Multiphysics Measurements for Detection of Gas Hydrate Formation in Undersaturated Oil Coreflooding Experiments with Seawater Injection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Core Sample Preparation
2.2. Synthetic Fluids Preparation
2.3. Experimental Procedure for the Large Core
2.4. Experimental Procedure for the Small Core
3. Results
3.1. Large Diameter Core Sample Results
3.2. Small Diameter Core Sample Results
4. Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Theoretical Permeability Model Derivation
Appendix A.1. Capillary Bundle Model
Appendix A.1.1. Grain/Pore-Coating Morphology
Appendix A.1.2. Pore-Filling Morphology
Appendix A.2. Kozeny-Type Equation
Appendix A.2.1. Grain/Pore-Coating Morphology
Appendix A.2.2. Pore-Filling Morphology
References
- Sloan, E.D. Introductory Overview: Hydrate Knowledge Development. Am. Mineral. 2004, 89, 1155–1161. [Google Scholar] [CrossRef]
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Holder, G.D.; Katz, D.L.; Hand, J.H. Hydrate Formation in Subsurface Environments. AAPG Bull. 1976, 60, 981–988. [Google Scholar]
- Verma, V.K.; Hand, J.H.; Katz, D.L. Gas Hydrates from Liquid Hydrocarbons (Methane-Propane-Water System). In Proceedings of the GVC/AIChE Joint Meeting, Munich, Germany, 17–20 September 1974. [Google Scholar]
- Kumar, A.; Maini, B.B.; Bishnoi, P.R.; Clarke, M.; Zatsepina, O.; Srinivasan, S. Experimental Determination of Permeability in the Presence of Hydrates and its Effect on the Dissociation Characteristics of Gas Hydrates in Porous Media. J. Pet. Sci. Eng. 2010, 70, 114–122. [Google Scholar] [CrossRef]
- Delli, M.L.; Grozic, J.L.H. Experimental Determination of Permeability of Porous Media in the Presence of Gas Hydrates. J. Pet. Sci. Eng. 2014, 120, 1–9. [Google Scholar] [CrossRef]
- Johnson, A.; Patil, S.; Dandekar, A. Experimental Investigation of Gas-Water Relative Permeability for Gas-Hydrate-Bearing Sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol. 2011, 28, 419–426. [Google Scholar] [CrossRef]
- Nimblett, J.; Ruppel, C.D. Permeability Evolution During the Formation of Gas Hydrates in Marine Sediments. J. Geophys. Res. Solid Earth 2003, 108, 2420–2467. [Google Scholar] [CrossRef]
- Liu, X.; Flemings, P.B. Dynamic Multiphase Flow Model of Hydrate Formation in Marine Sediments. J. Geophys. Res. Solid Earth 2007, 112, 3101–3132. [Google Scholar] [CrossRef]
- Waite, W.F.; Santamarina, J.C.; Cortes, D.D.; Dugan, B.; Espinoza, D.N.; Germaine, J.; Jang, J.; Jung, J.W.; Kneafsey, T.J.; Shin, H.; et al. Physical Properties of Hydrate-Bearing Sediments. Rev. Geophys. 2009, 47, 4003–4041. [Google Scholar] [CrossRef]
- Dai, S.; Santamarina, J.C.; Waite, W.F.; Kneafsey, T.J. Hydrate Morphology: Physical Properties of Sands with Patchy Hydrate Saturation. J. Geophys. Res. Solid Earth 2012, 117, B11205. [Google Scholar] [CrossRef]
- Ecker, C.; Dvorkin, J.; Nur, A. Sediments with gas hydrates: Internal structure from seismic AVO. Geophysics 1998, 63, 1659–1669. [Google Scholar] [CrossRef]
- Priegnitz, M.; Thaler, J.; Spangenberg, E.; Schicks, J.M.S.; Schrötter, J.; Abendroth, S. Characterizing Electrical Properties and Permeability Changes of Hydrate Bearing Sediments Using ERT Data. Geophys. J. Int. 2015, 202, 1599–1612. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Spence, G.D. A Seismic Study of Methane Hydrate Marine Bottom Simulating Reflectors. J. Geophys. Res. Solid Earth 1992, 97, 6683–6698. [Google Scholar] [CrossRef]
- Katzman, R.; Holbrook, W.S.; Paull, C.K. Combined Vertical-Incidence and Wide-Angle Seismic Study of a Gas Hydrate Zone, Blake Ridge. J. Geophys. Res. Solid Earth 1994, 99, 17975–17995. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Madhusudhan, B.N.; Marín-Moreno, H.; North, L.J.; Ahmed, S.; Falcon-Suarez, I.H.; Minshull, T.A.; Best, A.I. Laboratory Insights Into the Effect of Sediment-Hosted Methane Hydrate Morphology on Elastic Wave Velocity From Time-Lapse 4-D Synchrotron X-Ray Computed Tomography. Geochem. Geophys. Geosyst. 2018, 19, 4502–4521. [Google Scholar] [CrossRef]
