Enhancing the Properties of Nanostructure TiO2 Thin Film via Calcination Temperature for Solar Cell Application
Abstract
:1. Introduction
2. Methodology and Materials
3. Results and Discussion
3.1. Structural Properties of TiO2/FTO Substrate
3.2. Optical Properties of TiO2/FTO Substrate
3.3. Morphological Properties of TiO2/FTO Substrate
3.4. Application of TiO2 Thin Film for Solar Cell
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sultan, S.M.; Tso, C.P.; Ervina, E.M.N. A new production cost effectiveness factor for assessing photovoltaic module cooling techniques. Int. J. Energy Res. 2020, 44, 574–583. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Mater. Sci. 2021, 3, 390–403. [Google Scholar] [CrossRef]
- Xue, D.; Song, H.; Zhong, X.; Wang, J.; Zhao, N.; Guo, H.; Cong, P. Flexible resistive switching device based on the TiO2 nanorod arrays for non-volatile memory application. J. Alloys Compd. 2020, 822, 153552. [Google Scholar] [CrossRef]
- Pandey, S.; Shukla, A.; Tripathi, A. Highly sensitive and self powered ultraviolet photo detector based on ZnO nanorods coated with TiO2. Sens. Actuators Phys. 2023, 350, 114112. [Google Scholar] [CrossRef]
- Hussin, R.; Seng, G.H.; Zulkiflee, N.S.; Harun, Z.; Hatta, M.N.M.; Yunos, M.Z. ZnO/TiO2 thin films for photocatalytic application. AIP Conf. Proc. 2019, 2068, 020096. [Google Scholar] [CrossRef]
- Agarwal, R.; Himanshu; Patel, S.L.; Chander, S.; Ameta, C.; Dhaka, M.S. Understanding the physical properties of thin TiO2 films treated in different thermal atmospheric conditions. Vacuum 2020, 177, 109347. [Google Scholar] [CrossRef]
- Ahmad, N.; Fariza, M.; Azman, T.; Khairul, A.M.; Zafirah, M.I.A.; Nurliyana, M.A. Fabrication and Characterization of p-Cu2O on n-TiO2 Layer by Electrodeposition Method for Heterojunction Solar Cells Development. J. Hum. Earth Futur. 2021, 2, 334–344. [Google Scholar] [CrossRef]
- Hossain, M.K.; Mortuza, A.A.; Sen, S.K.; Basher, M.K.; Ashraf, M.W.; Tayyaba, S.; Mia, M.N.H.; Uddin, M.J. A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode. Optik 2018, 171, 507–516. [Google Scholar] [CrossRef]
- Mokhtar, S.M.; Ahmad, M.K.; Harish, S.; Hamed, N.K.A.; Shimomura, M. Surface chemistry and growth mechanism of highly oriented, single crystalline Nb-doped TiO2 nanorods. CrystEngComm 2020, 22, 2380–2388. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C. TiO2 coated zno nanorods by mist chemical vapor deposition for application as photoanodes for dye-sensitized solar cells. Nanomaterials 2019, 9, 1339. [Google Scholar] [CrossRef]
- Ahmad, N.; Mohamad, F.; Ahmad, M.K.; Talib, A. Influence of growth temperature on tio2 nanostructures by hydrothermal synthesis. Int. J. Eng. Adv. Technol. 2019, 8, 936–941. [Google Scholar] [CrossRef]
- Gürakar, S.; Ot, H.; Horzum, S.; Serin, T. Variation of structural and optical properties of TiO2 films prepared by DC magnetron sputtering method with annealing temperature. Mater. Sci. Eng. B 2020, 262, 114782. [Google Scholar] [CrossRef]
- Fouzia, A.; Rabah, B. The influence of doping lead and annealing temperature on grown of nanostructures of TiO2 thin films prepared by a sol-gel method. Mater. Sci. Eng. B 2021, 265, 114982. [Google Scholar] [CrossRef]
- Arifin, N.M.; Mohamad, F.; Hussin, R.; Ismail, A.Z.M.; Ramli, S.A.; Ahmad, N.; Nor, N.H.M.; Sahdan, M.Z.; Zain, M.Z.M.; Izaki, M. Development of homogenous n-TiO2/ZnO bilayer/p-Cu2O heterostructure thin film. J. Sol.-Gel. Sci. Technol. 2021, 100, 224–231. [Google Scholar] [CrossRef]
