The Role of Blockchain-Secured Digital Twins in Promoting Smart Energy Performance-Based Contracts for Buildings
Abstract
:1. Introduction
2. Background
2.1. Energy Performance-Based Contracts (EPCs)
2.2. Energy Service Companies (ESCOs)
2.3. Measurement and Verification in EPC
2.4. Role of Digital Technologies for Energy Performance in AECO
3. EPC in AECO
3.1. Search Methodology
- Publication year: 2013 to 2023;
- Document type: articles and review articles;
- Source type: journals;
- Language: English;
- Others: subject areas limited to engineering, energy, and environmental sciences.
3.2. Search Results/Analysis
3.3. Identifying Research Limitations in EPC
4. A Framework for Delivering a Smart EPC Using Digital Twin and Blockchain Technologies
4.1. Overview
4.2. Framework Architecture
4.3. Digital Twin of an Asset
4.4. Blockchain Service Layer
4.5. Virtual Data Room
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission Energy Performance of Buildings Directive. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en (accessed on 12 April 2022).
- Ohene, E.; Chan, A.P.C.; Darko, A.; Nani, G. Navigating toward Net Zero by 2050: Drivers, Barriers, and Strategies for Net Zero Carbon Buildings in an Emerging Market. Build. Environ. 2023, 242, 110472. [Google Scholar] [CrossRef]
- Becqué, R.; Weyl, D.; Stewart, E.; Mackres, E.; Jin, L.; Shen, X. Accelerating Building Decarbonization: Eight Attainable Policy Pathways to Net Zero Carbon Buildings For All; World Resources Institute: Washington, DC, USA, 2019. [Google Scholar]
- EN 15978:2011; Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method. European Standard: Brussels, Belgium, 2011.
- Tirelli, D.; Besana, D. Moving toward Net Zero Carbon Buildings to Face Global Warming: A Narrative Review. Buildings 2023, 13, 684. [Google Scholar] [CrossRef]
- Directive 2018/844; Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency. European Union: Brussels, Belgium, 2018.
- Tan, B. Design of Balanced Energy Savings Performance Contracts. Int. J. Prod. Res. 2020, 58, 1401–1424. [Google Scholar] [CrossRef]
- Zangheri, P.; Armani, R.; Kakoulaki, G.; Bavetta, M.; Martirano, G.; Pignatelli, F.; Baranzelli, C. Building Energy Renovation for Decarbonisation and Covid-19 Recovery A Snapshot at Regional Level; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Augustins, E.; Jaunzems, D.; Rochas, C.; Kamenders, A. Managing Energy Efficiency of Buildings: Analysis of ESCO Experience in Latvia. Energy Procedia 2018, 147, 614–623. [Google Scholar] [CrossRef]
- E3P EPC—Energy Performance Contracting. Available online: https://e3p.jrc.ec.europa.eu/articles/energy-performance-contracting (accessed on 18 March 2023).
- Lugarić, T.R.; Dodig, D.; Bogovac, J. Effectiveness of Blending Alternative Procurement Models and Eu Funding Mechanisms Based on Energy Efficiency Case Study Simulation. Energies 2019, 12, 1612. [Google Scholar] [CrossRef]
- Piterou, A.; Coles, A.M. A Review of Business Models for Decentralised Renewable Energy Projects. Bus. Strateg. Environ. 2021, 30, 1468–1480. [Google Scholar] [CrossRef]
- Hunhevicz, J.J.; Motie, M.; Hall, D.M. Digital Building Twins and Blockchain for Performance-Based (Smart) Contracts. Autom. Constr. 2022, 133, 103981. [Google Scholar] [CrossRef]
- Gürcan, O.; Agenis-Nevers, M.; Batany, Y.M.; Elmtiri, M.; Le Fevre, F.; Tucci-Piergiovanni, S. An Industrial Prototype of Trusted Energy Performance Contracts Using Blockchain Technologies. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; IEEE: New York, NY, USA, 2019; Volume I, pp. 1336–1343. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, N.; Park, J.H. Blockchain Technology toward Green IoT: Opportunities and Challenges. IEEE Netw. 2020, 34, 263–269. [Google Scholar] [CrossRef]
- Xu, Q.; Aung, K.M.M.; Zhu, Y.; Yong, K.L. Studies in Computational Intelligence 715 New Advances in the Internet of Things; Yager, R.R., Pascual Espada, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; ISBN 9783319581897. [Google Scholar]
- Qian, X.; Papadonikolaki, E. Shifting Trust in Construction Supply Chains through Blockchain Technology. Eng. Constr. Archit. Manag. 2021, 28, 584–602. [Google Scholar] [CrossRef]
- Martiniello, L.; Morea, D.; Paolone, F.; Tiscini, R. Energy Performance Contracting and Public-Private Partnership: How to Share Risks and Balance Benefits. Energies 2020, 13, 3625. [Google Scholar] [CrossRef]
- Liu, H.; Hu, M.; Zhang, X. Energy Costs Hosting Model: The Most Suitable Business Model in the Developing Stage of Energy Performance Contracting. J. Clean. Prod. 2016, 172, 2553–2566. [Google Scholar] [CrossRef]
- Natividade, J.; Cruz, C.O.; Silva, C.M. Improving the Efficiency of Energy Consumption in Buildings: Simulation of Alternative EnPC Models. Sustainability 2022, 14, 4228. [Google Scholar] [CrossRef]
- Qin, Q.; Liang, F.; Li, L.; Wei, Y.M. Selection of Energy Performance Contracting Business Models: A Behavioral Decision-Making Approach. Renew. Sustain. Energy Rev. 2017, 72, 422–433. [Google Scholar] [CrossRef]
- Pätäri, S.; Sinkkonen, K. Energy Service Companies and Energy Performance Contracting: Is There a Need to Renew the Business Model? Insights from a Delphi Study. J. Clean. Prod. 2014, 66, 264–271. [Google Scholar] [CrossRef]
