C-Rate- and Temperature-Dependent State-of-Charge Estimation Method for Li-Ion Batteries in Electric Vehicles
Abstract
:1. Introduction
2. C-Rate- and Temperature-Dependent ECM
3. Proposed SoC Estimation Method
Algorithm 1. Summary of the UKF algorithm for SoC estimation |
Initialization:
|
Sampling of sigma:
|
4. Experimental Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. C-Rate- and Temperature-Dependent ECM Parameters
References
- Balach, J.; Linnemann, J.; Jaumann, T.; Giebeler, L. Metal-based nanostructured materials for advanced lithium–sulfur batteries. J. Mater. Chem. A 2018, 6, 23127–23168. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.T.; Cao, R.; Choi, N.; Liu, M.; Lee, K.T.; Cho, J. Metal–air batteries with high energy density: Li–air versus zn–air. Adv. Energy Mater. 2011, 1, 34–50. [Google Scholar] [CrossRef]
- Partovibakhsh, M.; Liu, G. An adaptive unscented kalman filtering approach for online estimation of model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots. IEEE Trans. Control. Syst. Technol. 2014, 23, 357–363. [Google Scholar] [CrossRef]
- Aslan, E.; Yasa, Y. A review on the battery state of charge estimation methods for electric vehicle battery management systems. In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; pp. 281–285. [Google Scholar]
- Choi, E.; Chang, S. A temperature-dependent state of charge estimation method including hysteresis for lithium-ion batteries in hybrid electric vehicles. IEEE Access 2020, 8, 129857–129868. [Google Scholar] [CrossRef]
- Qays, M.O.; Buswig, Y.; Hossain, M.L.; Abu-Siada, A. Recent progress and future trends on the state of charge estimation methods to improve battery-storage efficiency: A review. CSEE J. Power Energy Syst. 2020, 8, 105–114. [Google Scholar]
- Zhang, S.; Guo, X.; Dou, X.; Zhang, X. A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery. Sustain. Energy Technol. Assess. 2020, 40, 100752. [Google Scholar] [CrossRef]
- Ng, K.S.; Moo, C.S.; Chen, Y.P.; Hsieh, Y.C. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 2009, 86, 1506–1511. [Google Scholar] [CrossRef]
- Movassagh, K.; Raihan, A.; Balasingam, B.; Pattipati, K. A critical look at coulomb counting approach for state of charge estimation in batteries. Energies 2021, 14, 4074. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Lee, J.; Cho, B.H. State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge. J. Power Sources 2008, 185, 1367–1373. [Google Scholar] [CrossRef]
- Huria, T.; Ceraolo, M.; Gazzarri, J.; Jackey, R. Simplified Extended Kalman Filter Observer for Soc Estimation of Commercial Power-Oriented LFP Lithium Battery Cells; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- Sandrabyna, M.; Patil, A. State-of-Charge Estimation for Lifepo4 Batteries with Adaptive State Update in Specific OCV Ranges Using Adaptive Extended Kalman Filter; SAE Technical Paper, Technical Report; SAE International: Warrendale, PA, USA, 2024. [Google Scholar]
- Shrivastava, P.; Soon, T.K.; Idris, M.Y.I.B.; Mekhilef, S. Overview of model-based online state-of-charge estimation using kalman filter family for lithium-ion batteries. Renew. Sustain. Energy Rev. 2019, 113, 109233. [Google Scholar] [CrossRef]
- Hou, J.; Xu, J.; Lin, C.; Jiang, D.; Mei, X. State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method. Energy 2024, 290, 130056. [Google Scholar] [CrossRef]
- How, D.N.T.; Hannan, M.A.; Lipu, M.S.H.; Ker, P.J. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review. IEEE Access 2019, 7, 136116–136136. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, S.; Wu, B.; Fernandez, C.; Xiong, X.; Coffie-Ken, J. A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended kalman filter. Energy 2021, 219, 119603. [Google Scholar] [CrossRef]
