chowdhury, A.T.; Rafa, N.; Nuzhat, S.; Kumar, P.S.; Vo, D.-V.N.; Lichtfouse, E.; Mahlia, T.M.I. Biogas upgrading, economy and utilization: A review. Environ. Chem. Lett. 2021, 19, 4137–4164. [Google Scholar] [CrossRef]
- Werkneh, A.A. Biogas impurities: Environmental and health implications, removal technologies and future perspectives. Heliyon 2022, 8, e10929. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.; Horschig, T.; Pfeiffer, A.; Szarka, N.; Thrän, D. Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries. Energies 2019, 12, 3803. [Google Scholar] [CrossRef]
- Iglesias, R.; Muñoz, R.; Polanco, M.; Díaz, I.; Susmozas, A.; Moreno, A.D.; Guirado, M.; Carreras, N.; Ballesteros, M. Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies 2021, 14, 2742. [Google Scholar] [CrossRef]
- Anika, O.C.; Nnabuife, S.G.; Bello, A.; Okoroafor, E.R.; Kuang, B.; Villa, R. Prospects of Low and Zero-Carbon Renewable fuels in 1.5-Degree Net Zero Emission Actualisation by 2050: A Critical Review. Carbon Capture Sci. Technol. 2022, 5, 100072. [Google Scholar] [CrossRef]
- Pavičić, J.; Mavar, K.N.; Brkić, V.; Simon, K. Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe. Energies 2022, 15, 2940. [Google Scholar] [CrossRef]
- Zheng, L.; Cheng, S.; Han, Y.; Wang, M.; Xiang, Y.; Guo, J.; Cai, D.; Mang, H.-P.; Dong, T.; Li, Z.; et al. Bio-natural gas industry in China: Current status and development. Renew. Sustain. Energy Rev. 2020, 128, 109925. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Tyagi, B.; Vijay, V.K.; Vijay, V.; Thakur, I.S.; Kamyab, H.; Nguyen, D.D.; Kumar, A. Advances in biogas valorization and utilization systems: A comprehensive review. J. Clean. Prod. 2020, 273, 123052. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Development of biogas combustion in combined heat and power generation. Renew. Sustain. Energy Rev. 2014, 40, 868–875. [Google Scholar] [CrossRef]
- Prussi, M.; Padella, M.; Conton, M.; Postma, E.; Lonza, L. Review of technologies for biomethane production and assessment of Eu transport share in 2030. J. Clean. Prod. 2019, 222, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, S.; Kivimaa, P.; Virkamäki, V. The need for policy coherence to trigger a transition to biogas production. Environ. Innov. Soc. Transitions 2014, 12, 14–30. [Google Scholar] [CrossRef]
- Subramanian, K.; Mathad, V.C.; Vijay, V.; Subbarao, P. Comparative evaluation of emission and fuel economy of an automotive spark ignition vehicle fuelled with methane enriched biogas and CNG using chassis dynamometer. Appl. Energy 2013, 105, 17–29. [Google Scholar] [CrossRef]
- Greenman, J.; Gajda, I.; You, J.; Mendis, B.A.; Obata, O.; Pasternak, G.; Ieropoulos, I. Microbial fuel cells and their electrified biofilms. Biofilm 2021, 3, 100057. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, A.S. Microbial fuel cells: A comprehensive review for beginners. 3 Biotech 2021, 11, 248. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Adhami, A.; Darvari, S.; Zirepour, A.; Oh, S.-E. Microbial fuel cell as new technology for bioelectricity generation: A review. Alex. Eng. J. 2015, 54, 745–756. [Google Scholar] [CrossRef]
- Slate, A.J.; Whitehead, K.A.; Brownson, D.A.; Banks, C.E. Microbial fuel cells: An overview of current technology. Renew. Sustain. Energy Rev. 2019, 101, 60–81. [Google Scholar] [CrossRef]