- Singh, S.C.; Minshull, T.A.; Spence, G.D. Velocity Structure of a Gas Hydrate Reflector. Science 1993, 260, 204–207. [Google Scholar] [CrossRef]
- Edwards, R.N. On the Resource Evaluation of Marine Gas Hydrate Deposits Using Sea-floor Transient Electric Dipole-dipole Methods. Geophysics 1997, 62, 63–74. [Google Scholar] [CrossRef]
- Du Frane, W.L.; Stern, L.A.; Weitemeyer, K.A.; Constable, S.; Pinkston, J.C.; Roberts, J.J. Electrical Properties of Polycrystalline Methane Hydrate. Geophys. Res. Lett. 2011, 38, L09313. [Google Scholar] [CrossRef]
- Du Frane, W.L.; Stern, L.A.; Constable, S.; Weitemeyer, K.A.; Smith, M.M.; Roberts, J.J. Electrical Properties of Methane Hydrate+ Sediment Mixtures. J. Geophys. Res. Solid Earth 2015, 120, 4773–4783. [Google Scholar] [CrossRef]
- Yuan, J.; Edwards, R. The Assessment of Marine Gas Hydrates through Electrical Remote Sounding: Hydrate Without a BSR? Geophys. Res. Lett. 2000, 27, 2397–2400. [Google Scholar] [CrossRef]
- Pohl, M. Ultrasonic and Electrical Properties of Hydrate-Bearing Sediments. Ph.D. Thesis, Colorado School of Mines, Golden, CO, USA, 2018. [Google Scholar]
- Peksa, A.E.; Wolf, K.H.A.A.; Zitha, P.L.J. Bentheimer Sandstone Revisited for Experimental Purposes. Mar. Pet. Geol. 2015, 67, 701–719. [Google Scholar] [CrossRef]
- Geranutti, B.L.S. Investigation of Gas Hydrate Formation during Sea Water Injection Based on Undersaturated Oil Core Flooding Experiments. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2020. [Google Scholar]
- Lamb, H. Hydrodynamics; Dover: Mineola, NY, USA, 1945; pp. 331–332. [Google Scholar]
- Scheidegger, A.E. The Physics of Flow through Porous Media; Macmillan: Old Tappan, NJ, USA, 1960. [Google Scholar]
- Hearst, J.R.; Nelson, P.H.; Paillet, F.L. Well Logging for Physical Properties; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Spangenberg, E. Modeling of the Influence of Gas Hydrate Content on the Electrical Properties of Porous Sediments. J. Geophys. Res. 2001, 106, 6535–6548. [Google Scholar] [CrossRef]
Salt Types | Formation Water Composition (g/L) | Seawater Composition (g/L) |
---|---|---|
NaCl | 56.930 | 25.690 |
MgCl2·6H2O | 8.450 | 11.040 |
CaCl2·2H2O | 7.250 | 1.560 |
SrCl2·6H2O | 0.736 | 0.024 |
BaCl2·2H2O | 0.697 | - |
KCl | 0.243 | 0.784 |
NaBO2·4H2O | 0.043 | 0.201 |
Na2SO4 | 0.030 | - |
Component | Composition (mol%) |
---|---|
CO2 | 7.0 |
CH4 | 80.0 |
C2H6 | 7.0 |
C3H8 | 4.0 |
C4H10 | 2.0 |
Temperature (°C) | k/kw | k/kw Normalized | Shyd | Shyd Normalized |
---|---|---|---|---|
15 | 0.2222 | 1.0000 | 0.2417 | 0.0000 |
11 | 0.1553 | 0.6986 | 0.3135 | 0.0255 |
8 | 0.1586 | 0.7136 | 0.3093 | 0.0229 |
7 | 0.0328 | 0.1477 | 0.5670 | 0.3231 |
6 | 0.0262 | 0.1178 | 0.5959 | 0.3658 |
5 | 0.0243 | 0.1092 | 0.6052 | 0.3797 |
4 | 0.0239 | 0.1074 | 0.6072 | 0.3826 |
3 | 0.0246 | 0.1107 | 0.6036 | 0.3772 |
2 | 0.0240 | 0.1082 | 0.6063 | 0.3813 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geranutti, B.L.S.; Pohl, M.; Rathmaier, D.; Karimi, S.; Prasad, M.; Zerpa, L.E. Multiphysics Measurements for Detection of Gas Hydrate Formation in Undersaturated Oil Coreflooding Experiments with Seawater Injection. Energies 2024, 17, 3280. https://doi.org/10.3390/en17133280
Geranutti BLS, Pohl M, Rathmaier D, Karimi S, Prasad M, Zerpa LE. Multiphysics Measurements for Detection of Gas Hydrate Formation in Undersaturated Oil Coreflooding Experiments with Seawater Injection. Energies. 2024; 17(13):3280. https://doi.org/10.3390/en17133280
Chicago/Turabian StyleGeranutti, Bianca L. S., Mathias Pohl, Daniel Rathmaier, Somayeh Karimi, Manika Prasad, and Luis E. Zerpa. 2024. "Multiphysics Measurements for Detection of Gas Hydrate Formation in Undersaturated Oil Coreflooding Experiments with Seawater Injection" Energies 17, no. 13: 3280. https://doi.org/10.3390/en17133280
APA StyleGeranutti, B. L. S., Pohl, M., Rathmaier, D., Karimi, S., Prasad, M., & Zerpa, L. E. (2024). Multiphysics Measurements for Detection of Gas Hydrate Formation in Undersaturated Oil Coreflooding Experiments with Seawater Injection. Energies, 17(13), 3280. https://doi.org/10.3390/en17133280