- Guo, S.; Ma, L. A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation. Energy 2023, 263, 125872. [Google Scholar] [CrossRef]
- Hossain, M.; Haque, M.E.; Arif, M.T. Kalman filtering techniques for the online model parameters and state of charge estimation of the li-ion batteries: A comparative analysis. J. Energy Storage 2022, 51, 104174. [Google Scholar] [CrossRef]
- Xiong, R.; Cao, J.; Yu, Q.; He, H.; Sun, F. Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access 2017, 6, 1832–1843. [Google Scholar] [CrossRef]
- Li, G.; Xie, S.; Guo, W.; Wang, Q.; Tao, X. Equivalent circuit modeling and state-of-charge estimation of lithium titanate battery under low ambient pressure. J. Energy Storage 2024, 77, 109993. [Google Scholar] [CrossRef]
- Cui, Z.; Hu, W.; Zhang, G.; Zhang, Z.; Chen, Z. An extended kalman filter based soc estimation method for li-ion battery. Energy Rep. 2022, 8, 81–87. [Google Scholar] [CrossRef]
- Meng, J.; Luo, G.; Ricco, M.; Swierczynski, M.; Stroe, D.-I.; Teodorescu, R. Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles. Appl. Sci. 2018, 8, 659. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the art of lithium-ion battery soc estimation for electrical vehicles. Energies 2018, 11, 1820. [Google Scholar] [CrossRef]
- Lai, X.; Gao, W.; Zheng, Y.; Ouyang, M.; Li, J.; Han, X.; Zhou, L. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for li-ion batteries. Electrochim. Acta 2019, 295, 1057–1066. [Google Scholar] [CrossRef]
- El-Sehiemy, R.A.; Hamida, M.A.; Mesbahi, T. Parameter identification and state-of-charge estimation for lithium-polymer battery cells using enhanced sunflower optimization algorithm. Int. J. Hydrogen Energy 2020, 45, 8833–8842. [Google Scholar] [CrossRef]
- Wei, C.; Benosman, M.; Kim, T. Online parameter identification for state of power prediction of lithium-ion batteries in electric vehicles using extremum seeking. Int. J. Control Autom. Syst. 2019, 17, 2906–2916. [Google Scholar] [CrossRef]
- Fogelquist, J.; Lin, X. Data selection framework for battery state of health related parameter estimation under system uncertainties. eTransportation 2023, 18, 100283. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, C.; Zong, Y.; Zuo, Q.; Guo, H.; Song, S.; Jiang, L. Effect of sample interval on the parameter identification results of rc equivalent circuit models of li-ion battery: An investigation based on hppc test data. Batteries 2023, 9, 1. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Gu, T. A hierarchical adaptive extended kalman filter algorithm for lithium-ion battery state of charge estimation. J. Energy Storage 2023, 62, 106831. [Google Scholar] [CrossRef]
- Priya, R.P.; Sakile, R. State of charge estimation of lithium-ion battery based on extended kalman filter and unscented kalman filter techniques. Energy Storage 2023, 5, e408. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Z.; Zhao, Z.; Wang, L.; Lai, C.S.; Wang, D. Robustness evaluation of extended and unscented kalman filter for battery state of charge estimation. IEEE Access 2018, 6, 27617–27628. [Google Scholar] [CrossRef]
- Xie, J.; Wei, X.; Bo, X.; Zhang, P.; Chen, P.; Hao, W.; Yuan, M. State of charge estimation of lithium-ion battery based on extended kalman filter algorithm. Front. Energy Res. 2023, 11, 1180881. [Google Scholar] [CrossRef]
- Sepasi, S.; Ghorbani, R.; Liaw, B.Y. Improved extended kalman filter for state of charge estimation of battery pack. J. Power Sources 2014, 255, 368–376. [Google Scholar] [CrossRef]