- Garbuzova-Schlifter, M.; Madlener, R. AHP-Based Risk Analysis of Energy Performance Contracting Projects in Russia. Energy Policy 2016, 97, 559–581. [Google Scholar] [CrossRef]
- Lee, P.; Lam, P.T.I.; Lee, W.L. Performance Risks of Lighting Retrofit in Energy Performance Contracting Projects. Energy Sustain. Dev. 2018, 45, 219–229. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, M.; Jin, W.; Xia-Bauer, C. Managing Energy Efficiency of Buildings in China: A Survey of Energy Performance Contracting (EPC) in Building Sector. Energy Policy 2018, 114, 13–21. [Google Scholar] [CrossRef]
- Hannon, M.J.; Bolton, R. UK Local Authority Engagement with the Energy Service Company (ESCo) Model: Key Characteristics, Benefits, Limitations and Considerations. Energy Policy 2015, 78, 198–212. [Google Scholar] [CrossRef]
- Taylor, R.P.; Govindarajalu, C.; Levin, J.; Meyer, A.S.; Ward, W.A. Financing Energy Efficiency: Lessons from Brazil, China, India, and Beyond; The International Bank for Reconstruction and Development/TheWorld Bank: Washington, DC, USA, 2008; ISBN 9780821373040. [Google Scholar]
- Shonder, J.A.; Avina, J.M. New Directions in Measurement and Verification for Performance Contracts. Energy Eng. J. Assoc. Energy Eng. 2016, 113, 7–17. [Google Scholar] [CrossRef]
- Burman, E.; Mumovic, D. Measurement and Verification Models for Cost-Effective Energy-Efficient Retrofitting; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780081011287. [Google Scholar]
- Alrobaie, A.; Krarti, M. A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits. Energies 2022, 15, 7824. [Google Scholar] [CrossRef]
- Piccinini, A.; Hajdukiewicz, M.; Keane, M.M. A Novel Reduced Order Model Technology Framework to Support the Estimation of the Energy Savings in Building Retrofits. Energy Build. 2021, 244, 110896. [Google Scholar] [CrossRef]
- Department of Energy & Climate Change. Guide to Energy Performance Contracting Best Practices; Department of Energy & Climate Change: London, UK, 2015. [Google Scholar]
- Newsham, G.R. Measurement and Verification of Energy Conservation Measures Using Whole-Building Electricity Data from Four Identical Office Towers. Appl. Energy 2019, 255, 113882. [Google Scholar] [CrossRef]
- EVO. International Performance Measurement and Verification Protocol (IPMVP); EVO: Washington, DC, USA, 2016. [Google Scholar]
- ASHRAE. Guideline 14: Measurement of Energy, Demand, and Water Savings; ASHRAE: Atlanta, GA, USA, 2014. [Google Scholar]
- Jain, N.; Burman, E.; Stamp, S.; Mumovic, D.; Davies, M. Cross-Sectoral Assessment of the Performance Gap Using Calibrated Building Energy Performance Simulation. Energy Build. 2020, 224, 110271. [Google Scholar] [CrossRef]
- Granderson, J.; Touzani, S.; Claudine, C.; Sohn, M.; Fernandes, S. Assessment of Automated Measurement and Verification (M&V) Methods; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2015. [Google Scholar]
- Gallagher, C.V.; Leahy, K.; O’Donovan, P.; Bruton, K.; O’Sullivan, D.T.J. IntelliMaV: A Cloud Computing Measurement and Verification 2.0 Application for Automated, near Real-Time Energy Savings Quantification and Performance Deviation Detection. Energy Build. 2019, 185, 26–38. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.H.; Masoud, N.; Krishnan, M.S.; Li, V.C. Integrated Digital Twin and Blockchain Framework to Support Accountable Information Sharing in Construction Projects. Autom. Constr. 2021, 127, 103688. [Google Scholar] [CrossRef]
- Teisserenc, B.; Sepasgozar, S. Adoption of Blockchain Technology through Digital Twins in the Construction Industry 4.0: A PESTELS Approach. Buildings 2021, 11, 670. [Google Scholar] [CrossRef]
- Deng, M.; Menassa, C.C.; Kamat, V.R. From BIM to Digital Twins: A Systematic Review of the Evolution of Intelligent Building Representations in the AEC-FM Industry. J. Inf. Technol. Constr. 2021, 26, 58–83. [Google Scholar] [CrossRef]
- Research and Markets Digital Twins Market by Technology, Twinning Type, Cyber-to-Physical Solutions, Use Cases and Applications in Industry Verticals 2022–2027. Available online: https://www.researchandmarkets.com/reports/4805605/li-ion-battery-global-market-trajectory-and (accessed on 22 March 2023).
- Lv, Z.; Xie, S. Artificial Intelligence in the Digital Twins: State of the Art, Challenges, and Future Research Topics. Digit. Twin 2021, 1, 12. [Google Scholar] [CrossRef]
- Darabseh, M.; Poças Martins, J. Transforming Construction Entities from Traditional Management to Autonomous Management Using Blockchain. In Trends on Construction in the Digital Era—Proceedings of ISIC 2022; Correia, A.G., Azenha, M., Cruz, P.J.S., Novais, P., Pereira, P., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 111–121. [Google Scholar]
- Putz, B.; Dietz, M.; Empl, P.; Pernul, G. EtherTwin: Blockchain-Based Secure Digital Twin Information Management. Inf. Process. Manag. 2021, 58, 102425. [Google Scholar] [CrossRef]
- Abioye, S.O.; Oyedele, L.O.; Akanbi, L.; Ajayi, A.; Davila Delgado, J.M.; Bilal, M.; Akinade, O.O.; Ahmed, A. Artificial Intelligence in the Construction Industry: A Review of Present Status, Opportunities and Future Challenges. J. Build. Eng. 2021, 44, 103299. [Google Scholar] [CrossRef]