- Hirose, A.; Kasai, T.; Aoki, M.; Umemura, T.; Watanabe, K.; Kouzuma, A. Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways. Nat. Commun. 2018, 9, 1083. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Guvvala, H.; Maurya, N.S. Art of anaerobic digestion: An overview. Res. J. Chem. Environ. 2022, 25, 168–176. [Google Scholar] [CrossRef]
- Wang, J.; Ren, K.; Zhu, Y.; Huang, J.; Liu, S. A Review of Recent Advances in Microbial Fuel Cells: Preparation, Operation, and Application. BioTech 2022, 11, 44. [Google Scholar] [CrossRef]
- Du, Z.; Li, H.; Gu, T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007, 25, 464–482. [Google Scholar] [CrossRef] [PubMed]
- De Araújo, K.S.; Antonelli, R.; Gaydeczka, B.; Granato, A.C.; Malpass, G.R.P. Processos oxidativos avançados: Uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Rev. Ambiente Água 2016, 11, 387–401. [Google Scholar] [CrossRef]
- Ikehata, K.; El-Din, M.G.; Snyder, S.A. Ozonation and Advanced Oxidation Treatment of Emerging Organic Pollutants in Water and Wastewater. Ozone Sci. Eng. 2008, 30, 21–26. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, A. ADVANCED OXIDATION PROCESS: A remediation technique for organic and non-biodegradable pollutant. Results Surfaces Interfaces 2023, 11, 100122. [Google Scholar] [CrossRef]
- M’Arimi, M.; Mecha, C.; Kiprop, A.; Ramkat, R. Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review. Renew. Sustain. Energy Rev. 2020, 121, 109669. [Google Scholar] [CrossRef]
- Kaswan, V.; Kaur, H. A comparative study of advanced oxidation processes for wastewater treatment. Water Pract. Technol. 2023, 18, 1233–1254. [Google Scholar] [CrossRef]
- Westerhoff, P.; Song, G.; Hristovski, K.; Kiser, M.A. Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials. J. Environ. Monit. 2011, 13, 1195–1203. [Google Scholar] [CrossRef]
- Tou, F.; Yang, Y.; Feng, J.; Niu, Z.; Pan, H.; Qin, Y.; Guo, X.; Meng, X.; Liu, M.; Hochella, M.F. Environmental Risk Implications of Metals in Sludges from Waste Water Treatment Plants: The Discovery of Vast Stores of Metal-Containing Nanoparticles. Environ. Sci. Technol. 2017, 51, 4831–4840. [Google Scholar] [CrossRef]
- Burkart, C.; von Tümpling, W.; Berendonk, T.; Jungmann, D. Nanoparticles in wastewater treatment plants: A novel acute toxicity test for ciliates and its implementation in risk assessment. Environ. Sci. Pollut. Res. 2015, 22, 7485–7494. [Google Scholar] [CrossRef] [PubMed]
- Lazareva, A.; Keller, A.A. Estimating Potential Life Cycle Releases of Engineered Nanomaterials from Wastewater Treatment Plants. ACS Sustain. Chem. Eng. 2014, 2, 1656–1665. [Google Scholar] [CrossRef]
- Nabi, M.; Wang, J.; Meyer, M.; Croteau, M.-N.; Ismail, N.; Baalousha, M. Concentrations and size distribution of TiO2 and Ag engineered particles in five wastewater treatment plants in the United States. Sci. Total. Environ. 2021, 753, 142017. [Google Scholar] [CrossRef]
- Qazi, A.; Hussain, F.; Rahim, N.A.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Edenhofer, O.; Ramón, P.M.; Youba, S.; Kristin, S.; Patrick, M.; Susan, K. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change: Edited by Ottmar Edenhofer, Ramón Pichs Madruga, Youba Sokona, Kristin Seyboth, Patrick Matschoss, Susanne Kadner, Timm Zwickel, Patrick Eickemeier, Gerrit Hansen, Steffen Schlömer, Christoph von Stechow. 2012. Available online: https://digitallibrary.un.org/record/730273 (accessed on 23 May 2024).