- Hossain, M.F.; Paul, S.; Raihan, M.A.; Khan, M.A.G. Fabrication of digitalized spin coater for deposition of thin films. In Proceedings of the 1st International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT 2014), Dhaka, Bangladesh, 10–12 April 2014; pp. 14–18. [Google Scholar] [CrossRef]
- Rui, Y.; Jin, Z.; Fan, X.; Li, W.; Li, B.; Li, T.; Wang, Y.; Wang, L.; Liang, J. Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots. Mater. Futur. 2022, 1, 045101. [Google Scholar] [CrossRef]
- Xiang, H.; Liu, P.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells. J. Mater. Sci. Technol. 2022, 113, 138–146. [Google Scholar] [CrossRef]
- Khan, M.I.; Imran, S.; Shahnawaz; Saleem, M.; Ur Rehman, S. Annealing effect on the structural, morphological and electrical properties of TiO2/ZnO bilayer thin films. Results Phys. 2018, 8, 249–252. [Google Scholar] [CrossRef]
- Muzni, N.H.M.; Noor, E.E.M.; Abdullah, M.M.A.B.; Aksoy, C. Effects of TiO2 and Al2O3 nanoparticles addition on the thermal properties and wettability of Sn-3.0Ag-0.5Cu-xTiO2-xAl2O3. J. Phys. Conf. Ser. 2022, 2169, 012003. [Google Scholar] [CrossRef]
- Arifin, N.M.; Mohamad, F.; Xin, L.Z.; Hussin, R.; Ismail, A.Z.M.; Ramli, S.A.; Ahmad, N.; Nor, N.H.M.; Sahdan, M.Z.; Zain, M.Z.M.; et al. Dependence of deposition bath temperature for p-electrodeposited-Cu2O onto n-TiO2/ZnO bilayer thin films. Optik 2023, 288, 171205. [Google Scholar] [CrossRef]
- Durante, O.; Di Giorgio, C.; Granata, V.; Neilson, J.; Fittipaldi, R.; Vecchione, A.; Carapella, G.; Chiadini, F.; De Salvo, R.; Dinelli, F.; et al. Emergence and evolution of crystallization in tio2 thin films: A structural and morphological study. Nanomaterials 2021, 11, 1409. [Google Scholar] [CrossRef]
- Lukong, V.T.; Ukoba, K.; Yoro, K.O.; Jen, T.C. Annealing temperature variation and its influence on the self-cleaning properties of TiO2 thin films. Heliyon 2022, 8, e09460. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zahn, D.R.T.; Madeira, T.I. Photocatalytic Performance of Sol-Gel Prepared TiO2 Thin Films Annealed at Various Temperatures. Material 2023, 16, 5494. [Google Scholar] [CrossRef] [PubMed]
- Sunil, A.; Jayasudha, M.S.G.S.; Nair, P.B. Multifunctional applications of TiO2 thin fi lms synthesized by sol—Gel dip coating technique. J. Sol-Gel Sci. Technol. 2024, 110, 346–362. [Google Scholar] [CrossRef]
- Hammoodi, R.A.; Prof, A.; Abbas, A.K.; Elttayef, P.A.K. Structural and optical properties of CuO thin films prepared via R. F. magnetron sputtering. Int. J. Appl. Innov. Enginerring Manag. 2014, 3, 1–7. [Google Scholar]
- Arifin, N.M.; Efzan, E.; Noor, M.; Mohamad, F.; Mohamad, N. The Impact of Spinning Speed on n-TiO2/ZnO Bilayer Thin Film Fabricated through Sol—Gel Spin-Coating Method. Coatings 2024, 14, 73. [Google Scholar] [CrossRef]
- Malek, M.F.; Mamat, M.H.; Khusaimi, Z.; Sahdan, M.Z.; Musa, M.Z.; Zainun, A.R.; Suriani, A.B.; Sin, N.D.M.; Hamid, S.B.A.; Rusop, M. Sonicated sol-gel preparation of nanoparticulate ZnO thin films with various deposition speeds: The highly preferred c-axis (002) orientation enhances the final properties. J. Alloys Compd. 2014, 582, 12–21. [Google Scholar] [CrossRef]
- Hussin, R.; Zulkiflee, N.S.; Kamdi, Z.; Ainuddin, A.R.; Harun, Z.; Mohamed Hatta, M.N. Photocatalytic activity of bilayer tio2/zno and zno tio2 thin films. Mater. Sci. Forum 2020, 1010 MSF, 411–417. [Google Scholar] [CrossRef]