- Mourtzis, D.; Boli, N.; Alexopoulos, K.; Rózycki, D. A Framework of Energy Services: From Traditional Contracts to Product-Service System (PSS). Procedia CIRP 2018, 69, 746–751. [Google Scholar] [CrossRef]
- Xiong, T.; Cheng, Q.; Yang, C.; Yang, X.; Lin, S. Application of Digital Twin Technology in Intelligent Building Energy Efficiency Management System. In Proceedings of the 2021 International Conference on E-Commerce and E-Management (ICECEM), Dalian, China, 24–26 September 2021; pp. 393–396. [Google Scholar] [CrossRef]
- Celik, Y.; Petri, I.; Rezgui, Y. Leveraging BIM and Blockchain for Digital Twins. In Proceedings of the 2021 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Cardiff, UK, 21–23 June 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Rad, M.A.H.; Jalaei, F.; Golpour, A.; Varzande, S.S.H.; Guest, G. BIM-Based Approach to Conduct Life Cycle Cost Analysis of Resilient Buildings at the Conceptual Stage. Autom. Constr. 2021, 123, 103480. [Google Scholar] [CrossRef]
- Xue, F.; Lu, W.; Chen, Z.; Webster, C.J. From LiDAR Point Cloud towards Digital Twin City: Clustering City Objects Based on Gestalt Principles. ISPRS J. Photogramm. Remote Sens. 2020, 167, 418–431. [Google Scholar] [CrossRef]
- Mehmood, F.; Edwards, D.; Lai, J.; Parn, E.A.; Riaz, Z. Engineering-out Hazards: Digitising the Management Working Safety in Confined Spaces. Facilities 2019, 37, 196–215. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, Q. A Simulation-Based Policy Improvement Method for Joint-Operation of Building Microgrids With Distributed Solar Power and Battery. IEEE Trans. Smart Grid 2018, 9, 6242–6252. [Google Scholar] [CrossRef]
- Violante, W.; Cañizares, C.A.; Trovato, M.A.; Forte, G. An Energy Management System for Isolated Microgrids With Thermal Energy Resources. IEEE Trans. Smart Grid 2020, 11, 2880–2891. [Google Scholar] [CrossRef]
- Corbett, J.; Wardle, K.; Chen, C. Toward a Sustainable Modern Electricity Grid: The Effects of Smart Metering and Program Investments on Demand-Side Management Performance in the US Electricity Sector 2009-2012. IEEE Trans. Eng. Manag. 2018, 65, 252–263. [Google Scholar] [CrossRef]
- Song, Y.; Mao, F.; Liu, Q. Human Comfort in Indoor Environment: A Review on Assessment Criteria, Data Collection and Data Analysis Methods. IEEE Access 2019, 7, 119774–119786. [Google Scholar] [CrossRef]
- Mondal, A.; Misra, S.; Obaidat, M.S. Distributed Home Energy Management System With Storage in Smart Grid Using Game Theory. IEEE Syst. J. 2017, 11, 1857–1866. [Google Scholar] [CrossRef]
- Canterino, F.; Cagliano, R.; Longoni, A.; Bartezzaghi, E. The Interplay between Smart Manufacturing Technologies and Work Organization. Int. J. Oper. Prod. Manag. 2019, 39, 913–934. [Google Scholar] [CrossRef]
- Pärn, E.A.; Ahmed, A.; Al-saeed, Y.W. An 80-Year Projection of NZEB Strategies in Extreme Climatic Conditions of Iraq. Int. J. Build. Pathol. Adapt. 2020, 38, 472–492. [Google Scholar] [CrossRef]
- Brager, G.S.; de Dear, R.J. Thermal Adaptation in the Built Environment: A Literature Review. Energy Build. 1998, 27, 83–96. [Google Scholar] [CrossRef]
- Rejikumar, G.; Raja Sreedharan, V.; Arunprasad, P.; Jinil, P.; Sreeraj, K.M. Industry 4.0: Key Findings and Analysis from the Literature Arena. Benchmarking Int. J. 2019, 26, 2514–2542. [Google Scholar] [CrossRef]
- Zhai, S.; Zhou, H.; Wang, Z.; He, G. Analysis of Dynamic Appliance Flexibility Considering User Behavior via Non-Intrusive Load Monitoring and Deep User Modeling. CSEE J. Power Energy Syst. 2020, 6, 41–51. [Google Scholar] [CrossRef]
- Zhong, B.; Gan, C.; Luo, H.; Xing, X. Ontology-Based Framework for Building Environmental Monitoring and Compliance Checking under BIM Environment. Build. Environ. 2018, 141, 127–142. [Google Scholar] [CrossRef]
- Liu, D.; Liu, B.; Wang, C.; Jin, W.; Zha, Q.; Shi, G.; Wang, D.; Sang, X.; Ni, C. Ionic Liquid-Assisted Exfoliation of Two-Dimensional Metal-Organic Frameworks for Luminescent Sensing. ACS Sustain. Chem. Eng. 2020, 8, 2167–2175. [Google Scholar] [CrossRef]
- Yu, G.; Mao, Z.; Hu, M.; Li, Z.; Sugumaran, V. BIM+ Topology Diagram-Driven Multiutility Tunnel Emergency Response Method. J. Comput. Civ. Eng. 2019, 33, 04019038. [Google Scholar] [CrossRef]
- Coraddu, A.; Oneto, L.; Baldi, F.; Cipollini, F.; Atlar, M.; Savio, S. Data-Driven Ship Digital Twin for Estimating the Speed Loss Caused by the Marine Fouling. Ocean Eng. 2019, 186, 106063. [Google Scholar] [CrossRef]
- Pan, Y.H.; Qu, T.; Wu, N.Q.; Khalgui, M.; Huang, G.Q. Digital Twin Based Real-Time Production Logistics Synchronization System in a Multi-Level Computing Architecture. J. Manuf. Syst. 2021, 58, 246–260. [Google Scholar] [CrossRef]
- Howell, S.; Rezgui, Y.; Beach, T. Integrating Building and Urban Semantics to Empower Smart Water Solutions. Autom. Constr. 2017, 81, 434–448. [Google Scholar] [CrossRef]
- Gain, U. Applying Frameworks for Cognitive Services in IIoT. J. Syst. Sci. Syst. Eng. 2021, 30, 59–84. [Google Scholar] [CrossRef]
- Verner, I.M.; Cuperman, D.; Reitman, M. Robot Online Learning to Lift Weights: A Way to Expose Students to Robotics and Intelligent Technologies. Int. J. Online Eng. 2017, 13, 174–182. [Google Scholar] [CrossRef]
- ASHRAE-55 Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.: Atlanta, GA, USA, 2017.