- Bagherzadeh, F.; Nouri, A.S.; Mehrani, M.-J.; Thennadil, S. Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach. Process. Saf. Environ. Prot. 2021, 154, 458–466. [Google Scholar] [CrossRef]
- Harja, G.; Nascu, I.; Muresan, C. Improvements in Dissolved Oxygen Control of an Activated Sludge Wastewater Treatment Process. Circuits, Syst. Signal Process. 2016, 35, 2259–2281. [Google Scholar] [CrossRef]
- Palatsi, J.; Ripoll, F.; Benzal, A.; Pijuan, M.; Romero-Güiza, M.S. Enhancement of biological nutrient removal process with advanced process control tools in full-scale wastewater treatment plant. Water Res. 2021, 200, 117212. [Google Scholar] [CrossRef]
- Wang, C.; Deng, S.-H.; You, N.; Bai, Y.; Jin, P.; Han, J. Pathways of wastewater treatment for resource recovery and energy minimization towards carbon neutrality and circular economy: Technological opinions. Front. Environ. Chem. 2023, 4, 1255092. [Google Scholar] [CrossRef]
- Jothinathan, L.; Cai, Q.; Ong, S.; Hu, J. Organics removal in high strength petrochemical wastewater with combined microbubble-catalytic ozonation process. Chemosphere 2020, 263, 127980. [Google Scholar] [CrossRef]
- Mo, W.; Zhang, Q. Energy–nutrients–water nexus: Integrated resource recovery in municipal wastewater treatment plants. J. Environ. Manag. 2013, 127, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Stillwell, A.S.; Hoppock, D.C.; Webber, M.E. Energy Recovery from Wastewater Treatment Plants in the United States: A Case Study of the Energy-Water Nexus. Sustainability 2010, 2, 945–962. [Google Scholar] [CrossRef]
- Escapa, A.; Mateos, R.; Martínez, E.; Blanes, J. Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew. Sustain. Energy Rev. 2016, 55, 942–956. [Google Scholar] [CrossRef]
- Smol, M. Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery. Energies 2023, 16, 3911. [Google Scholar] [CrossRef]
- Bohra, V.; Ahamad, K.U.; Kela, A.; Vaghela, G.; Sharma, A.; Deka, B.J. Energy and resources recovery from wastewater treatment systems. Clean Energy Resour. Recovery Wastewater Treat. Plants Biorefineries 2022, 2, 17–36. [Google Scholar] [CrossRef]
- Spani, R.C. The New Circular Economy Action Plan. 1 July 2020. Available online: https://papers.ssrn.com/abstract=3711331 (accessed on 23 May 2024).
- Hernández-Chover, V.; Castellet-Viciano, L.; Fuentes, R.; Hernández-Sancho, F. Circular economy and efficiency to ensure the sustainability in the wastewater treatment plants. J. Clean. Prod. 2023, 384, 135563. [Google Scholar] [CrossRef]
- Castellet-Viciano, L.; Hernández-Chover, V.; Hernández-Sancho, F. The benefits of circular economy strategies in urban water facilities. Sci. Total. Environ. 2022, 844, 157172. [Google Scholar] [CrossRef]
- Delgado, A.; Rodriguez, D.; Amadei, C.; Makino, M. Water in Circular Economy and Resilience (WICER) Framework. Util. Policy 2024, 87, 101604. [Google Scholar] [CrossRef]
Treatment Type | Description | Applications |
---|---|---|
Primary Treatment | Physical separation of grit (fine, hard solids), suspended solids, and scum from the wastewater | Both domestic and industrial waste |
Secondary Treatment | Biological processes like the use of activated sludge or biofilm reactors whereby biodegradable materials are removed | Mainly domestic waste |
Tertiary Treatment | Advanced chemical and physical processes for nutrient removal | Both domestic and industrial waste |
Sludge Treatment | Anaerobic digestion, composting, and dewatering | Sludge from all types of wastewater |
Combined Treatment | Integrated systems combining multiple stages for enhanced efficiency | Complex industrial waste streams |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Twi-Yeboah, N.; Osei, D.; Dontoh, W.H.; Asamoah, G.A.; Baffoe, J.; Danquah, M.K. Enhancing Energy Efficiency and Resource Recovery in Wastewater Treatment Plants. Energies 2024, 17, 3060. https://doi.org/10.3390/en17133060
Twi-Yeboah N, Osei D, Dontoh WH, Asamoah GA, Baffoe J, Danquah MK. Enhancing Energy Efficiency and Resource Recovery in Wastewater Treatment Plants. Energies. 2024; 17(13):3060. https://doi.org/10.3390/en17133060
Chicago/Turabian StyleTwi-Yeboah, Nigel, Dacosta Osei, William H. Dontoh, George Adu Asamoah, Janet Baffoe, and Michael K. Danquah. 2024. "Enhancing Energy Efficiency and Resource Recovery in Wastewater Treatment Plants" Energies 17, no. 13: 3060. https://doi.org/10.3390/en17133060
APA StyleTwi-Yeboah, N., Osei, D., Dontoh, W. H., Asamoah, G. A., Baffoe, J., & Danquah, M. K. (2024). Enhancing Energy Efficiency and Resource Recovery in Wastewater Treatment Plants. Energies, 17(13), 3060. https://doi.org/10.3390/en17133060