- Bakri, A.S.; Sahdan, M.Z.; Adriyanto, F.; Raship, N.A.; Said, N.D.M.; Abdullah, S.A.; Rahim, M.S. Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties. AIP Conf. Proc. 2017, 1788, 030030. [Google Scholar] [CrossRef]
- Arifin, N.M.; Mohamad, F.; Hussin, R.; Zafirah, A.; Ismail, M.; Arifin, N.M.; Mohamad, F.; Hussin, R.; Zafirah, A.; Ismail, M. Annealing Treatment on Homogenous n-TiO2/ZnO Bilayer Thin Film Deposition as Window Layer for p-Cu2O-Based Heterostructure Thin Film Film Deposition as Window Layer for p-Cu2O-Based. Coatings 2023, 13, 206. [Google Scholar] [CrossRef]
- Timoumi, A.; Albetran, H.M.; Alamri, H.R.; Alamri, S.N.; Low, I.M. Impact of annealing temperature on structural, morphological and optical properties of GO-TiO2 thin films prepared by spin coating technique. Superlattices Microstruct. 2020, 139, 106423. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Alaya, Y.; Souissi, R.; Toumi, M.; Madani, M.; El Mir, L.; Bouguila, N.; Alaya, S. Annealing effect on the physical properties of TiO2 thin films deposited by spray pyrolysis. RSC Adv. 2023, 13, 21852–21860. [Google Scholar] [CrossRef] [PubMed]
- Zeman, M. Thin-film silicon PV technology. J. Electr. Eng. 2010, 61, 271–276. [Google Scholar] [CrossRef]
- Tanski, T.; Matysiak, W.; Kosmalska, D.; Lubos, A. Influence of calcination temperature on optical and structural properties of TiO2 thin films prepared by means of sol-gel and spin coating. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 151–156. [Google Scholar] [CrossRef]
- Manickam, K.; Muthusamy, V.; Manickam, S.; Senthil, T.S.; Periyasamy, G.; Shanmugam, S. Effect of annealing temperature on structural, morphological and optical properties of nanocrystalline TiO2 thin films synthesized by sol-gel dip coating method. Mater. Today Proc. 2019, 23, 68–72. [Google Scholar] [CrossRef]
- Pitchaiya, S.; Eswaramoorthy, N.; Natarajan, M.; Santhanam, A.; Ramakrishnan, V.M.; Asokan, V.; Palanichamy, P.; Palanisamy, B.; Kalimuthu, A.; Velauthapillai, D. Interfacing green synthesized flake like-ZnO with TiO2 for bilayer electron extraction in perovskite solar cells. New J. Chem. 2020, 44, 8422–8433. [Google Scholar] [CrossRef]
- Hamed, N.K.A.; Ahmad, M.K.; Hairom, N.H.H.; Faridah, A.B.; Mamat, M.H.; Mohamed, A.; Suriani, A.B.; Nafarizal, N.; Fazli, F.I.M.; Mokhtar, S.M.; et al. Dependence of photocatalysis on electron trapping in Ag-doped flowerlike rutile-phase TiO2 film by facile hydrothermal method. Appl. Surf. Sci. 2020, 534, 147571. [Google Scholar] [CrossRef]
- Lee, J.W.; Kang, S.M. Patterning of Metal Halide Perovskite Thin Films and Functional Layers for Optoelectronic Applications. Nano-Micro Lett. 2023, 15, 184. [Google Scholar] [CrossRef]
- Ogugua, S.N.; Ntwaeaborwa, O.M.; Swart, H.C. Latest development on pulsed laser deposited thin films for advanced luminescence applications. Coatings 2020, 10, 1078. [Google Scholar] [CrossRef]
- Shu, Q.; Li, Q.; Medeiros, S.L.S.; Klug, J.L. Development of Non-reactive F-Free Mold Fluxes for High Aluminum Steels: Non-isothermal Crystallization Kinetics for Devitrification. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2020, 51, 1169–1180. [Google Scholar] [CrossRef]