- Moretti, N.; Xie, X.; Merino, J.; Brazauskas, J.; Parlikad, A.K. An Openbim Approach to Iot Integration with Incomplete As-Built Data. Appl. Sci. 2020, 10, 8287. [Google Scholar] [CrossRef]
- Okakpu, A.; GhaffarianHoseini, A.; Tookey, J.; Haar, J.; Ghaffarian Hoseini, A. An Optimisation Process to Motivate Effective Adoption of BIM for Refurbishment of Complex Buildings in New Zealand. Front. Archit. Res. 2019, 8, 646–661. [Google Scholar] [CrossRef]
- Wang, P.; Wu, P.; Wang, J.; Chi, H.-L.; Wang, X. A Critical Review of the Use of Virtual Reality in Construction Engineering Education and Training. Int. J. Environ. Res. Public Health 2018, 15, 1204. [Google Scholar] [CrossRef] [PubMed]
- Bank, B.; Chabassier, J. Model-Based Digital Pianos: From Physics to Sound Synthesis. IEEE Signal Process. Mag. 2019, 36, 103–114. [Google Scholar] [CrossRef]
- Malik, A.A.; Brem, A. Digital Twins for Collaborative Robots: A Case Study in Human-Robot Interaction. Robot. Comput. Integr. Manuf. 2021, 68, 102092. [Google Scholar] [CrossRef]
- Tong, X.; Liu, Q.; Pi, S.; Xiao, Y. Real-Time Machining Data Application and Service Based on IMT Digital Twin. J. Intell. Manuf. 2020, 31, 1113–1132. [Google Scholar] [CrossRef]
- Ciano, M.P.; Pozzi, R.; Rossi, T.; Strozzi, F. Digital Twin-Enabled Smart Industrial Systems: A Bibliometric Review. Int. J. Comput. Integr. Manuf. 2020, 34, 690–708. [Google Scholar] [CrossRef]
- Angrish, A.; Starly, B.; Lee, Y.-S.; Cohen, P.H. A Flexible Data Schema and System Architecture for the Virtualization of Manufacturing Machines (VMM). J. Manuf. Syst. 2017, 45, 236–247. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Y.; Liu, X.; Zheng, Y. A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer Learning. IEEE Access 2019, 7, 19990–19999. [Google Scholar] [CrossRef]
- Nakamura, T. Digital Twin Computing Initiative. NTT Tech. Rev. 2020, 18, 13–18. [Google Scholar] [CrossRef]
- De Dear, R.J.; Brager, G.S. Thermal Comfort in Naturally Ventilated Buildings: Revisions to ASHRAE Standard 55. Energy Build. 2002, 34, 549–561. [Google Scholar] [CrossRef]
- Dolgui, A.; Ivanov, D.; Sokolov, B. Reconfigurable Supply Chain: The X-Network. Int. J. Prod. Res. 2020, 58, 4138–4163. [Google Scholar] [CrossRef]
- Radončić, N.; Sattlegger, E.; Lacourse-Dontigny, X.; Mitsch, T. Designing a State-of-the-Art Monitoring System in Challenging Operating Conditions. Geomech. Tunnelbau 2021, 14, 54–62. [Google Scholar] [CrossRef]
- Faqih, F.; Zayed, T. Defect-Based Building Condition Assessment. Build. Environ. 2021, 191, 107575. [Google Scholar] [CrossRef]
- Petri, I.; Kubicki, S.; Rezgui, Y.; Guerriero, A.; Li, H. Optimizing Energy Efficiency in Operating Built Environment Assets through Building Information Modeling: A Case Study. Energies 2017, 10, 1167. [Google Scholar] [CrossRef]
- Dambrot, S.M. Symbiotic Autonomous Systems, Digital Twins and Artificial Intelligence: Emergence and Evolution. Mondo Digitale. 2019. Available online: https://mondodigitale.aicanet.net/2019-1/articoli/03_MD80_Symbiotic_Autonomous_Digital_Twins_and_Artificial_Intelligence.pdf (accessed on 29 April 2024).
- Gao, H.; Koch, C.; Wu, Y. Building Information Modelling Based Building Energy Modelling: A Review. Appl. Energy 2019, 238, 320–343. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, H.; Xu, F. Social Network Visual Simulation for Process Reengineering of Construction Change Management under Building Information Modelling Technology. J. Intell. Fuzzy Syst. 2020, 39, 1471–1480. [Google Scholar] [CrossRef]
- Novembri, G.; Rossini, F.L. Swarm Modelling Framework to Improve Design Support Systems Capabilities. J. Inf. Technol. Constr. 2020, 25, 398–415. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, C.; Han, X.; Lin, Y. Monitoring Combustion Instabilities of Stratified Swirl Flames by Feature Extractions of Time-Averaged Flame Images Using Deep Learning Method. Aerosp. Sci. Technol. 2021, 109, 106443. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Cheung, W.-F. Developing WSN/BIM-Based Environmental Monitoring Management System for Parking Garages in Smart Cities. J. Manag. Eng. 2020, 36, 04020012. [Google Scholar] [CrossRef]
- Alhamami, A.; Petri, I.; Rezgui, Y.; Kubicki, S. Promoting Energy Efficiency in the Built Environment through Adapted BIM Training and Education. Energies 2020, 13, 2308. [Google Scholar] [CrossRef]
- Sierla, S.; Kyrki, V.; Aarnio, P.; Vyatkin, V. Automatic Assembly Planning Based on Digital Product Descriptions. Comput. Ind. 2018, 97, 34–46. [Google Scholar] [CrossRef]
- Hwangbo, S.; Sin, G. Design of Control Framework Based on Deep Reinforcement Learning and Monte-Carlo Sampling in Downstream Separation. Comput. Chem. Eng. 2020, 140, 106910. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, G.; Hu, J.; Li, J. Deep Learning-Enabled Intelligent Process Planning for Digital Twin Manufacturing Cell. Knowl.-Based Syst. 2020, 191, 105247. [Google Scholar] [CrossRef]
- Guo, H.; Chen, M.; Mohamed, K.; Qu, T.; Wang, S.; Li, J. A Digital Twin-Based Flexible Cellular Manufacturing for Optimization of Air Conditioner Line. J. Manuf. Syst. 2021, 58, 65–78. [Google Scholar] [CrossRef]
- Nativi, S.; Mazzetti, P.; Craglia, M. Digital Ecosystems for Developing Digital Twins of the Earth: The Destination Earth Case. Remote Sens. 2021, 13, 2119. [Google Scholar] [CrossRef]
- US Energy Information Administration (EIA) March 2022 Monthly Energy Review; US Energy Information Administration (EIA): Washington, DC, USA, 2022.