- Djaballah, Y.; Negadi, K.; Boudiaf, M. Enhanced lithium-ion battery state of charge estimation in electric vehicles using extended kalman filter and deep neural network. Int. J. Dyn. Control 2024, 1–8. [Google Scholar] [CrossRef]
- Andre, D.; Appel, C.; Soczka-Guth, T.; Sauer, D.U. Advanced mathematical methods of soc and soh estimation for lithium-ion batteries. J. Power Sources 2013, 224, 20–27. [Google Scholar] [CrossRef]
- Yun, J.; Choi, Y.; Lee, J.; Choi, S.; Shin, C. State-of-charge estimation method for lithium-ion batteries using extended kalman filter with adaptive battery parameters. IEEE Access 2023, 11, 90901–90915. [Google Scholar] [CrossRef]
- Plett, G.L. Sigma-point kalman filtering for battery management systems of lipb-based hev battery packs: Part 1: Introduction and state estimation. J. Power Sources 2006, 161, 1356–1368. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Liao, C.; Liu, J. Sigma-point kalman filter application on estimating battery soc. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–11 September 2009; pp. 1592–1595. [Google Scholar]
- Dong, G.; Wei, J.; Chen, Z.; Sun, H.; Yu, X. Remaining dischargeable time prediction for lithium-ion batteries using unscented kalman filter. J. Power Sources 2017, 364, 316–327. [Google Scholar] [CrossRef]
- Wang, S.; Huang, P.; Lian, C.; Liu, H. Multi-interest adaptive unscented kalman filter based on improved matrix decomposition methods for lithium-ion battery state of charge estimation. J. Power Sources 2024, 606, 234547. [Google Scholar] [CrossRef]
- Li, Y.; Ye, M.; Wang, Q.; Lian, G.; Xia, B. An improved model combining machine learning and kalman filtering architecture for state of charge estimation of lithium-ion batteries. Green Energy Intell. Transp. 2024, 100163. [Google Scholar] [CrossRef]
- Zhao, H.; Liao, C.; Zhang, C.; Wang, L.; Wang, L. State-of-charge estimation of lithium-ion battery: Joint long short-term memory network and adaptive extended kalman filter online estimation algorithm. J. Power Sources 2024, 604, 234451. [Google Scholar] [CrossRef]
- Li, C.; Kim, G.-W. Improved state-of-charge estimation of lithium-ion battery for electric vehicles using parameter estimation and multi-innovation adaptive robust unscented kalman filter. Energies 2024, 17, 272. [Google Scholar] [CrossRef]
- Byun, S.; Park, J.; Appiah, W.A.; Ryou, M.-H.; Lee, Y.M. The effects of humidity on the self-discharge properties of li (ni 1/3 co 1/3 mn 1/3) o 2/graphite and licoo 2/graphite lithium-ion batteries during storage. RSC Adv. 2017, 7, 10915–10921. [Google Scholar] [CrossRef]
- Blank, T.; Lipps, C.; Ott, W.; Hoffmann, P.; Weber, M. Influence of environmental conditions on the sensing accuracy of li-ion battery management systems with passive charge balancing. In Proceedings of the 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015; pp. 1–9. [Google Scholar]
- Müller, V.; Scurtu, R.-G.; Memm, M.; Danzer, M.A.; Wohlfahrt-Mehrens, M. Study of the influence of mechanical pressure on the performance and aging of lithium-ion battery cells. J. Power Sources 2019, 440, 227148. [Google Scholar] [CrossRef]
- Sahraei, E.; Bosco, E.; Dixon, B.; Lai, B. Microscale failure mechanisms leading to internal short circuit in li-ion batteries under complex loading scenarios. J. Power Sources 2016, 319, 56–65. [Google Scholar] [CrossRef]
- Wang, H.; Kumar, A.; Simunovic, S.; Allu, S.; Kalnaus, S.; Turner, J.A.; Helmers, J.C.; Rules, E.T.; Winchester, C.S.; Gorney, P. Progressive mechanical indentation of large-format li-ion cells. J. Power Sources 2017, 341, 156–164. [Google Scholar] [CrossRef]