- Papež, N.; Dallaev, R.; Ţălu, Ş.; Kaštyl, J. Overview of the current state of gallium arsenide-based solar cells. Material 2021, 14, 3075. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, K.; An, Q. Atomic structure, stability, and dissociation of dislocations in cadmium telluride. Int. J. Plast. 2023, 163, 103552. [Google Scholar] [CrossRef]
- Bouabdelli, M.W.; Rogti, F.; Maache, M.; Rabehi, A. Performance enhancement of CIGS thin-film solar cell. Optik 2020, 216, 164948. [Google Scholar] [CrossRef]
- Suresh Kumar, N.; Chandra Babu Naidu, K. A review on perovskite solar cells (PSCs), materials and applications. J. Mater. 2021, 7, 940–956. [Google Scholar] [CrossRef]
- Agarwal, K.; Rai, H.; Mondal, S. Quantum dots: An overview of synthesis, properties, and applications. Mater. Res. Express 2023, 10, 062001. [Google Scholar] [CrossRef]
- Suriani, A.B.; Muqoyyanah; Mohamed, A.; Mamat, M.H.; Hashim, N.; Isa, I.M.; Malek, M.F.; Kairi, M.I.; Mohamed, A.R.; Ahmad, M.K. Improving the photovoltaic performance of DSSCs using a combination of mixed-phase TiO2 nanostructure photoanode and agglomerated free reduced graphene oxide counter electrode assisted with hyperbranched surfactant. Optik 2018, 158, 522–534. [Google Scholar] [CrossRef]
- Baiju, A.; Yarema, M. Status and challenges of multi-junction solar cell technology. Front. Energy Res. 2022, 10, 971918. [Google Scholar] [CrossRef]
- Chen, J.L.; Liu, M.M.; Xie, S.Y.; Yue, L.J.; Gong, F.L.; Chai, K.M.; Zhang, Y.H. Cu2O-loaded TiO2 heterojunction composites for enhanced photocatalytic H2 production. J. Mol. Struct. 2022, 1247, 131294. [Google Scholar] [CrossRef]
- Dumitru, C.; Muscurel, V.-F.; Fara, L. Cu2O Layer Analysis and Optimization Based on a Metal-Oxide Tandem Heterojunction Solar Cell. Mater. Today Proc. 2018, 5, 15895–15901. [Google Scholar] [CrossRef]
- Septina, W.; Ikeda, S.; Khan, M.A.; Hirai, T.; Harada, T.; Matsumura, M.; Peter, L.M. Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochim. Acta 2011, 56, 4882–4888. [Google Scholar] [CrossRef]
Annealing Temperature (°C) | (101)-Orientation Plane | Lattice Parameter (Å) | ||||
---|---|---|---|---|---|---|
2θ (°) | FWHM | Intensity (%) | Crystallite Size (nm) | a = b | c | |
400 | 25.34 | 0.4133 | 31.48 | 20.59 | 3.7874 | 9.4491 |
500 | 25.25 | 0.3838 | 76.66 | 22.16 | 3.7858 | 9.6673 |
600 | 25.30 | 0.3838 | 99.99 | 22.17 | 3.7866 | 9.4915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arifin, N.M.; Mhd Noor, E.E.; Mohamad, F.; Mohamad, N.; Mohamed Muzni, N.H. Enhancing the Properties of Nanostructure TiO2 Thin Film via Calcination Temperature for Solar Cell Application. Energies 2024, 17, 3415. https://doi.org/10.3390/en17143415
Arifin NM, Mhd Noor EE, Mohamad F, Mohamad N, Mohamed Muzni NH. Enhancing the Properties of Nanostructure TiO2 Thin Film via Calcination Temperature for Solar Cell Application. Energies. 2024; 17(14):3415. https://doi.org/10.3390/en17143415
Chicago/Turabian StyleArifin, Nurliyana Mohamad, Ervina Efzan Mhd Noor, Fariza Mohamad, Norhidayah Mohamad, and Nur Haslinda Mohamed Muzni. 2024. "Enhancing the Properties of Nanostructure TiO2 Thin Film via Calcination Temperature for Solar Cell Application" Energies 17, no. 14: 3415. https://doi.org/10.3390/en17143415
APA StyleArifin, N. M., Mhd Noor, E. E., Mohamad, F., Mohamad, N., & Mohamed Muzni, N. H. (2024). Enhancing the Properties of Nanostructure TiO2 Thin Film via Calcination Temperature for Solar Cell Application. Energies, 17(14), 3415. https://doi.org/10.3390/en17143415