- Qiu, S.; Mias, C.; Guo, W.; Geng, X. HS2 Railway Embankment Monitoring: Effect of Soil Condition on Underground Signals. SN Appl. Sci. 2019, 1, 537. [Google Scholar] [CrossRef]
- Orozco-Messana, J.; Iborra-Lucas, M.; Calabuig-Moreno, R. Neighbourhood Modelling for Urban Sustainability Assessment. Sustainability 2021, 13, 4654. [Google Scholar] [CrossRef]
- Agnusdei, G.P.; Elia, V.; Gnoni, M.G. Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review. Appl. Sci. 2021, 11, 2767. [Google Scholar] [CrossRef]
- Bortoluzzi, B.; Efremov, I.; Medina, C.; Sobieraj, D.; McArthur, J.J. Automating the Creation of Building Information Models for Existing Buildings. Autom. Constr. 2019, 105, 102838. [Google Scholar] [CrossRef]
- Shalabi, F.; Turkan, Y. IFC BIM-Based Facility Management Approach to Optimize Data Collection for Corrective Maintenance. J. Perform. Constr. Facil. 2017, 31, 04016081. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M.; Nee, A.Y.C. Background and Concept of Digital Twin. In Digital Twin Driven Smart Manufacturing; Academic Press: Cambridge, MA, USA, 2019; pp. 3–28. [Google Scholar]
- Wang, Q.; Lee, B.D.; Augenbroe, G.; Paredis, C.J.J. An Application of Normative Decision Theory to the Valuation of Energy Efficiency Investments under Uncertainty. Autom. Constr. 2017, 73, 78–87. [Google Scholar] [CrossRef]
- Hasan, I.; Gardezi, S.S.S.; Manzoor, B.; Arshid, M.U. Sustainable Consumption Patterns Adopting BIM-Enabled Energy Optimization-A Case Study of Developing Urban Centre. Polish J. Environ. Stud. 2022, 31, 3095–3103. [Google Scholar] [CrossRef]
- Oliver, E. The Role of Real Time Data in Monitoring and Verification. Energy Eng. J. Assoc. Energy Eng. 2018, 115, 26–36. [Google Scholar] [CrossRef]
- Afroz, Z.; Burak Gunay, H.; O’Brien, W.; Newsham, G.; Wilton, I. An Inquiry into the Capabilities of Baseline Building Energy Modelling Approaches to Estimate Energy Savings. Energy Build. 2021, 244, 111054. [Google Scholar] [CrossRef]
- Kim, A.; Haberl, J.; Anderson, S. Comparison between Current Industry Methods and an Energy Simulation Model for Quantifying Energy Service Projects. J. Archit. Eng. 2016, 22, 04015016. [Google Scholar] [CrossRef]
- Winther, T.; Gurigard, K. Energy Performance Contracting (EPC): A Suitable Mechanism for Achieving Energy Savings in Housing Cooperatives? Results from a Norwegian Pilot Project. Energy Effic. 2017, 10, 577–596. [Google Scholar] [CrossRef]
- Dong, B.; Lam, K.P.; Huang, Y.C.; Dobbs, G.M. A Comparative Study of the IFC and GbXML Informational Infrastructures for Data Exchange in Computational Design Support Environments; IBPSA International Building Performance Simulation Association: Rapid City, SD, USA, 2007; pp. 1530–1537. [Google Scholar]
- Dall’O’, G.; Ferrari, S.; Bruni, E.; Bramonti, L. Effective Implementation of ISO 50001: A Case Study on Energy Management for Heating Load Reduction for a Social Building Stock in Northern Italy. Energy Build. 2020, 219, 110029. [Google Scholar] [CrossRef]
- Röck, M.; Hollberg, A.; Habert, G.; Passer, A. LCA and BIM: Visualization of Environmental Potentials in Building Construction at Early Design Stages. Build. Environ. 2018, 140, 153–161. [Google Scholar] [CrossRef]
- Ounis, S.; Aste, N.; Butera, F.M.; Pero, C.D.; Leonforte, F.; Adhikari, R.S. Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value. Energies 2022, 15, 3570. [Google Scholar] [CrossRef]
- Van den Brom, P.; Hansen, A.R.; Gram-Hanssen, K.; Meijer, A.; Visscher, H. Variances in Residential Heating Consumption—Importance of Building Characteristics and Occupants Analysed by Movers and Stayers. Appl. Energy 2019, 250, 713–728. [Google Scholar] [CrossRef]
- Helsinki Helsinki—Energy and Climate Atlas. Available online: https://kartta.hel.fi/3d/atlas/#/ (accessed on 22 February 2024).
- Stadtmodell 3D-Stadtmodell. Geomatik + Vermessung Stadt Zürich. Available online: https://www.stadt-zuerich.ch/content/ted/de/index/geoz/plan-und-datenbezug/3d-stadtmodell.html# (accessed on 22 February 2024).
- Zhang, Y.; Kasahara, S.; Shen, Y.; Jiang, X. Smart Contract-Based Access Control for the Internet of Things. arXiv 2018, arXiv:1802.04410. [Google Scholar] [CrossRef]
- Aranda, J.; Tsitsanis, T.; Georgopoulos, G.; Longares, J.M. Innovative Data-Driven Energy Services and Business Models in the Domestic Building Sector. Sustainability 2023, 15, 3742. [Google Scholar] [CrossRef]
- Naderi, H.; Heydari, M.H.; Parchami Jalal, M. Risk Analysis in Implementing Building Energy Performance Projects: Hybrid DANP-VIKOR Model Analysis—A Case Study in Iran. Buildings 2023, 13, 2066. [Google Scholar] [CrossRef]
- Mohamad Munir, Z.H.; Ahmad Ludin, N.; Junedi, M.M.; Ahmad Affandi, N.A.; Ibrahim, M.A.; Mat Teridi, M.A. A Rational Plan of Energy Performance Contracting in an Educational Building: A Case Study. Sustainability 2023, 15, 1430. [Google Scholar] [CrossRef]
- Gončarovs, K.; Jegiazarjana, K. Beyond Well-Being: The Assessment of the Energy Renovation in Latvia by the Residents. Environ. Clim. Technol. 2023, 27, 813–823. [Google Scholar] [CrossRef]
- Medved, P. EPCHC-energy performance contracting (EPC) model for historic city centres. Acta Innov. 2023, 47, 28–40. [Google Scholar] [CrossRef]
- Meraghni, S.; Terrissa, L.S.; Yue, M.; Ma, J.; Jemei, S.; Zerhouni, N. A Data-Driven Digital-Twin Prognostics Method for Proton Exchange Membrane Fuel Cell Remaining Useful Life Prediction. Int. J. Hydrogen Energy 2021, 46, 2555–2564. [Google Scholar] [CrossRef]