- Bach, T.C.; Schuster, S.F.; Fleder, E.; Müller, J.; Brand, M.J.; Lorrmann, H.; Jossen, A.; Sextl, G. Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression. J. Energy Storage 2016, 5, 212–223. [Google Scholar] [CrossRef]
- Aiello, L.; Ruchti, P.; Vitzthum, S.; Coren, F. Influence of pressure, temperature and discharge rate on the electrical performances of a commercial pouch li-ion battery. Batteries 2024, 10, 72. [Google Scholar] [CrossRef]
- Kumar, S.; Rao, S.K. State of charge estimation of li-ion battery using unscented kalman filter. BioGecko J. N. Z. Herpetol. 2023, 12, 2596–2614. [Google Scholar]
- Jackey, R.; Saginaw, M.; Sanghvi, P.; Gazzarri, J.; Huria, T.; Ceraolo, M. Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell; SAE Technical Paper; SAE: Washington, DC, USA, 2013. [Google Scholar]
- Lai, X.; Zheng, Y.; Sun, T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries. Electrochim. Acta 2018, 259, 566–577. [Google Scholar] [CrossRef]
- Wan, E.A.; Merwe, R.V.D. The unscented kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, Lake Louise, AB, Canada, 4 October 2000; pp. 153–158. [Google Scholar]
- Alkaya, A. Unscented kalman filter performance for closed-loop nonlinear state estimation: A simulation case study. Electr. Eng. 2014, 96, 299–308. [Google Scholar] [CrossRef]
- Kottakki, K.K.; Bhartiya, S.; Bhushan, M. State estimation of nonlinear dynamical systems using nonlinear update based unscented gaussian sum filter. J. Process. Control 2014, 24, 1425–1443. [Google Scholar] [CrossRef]
- Tian, Y.; Xia, B.; Sun, W.; Xu, Z.; Zheng, W. A modified model based state of charge estimation of power lithium-ion batteries using unscented kalman filter. J. Power Sources 2014, 270, 619–626. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Peng, J. Real-time estimation of battery state-of-charge with unscented kalman filter and RTOS μcos-II platform. Appl. Energy 2016, 162, 1410–1418. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, W.; Li, Z.; Liu, B.; Wang, K. Soc estimation of lithium-ion battery considering the influence of discharge rate. Energy Rep. 2021, 7, 1436–1446. [Google Scholar] [CrossRef]
- Messing, M.; Rahimifard, S.; Shoa, T.; Habibi, S. Low temperature, current dependent battery state estimation using interacting multiple model strategy. IEEE Access 2021, 9, 99876–99889. [Google Scholar] [CrossRef]
Item | Specifications | Unit |
---|---|---|
Max Voltage | (V) | |
Nominal Voltage | (V) | |
Cut-off Voltage | (V) | |
Nominal capacity (min.) | 2150 | (mah) |
Nominal capacity (typ.) | 2250 | (mah) |
Discharge C-rate (max) | 2C | NA |
Diameter (max) | (mm) | |
Height (max) | (mm) | |
Chemical abbreviation | NMC | NA |
Cathode | LiNiMnCoO2 | NA |
Anode | carbon | NA |
Method | MAE (%) | RMSE (%) |
---|---|---|
Only SoC-dependent Method | 5.61 | 0.91 |
Conventional Method | 3.42 | 0.64 |
Proposed Method | 2.2 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslan, E.; Yasa, Y. C-Rate- and Temperature-Dependent State-of-Charge Estimation Method for Li-Ion Batteries in Electric Vehicles. Energies 2024, 17, 3187. https://doi.org/10.3390/en17133187
Aslan E, Yasa Y. C-Rate- and Temperature-Dependent State-of-Charge Estimation Method for Li-Ion Batteries in Electric Vehicles. Energies. 2024; 17(13):3187. https://doi.org/10.3390/en17133187
Chicago/Turabian StyleAslan, Eyyup, and Yusuf Yasa. 2024. "C-Rate- and Temperature-Dependent State-of-Charge Estimation Method for Li-Ion Batteries in Electric Vehicles" Energies 17, no. 13: 3187. https://doi.org/10.3390/en17133187
APA StyleAslan, E., & Yasa, Y. (2024). C-Rate- and Temperature-Dependent State-of-Charge Estimation Method for Li-Ion Batteries in Electric Vehicles. Energies, 17(13), 3187. https://doi.org/10.3390/en17133187