- Micolier, A.; Taillandier, F.; Taillandier, P.; Bos, F. Li-BIM, an Agent-Based Approach to Simulate Occupant-Building Interaction from the Building-Information Modelling. Eng. Appl. Artif. Intell. 2019, 82, 44–59. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, S.; Xu, P.; Zhuang, T. An ANP-SWOT Approach for ESCOs Industry Strategies in Chinese Building Sectors. Renew. Sustain. Energy Rev. 2018, 93, 90–99. [Google Scholar] [CrossRef]
- Acuner, E.; Cin, R.; Onaygil, S. Energy Service Market Evaluation by Bayesian Belief Network and SWOT Analysis: Case of Turkey. Energy Effic. 2021, 14, 62. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, H. A Bibliometric Analysis of Energy Performance Contracting Research from 2008 to 2018. Sustainability 2019, 11, 3548. [Google Scholar] [CrossRef]
- Shang, T.; Yang, L.; Liu, P.; Shang, K.; Zhang, Y. Financing Mode of Energy Performance Contracting Projects with Carbon Emissions Reduction Potential and Carbon Emissions Ratings. Energy Policy 2020, 144, 111632. [Google Scholar] [CrossRef]
- Shang, T.; Liu, P.; Guo, J. How to Allocate Energy-Saving Benefit for Guaranteed Savings EPC Projects? A Case of China. Energy 2020, 191, 116499. [Google Scholar] [CrossRef]
- Roshchanka, V.; Evans, M. Scaling up the Energy Service Company Business: Market Status and Company Feedback in the Russian Federation. J. Clean. Prod. 2016, 112, 3905–3914. [Google Scholar] [CrossRef]
- Shang, T.; Sun, X.; Liu, P.; Gao, J. Cracking the Achilles’ Heel of Energy Performance Contracting Projects: The Credit Risk Identification Method for Clients. Int. J. Green Energy 2020, 17, 196–207. [Google Scholar] [CrossRef]
- Shang, T.; Zhang, K.; Liu, P.; Chen, Z. A Review of Energy Performance Contracting Business Models: Status and Recommendation. Sustain. Cities Soc. 2017, 34, 203–210. [Google Scholar] [CrossRef]
- Lee, P.; Lam, P.T.I.; Lee, W.L.; Chan, E.H.W. Analysis of an Air-Cooled Chiller Replacement Project Using a Probabilistic Approach for Energy Performance Contracts. Appl. Energy 2016, 171, 415–428. [Google Scholar] [CrossRef]
- Zhou, Y.; Evans, M.; Yu, S.; Sun, X.; Wang, J. Linkages between Policy and Business Innovation in the Development of China’s Energy Performance Contracting Market. Energy Policy 2020, 140, 111208. [Google Scholar] [CrossRef]
- Coleman, P. Escalation Rates in Energy Savings Performance Contracts. Energy Eng. J. Assoc. Energy Eng. 2015, 112, 66–77. [Google Scholar] [CrossRef]
- Ruan, H.; Gao, X.; Mao, C. Empirical Study on Annual Energy-Saving Performance of Energy Performance Contracting in China. Sustainability 2018, 10, 1666. [Google Scholar] [CrossRef]
- Xing, G.; Qian, D.; Guo, J. Research on the Participant Behavior Selections of the Energy Performance Contracting Project Based on the Robustness of the Shared Savings Contract. Sustainability 2016, 8, 730. [Google Scholar] [CrossRef]
- Ning, Y.; Cherian, J.; Sial, M.S.; Álvarez-Otero, S.; Comite, U.; Zia-Ud-Din, M. Green Bond as a New Determinant of Sustainable Green Financing, Energy Efficiency Investment, and Economic Growth: A Global Perspective. Environ. Sci. Pollut. Res. 2023, 30, 61324–61339. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Ma, R.; Zuo, J.; Mu, R. Towards a Sustainable Society: The Status and Future of Energy Performance Contracting in China. J. Clean. Prod. 2016, 112, 1608–1618. [Google Scholar] [CrossRef]
- Leffel, B. Climate Consultants and Complementarity: Local Procurement, Green Industry and Decarbonization in Australia, Singapore, and the United States. Energy Res. Soc. Sci. 2022, 88, 102635. [Google Scholar] [CrossRef]
- Nolden, C.; Sorrell, S. The UK Market for Energy Service Contracts in 2014–2015. Energy Effic. 2016, 9, 1405–1420. [Google Scholar] [CrossRef]
- Lu, Z.; Shao, S. Impacts of Government Subsidies on Pricing and Performance Level Choice in Energy Performance Contracting: A Two-Step Optimal Decision Model. Appl. Energy 2016, 184, 1176–1183. [Google Scholar] [CrossRef]
- Deng, X.; Zheng, S.; Xu, P.; Zhang, X. Study on Dissipative Structure of China’s Building Energy Service Industry System Based on Brusselator Model. J. Clean. Prod. 2017, 150, 112–122. [Google Scholar] [CrossRef]
- Franco, D.V.; Segers, J.-P.; Herlaar, R.; Hannema, A.R. Trends in Sustainable Energy Innovation—Transition Teams for Sustainable Innovation. J. Innov. Manag. 2022, 10, 22–46. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, H. Promoting Energy Performance Contracting for Achieving Urban Sustainability: What Is the Research Trend? Energies 2019, 12, 1443. [Google Scholar] [CrossRef]
- Peng, Y.; Wei, Y.; Bai, X. Scaling Urban Sustainability Experiments: Contextualization as an Innovation. J. Clean. Prod. 2019, 227, 302–312. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, G.; Lin, R.; Wang, H.; Ren, J. Energy Performance Contracting, Risk Factors, and Policy Implications: Identification and Analysis of Risks Based on the Best-Worst Network Method. Energy 2019, 170, 1–13. [Google Scholar] [CrossRef]
- Aasen, M.; Westskog, H.; Korneliussen, K. Energy Performance Contracts in the Municipal Sector in Norway: Overcoming Barriers to Energy Savings? Energy Effic. 2016, 9, 171–185. [Google Scholar] [CrossRef]
- Wacinkiewicz, D.; Słotwiński, S. The Statutory Model of Energy Performance Contracting as a Means of Improving Energy Efficiency in Public Sector Units as Seen in the Example of Polish Legal Policies. Energies 2023, 16, 5060. [Google Scholar] [CrossRef]
- Akkoç, H.N.; Onaygil, S.; Acuner, E.; Cin, R. Implementations of Energy Performance Contracts in the Energy Service Market of Turkey. Energy Sustain. Dev. 2023, 76, 101303. [Google Scholar] [CrossRef]
- Pätäri, S.; Annala, S.; Jantunen, A.; Viljainen, S.; Sinkkonen, A. Enabling and Hindering Factors of Diffusion of Energy Service Companies in Finland—Results of a Delphi Study. Energy Effic. 2016, 9, 1447–1460. [Google Scholar] [CrossRef]
- Guo, K.; Zhang, L. Guarantee Optimization in Energy Performance Contracting with Real Option Analysis. J. Clean. Prod. 2020, 258, 120908. [Google Scholar] [CrossRef]
- Shang, T.; Zhang, K.; Liu, P.; Chen, Z.; Li, X.; Wu, X. What to Allocate and How to Allocate?-Benefit Allocation in Shared Savings Energy Performance Contracting Projects. Energy 2015, 91, 60–71. [Google Scholar] [CrossRef]
- Lee, P.; Lam, P.T.I.; Lee, W.L. Risks in Energy Performance Contracting (EPC) Projects. Energy Build. 2015, 92, 116–127. [Google Scholar] [CrossRef]
- Hufen, H.; De Bruijn, H. Getting the Incentives Right. Energy Performance Contracts as a Tool for Property Management by Local Government. J. Clean. Prod. 2016, 112, 2717–2729. [Google Scholar] [CrossRef]
- Brouns, J.; Nassiopoulos, A.; Bourquin, F.; Limam, K. Dynamic Building Performance Assessment Using Calibrated Simulation. Energy Build. 2016, 122, 160–174. [Google Scholar] [CrossRef]
- Yang, J.B.; Chou, H.Y. Key Challenges in Executing Energy-Savings Performance Contracts in Public Buildings: Taiwan Experience. J. Chin. Inst. Eng. Trans. Chinese Inst. Eng. A 2017, 40, 482–491. [Google Scholar] [CrossRef]
- Stuart, E.; Larsen, P.H.; Goldman, C.A.; Gilligan, D. A Method to Estimate the Size and Remaining Market Potential of the U.S. ESCO (Energy Service Company) Industry. Energy 2014, 77, 362–371. [Google Scholar] [CrossRef]
- Töppel, J.; Tränkler, T. Modeling Energy Efficiency Insurances and Energy Performance Contracts for a Quantitative Comparison of Risk Mitigation Potential. Energy Econ. 2019, 80, 842–859. [Google Scholar] [CrossRef]
- Fu, S.; Zhou, H.; Xiao, Y.-Z. Optimum Selection of Energy Service Company Based on Intuitionistic Fuzzy Entropy and VIKOR Framework. IEEE Access 2020, 8, 186572–186584. [Google Scholar] [CrossRef]
- Prabatha, T.; Hewage, K.; Sadiq, R. An Energy Performance Contract Optimization Approach to Meet the Competing Stakeholder Expectations under Uncertainty: A Canadian Case Study. Sustainability 2022, 14, 4334. [Google Scholar] [CrossRef]
- Carpino, C.; Bruno, R.; Carpino, V.; Arcuri, N. Uncertainty and Sensitivity Analysis to Moderate the Risks of Energy Performance Contracts in Building Renovation: A Case Study on an Italian Social Housing District. J. Clean. Prod. 2022, 379, 134637. [Google Scholar] [CrossRef]
- Ke, M.T.; Yeh, C.H.; Jian, J.T. Analysis of Building Energy Consumption Parameters and Energy Savings Measurement and Verification by Applying EQUEST Software. Energy Build. 2013, 61, 100–107. [Google Scholar] [CrossRef]
- Park, S.; Norrefeldt, V.; Stratbuecker, S.; Grün, G.; Jang, Y.S. Methodological Approach for Calibration of Building Energy Performance Simulation Models Applied to a Common “Measurement and Verification” Process. Bauphysik 2013, 35, 235–241. [Google Scholar] [CrossRef]
- AlFaris, F.; Juaidi, A.; Abdallah, R.; Peña-Fernández, A.; Manzano-Agugliaro, F. Energy Performance Analytics and Behavior Prediction during Unforeseen Circumstances of Retrofitted Buildings in the Arid Climate. Energy Rep. 2021, 7, 6182–6195. [Google Scholar] [CrossRef]
- Agenis-Nevers, M.; Wang, Y.; Dugachard, M.; Salvazet, R.; Becker, G.; Chenu, D. Measurement and Verification for Multiple Buildings: An Innovative Baseline Model Selection Framework Applied to Real Energy Performance Contracts. Energy Build. 2021, 249, 111183. [Google Scholar] [CrossRef]
- Darabseh, M.; Martins, J.P. Blockchain Orchestration and Transformation for Construction. Smart Cities 2023, 6, 652–675. [Google Scholar] [CrossRef]
- Turk, Ž.; Klinc, R. Potentials of Blockchain Technology for Construction Management. Procedia Eng. 2017, 196, 638–645. [Google Scholar] [CrossRef]
- Darabseh, M.; Martins, J. Framework for the Use of Blockchain to Support the Development of Asset Information Models. In Proceedings of the 15th World Congress on Engineering Asset Management, Pioneiros, Brazil, 15–18 August 2021. [Google Scholar]
- BigchainDB GmbH. BigchainDB 2020. v 2.2.2. Available online: https://www.bigchaindb.com/ (accessed on 7 July 2024).
- BigchainDB GmbH. Whitepaper: BigchainDB 2.0 The Blockchain Database; BigChainDB: Berlin, Germany, 2018. [Google Scholar]
- Nour El-Din, M.; Pereira, P.F.; Poças Martins, J.; Ramos, N.M.M. Digital Twins for Construction Assets Using BIM Standard Specifications. Buildings 2022, 12, 2155. [Google Scholar] [CrossRef]
- EN ISO 19650-1; Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 1: Concepts and Principles. European Committee for Standardization: Geneva, Switzerland, 2018.
- EN ISO 19650-2; Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 2: Delivery Phase of the Assets. European Committee for Standardization: Geneva, Switzerland, 2018.
- EN ISO 19650-3; Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 3: Operational Phase of the Assets. European Committee for Standardization: Geneva, Switzerland, 2020.
- EN ISO 19650-5; Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 5: Security-Minded Approach to Information Manage. European Committee for Standardization: Geneva, Switzerland, 2020.
- European Data Protection Supervisor (EDPS). Opinion 5/2018, Preliminary Opinion on Privacy by Design; EDPS: Bruxelles, Belgium, 2018. [Google Scholar]
- Wirth, C.; Kolain, M. Privacy by BlockChain Design: A Blockchain-Enabled GDPR-Compliant Approach for Handling Personal Data. In Proceedings of the 1st ERCIM Blockchain Workshop 2018, Reports of the European Society for Socially Embedded Technologies, Amsterdam, The Netherlands, 8–9 May 2018. [Google Scholar]
- Politou, E.; Casino, F.; Alepis, E.; Patsakis, C. Blockchain Mutability: Challenges and Proposed Solutions. IEEE Trans. Emerg. Top. Comput. 2021, 9, 1972–1986. [Google Scholar] [CrossRef]
- Schwerin, S. Blockchain and Privacy Protection in the Case of the European General Data Protection Regulation (GDPR): A Delphi Study. J. Br. Blockchain Assoc. 2018, 1, 1–77. [Google Scholar] [CrossRef]
- Sater, S. Blockchain and the European Union’s General Data Protection Regulation: A Chance to Harmonize International Data Flows. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Finck, M. Blockchains and Data Protection in the European Union. Eur. Data Prot. Law Rev. 2018, 4, 17–35. [Google Scholar] [CrossRef]
- Eberhardt, J.; Tai, S. On or off the Blockchain? Insights on off-Chaining Computation and Data. In Proceedings of the Service-Oriented and Cloud Computing, Oslo, Norway, 27–29 September 2017; Volume 10465, pp. 3–15. [Google Scholar]
- Meiklejohn, S. Top Ten Obstacles along Distributed Ledgers Path to Adoption. IEEE Secur. Priv. 2018, 16, 13–19. [Google Scholar] [CrossRef]
- García-Barriocanal, E.; Sánchez-Alonso, S.; Sicilia, M.A. Deploying Metadata on Blockchain Technologies. In Proceedings of the Metadata and Semantic Research. MTSR 2017. Communications in Computer and Information Science, Tallinn, Estonia, 28 November–1 December 2017; Springer: Cham, Switzerland, 2017; Volume 755, pp. 38–49. [Google Scholar]
- Regulation 2016/679. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation). 2017. Available online: http://data.europa.eu/eli/reg/2016/679/oj (accessed on 17 April 2024).
- Lo, S.K.; Xu, X.; Staples, M.; Yao, L. Reliability Analysis for Blockchain Oracles. Comput. Electr. Eng. 2020, 83, 106582. [Google Scholar] [CrossRef]
- Chainlink What Is a Blockchain Oracle? Available online: https://chain.link/education/blockchain-oracles#decentralized-oracles (accessed on 17 April 2024).
- Al-Breiki, H.; Rehman, M.H.U.; Salah, K.; Svetinovic, D. Trustworthy Blockchain Oracles: Review, Comparison, and Open Research Challenges. IEEE Access 2020, 8, 85675–85685. [Google Scholar] [CrossRef]
- Kochovski, P.; Gec, S.; Stankovski, V.; Bajec, M.; Drobintsev, P.D. Trust Management in a Blockchain Based Fog Computing Platform with Trustless Smart Oracles. Futur. Gener. Comput. Syst. 2019, 101, 747–759. [Google Scholar] [CrossRef]
Aspect | Added Value | |
---|---|---|
Digital Twin | Blockchain | |
Enhanced Performance Evaluation | Creates high-fidelity virtual models of buildings, allowing real-time monitoring, simulation, and optimization of energy performance, which lead to more accurate performance evaluation and proactive maintenance, which are critical for successful EPC implementation [13]. | Ensures data integrity and transparency, facilitating secure and tamper-proof recording of energy performance data, enhancing stakeholder trust, and streamlining the verification process [14]. |
Improved Data Management | Integrates various data sources into a single platform for comprehensive analysis and better decision-making for energy optimization [48]. | Blockchain secures data storage and sharing, addressing data manipulation and unauthorized access concerns that are particularly beneficial for managing large volumes of energy data generated by smart buildings [40]. |
Automation and Smart Contracts | The combination of DTs and Blockchain enables the automation of EPC processes through smart contracts, which automatically execute and enforce contract terms based on predefined conditions and real-time data [49]. This reduces administrative overhead, minimizes disputes, and ensures timely and accurate performance-based payments, thereby increasing the efficiency and reliability of EPCs [14]. |
Country | No. of Publications | Country | No. of Publications |
---|---|---|---|
China | 17 | Poland | 1 |
USA | 13 | Iran | 1 |
Italy | 6 | Switzerland | 1 |
France | 5 | Germany | 1 |
UK | 4 | Portugal | 1 |
Canada | 3 | Croatia | 1 |
Malaysia | 3 | Greece | 1 |
Netherlands | 3 | Denmark | 1 |
UAE | 3 | Ukraine | 1 |
Taiwan | 2 | Slovakia | 1 |
Norway | 2 | Russia | 1 |
Spain | 2 | Latvia | 1 |
Australia | 2 | Turkey | 1 |
Hong Kong | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nour El-Din, M.; Poças Martins, J.; Ramos, N.M.M.; Pereira, P.F. The Role of Blockchain-Secured Digital Twins in Promoting Smart Energy Performance-Based Contracts for Buildings. Energies 2024, 17, 3392. https://doi.org/10.3390/en17143392
Nour El-Din M, Poças Martins J, Ramos NMM, Pereira PF. The Role of Blockchain-Secured Digital Twins in Promoting Smart Energy Performance-Based Contracts for Buildings. Energies. 2024; 17(14):3392. https://doi.org/10.3390/en17143392
Chicago/Turabian StyleNour El-Din, Mohamed, João Poças Martins, Nuno M. M. Ramos, and Pedro F. Pereira. 2024. "The Role of Blockchain-Secured Digital Twins in Promoting Smart Energy Performance-Based Contracts for Buildings" Energies 17, no. 14: 3392. https://doi.org/10.3390/en17143392
APA StyleNour El-Din, M., Poças Martins, J., Ramos, N. M. M., & Pereira, P. F. (2024). The Role of Blockchain-Secured Digital Twins in Promoting Smart Energy Performance-Based Contracts for Buildings. Energies, 17(14), 3392. https://doi.org/10.3390/en17143392