Evaluation of Favorable Fracture Area of Deep Coal Reservoirs Using a Combination of Field Joint Observation and Paleostress Numerical Simulation: A Case Study in the Linxing Area
Abstract
:1. Introduction
2. Geological Setting
3. Methodology
3.1. Field Joint Observations
3.2. Staging of Joints
3.3. Numerical Simulation of Paleostress Fields
3.3.1. Paleogeological Model
3.3.2. Mechanical Parameters
3.3.3. Boundary Conditions
3.4. Fracture Development Criteria
4. Results and Discussions
4.1. Field Joints’ Characteristics
4.2. Paleo Tectonic Stress Characteristics
4.3. Paleogeological Models
4.4. Paleostress Field
4.4.1. Yanshanian Period
4.4.2. Himalayan Period
4.5. Evaluation of Favorable Fracture Area
5. Conclusions
- (1)
- The 8+9 # coal reservoir in the Linxing area has mainly undergone two stages of tectonic movements, which are the compression in the Yanshanian period in the NW direction and the compression in the Himalayan period in the NE direction. The maximum horizontal principal stress during the Yanshanian period is 160 MPa, and the minimum principal stress is 10 MPa. The maximum horizontal principal stress during the Himalayan period is 110 MPa, and the minimum principal stress is 20 MPa.
- (2)
- The degree of fracture development in deep coal reservoirs in the research area is directly influenced by the paleostress field, with the main fracturing periods being the Yanshanian and Himalayan periods. Based on the distribution of the paleostress field obtained from numerical simulation, the Mohr–Coulomb fracture criterion and Griffith fracture criterion are used to predict shear and tension fractures. It is found that the fracture threshold of shear fracture is smaller than that of tension fracture, and shear fractures are formed earlier than tensile fractures.
- (3)
- Based on the comprehensive evaluation factors of fractures, the 8 + 9 # coal reservoir is divided into 24 favorable fracture areas from Class V to Class I. Fractures in Class I areas and Class II areas are relatively well developed and were formed under two periods of tectonic movements. Additionally, there are nine favorable zones in Class I and Class II, mainly distributed in the northwest of the study area and the magmatic rock uplift area.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number | Latitude | Longitude | Dip Direction and Angle | Number | Latitude | Longitude | Dip Direction and Angle |
---|---|---|---|---|---|---|---|
1 | N 38°45′32.96″ | E 111°08′13.97″ | 45°∠78° | 116 | N 39°03′31.40″ | E 111°06′11.67″ | 325°∠69° |
2 | N 38°45′32.96″ | E 111°08′13.97″ | 75°∠84° | 117 | N 39°02′56.54″ | E 111°06′38.80″ | 235°∠70° |
3 | N 38°45′30.10″ | E 111°08′9.74″ | 255°∠77° | 118 | N 39°02′56.54″ | E 111°06′38.80″ | 151°∠86° |
4 | N 38°45′30.10″ | E 111°08′9.74″ | 102°∠55° | 119 | N 39°02′56.54″ | E 111°06′38.80″ | 316°∠73° |
5 | N 38°45′27.78″ | E 111°08′6.06″ | 75°∠78° | 120 | N 39°02′56.54″ | E 111°06′38.80″ | 225°∠69° |
6 | N 38°45′27.78″ | E 111°08′6.06″ | 168°∠82° | 121 | N 39°02′25.24″ | E 111°05′50.44″ | 187°∠84° |
7 | N 38°45′28.63″ | E 111°08′3.04″ | 65°∠57° | 122 | N 39°02′25.24″ | E 111°05′50.44″ | 86°∠81° |
8 | N 38°45′28.63″ | E 111°08′3.04″ | 178°∠64° | 123 | N 39°02′21.39″ | E 111°05′45.30″ | 184°∠76° |
9 | N 38°45′27.89″ | E 111°07′51.18″ | 78°∠65° | 124 | N 39°02′21.39″ | E 111°05′45.30″ | 77°∠54° |
10 | N 38°45′27.89″ | E 111°07′51.18″ | 342°∠76° | 125 | N 39°02′21.39″ | E 111°05′45.30″ | 189°∠71° |
11 | N 38°45′28.89″ | E 111°07′47.44″ | 260°∠85° | 126 | N 39°02′21.39″ | E 111°05′45.30″ | 76°∠67° |
12 | N 38°45′28.89″ | E 111°07′47.44″ | 50°∠71° | 127 | N 39°02′57.69″ | E 111°05′17.15″ | 102°∠81° |
13 | N 38°45′26.42″ | E 111°07′43.21″ | 47°∠73° | 128 | N 39°02′57.69″ | E 111°05′17.15″ | 182°∠85° |
14 | N 38°45′26.42″ | E 111°07′43.21″ | 268°∠68° | 129 | N 39°02′57.69″ | E 111°05′17.15″ | 98°∠80° |
15 | N 38°45′26.94″ | E 111°07′41.98″ | 50°∠53° | 130 | N 39°02′57.69″ | E 111°05′17.15″ | 65°∠81° |
16 | N 38°45′26.94″ | E 111°07′41.98″ | 260°∠79° | 131 | N 39°02′49.33″ | E 111°04′32.01″ | 324°∠82° |
17 | N 38°45′25.98″ | E 111°07′40.60″ | 48°∠78° | 132 | N 39°02′49.33″ | E 111°04′32.01″ | 345°∠78° |
18 | N 38°45′25.98″ | E 111°07′40.60″ | 242°∠69° | 133 | N 39°02′49.33″ | E 111°04′32.01″ | 60°∠79° |
19 | N 38°45′24.68″ | E 111°07′34.20″ | 76°∠70° | 134 | N 39°02′49.33″ | E 111°04′32.01″ | 68°∠75° |
20 | N 38°45′24.68″ | E 111°07′34.20″ | 340°∠86° | 135 | N 39°02′49.33″ | E 111°04′32.01″ | 347°∠76° |
21 | N 38°45′25.90″ | E 111°07′29.62″ | 55°∠82° | 136 | N 39°02′21.47″ | E 111°03′17.23″ | 335°∠83° |
22 | N 38°45′25.90″ | E 111°07′29.62″ | 159°∠88° | 137 | N 39°02′21.47″ | E 111°03′17.23″ | 62°∠78° |
23 | N 38°45′22.51″ | E 111°07′24.62″ | 37°∠77° | 138 | N 39°02′21.47″ | E 111°03′17.23″ | 325°∠87° |
24 | N 38°45′22.51″ | E 111°07′24.62″ | 292°∠54° | 139 | N 39°02′21.47″ | E 111°03′17.23″ | 84°∠77° |
25 | N 38°45′21.51″ | E 111°07′22.61″ | 22°∠82° | 140 | N 39°02′11.29″ | E 111°02′35.42″ | 335°∠82° |
26 | N 38°45′21.51″ | E 111°07′22.61″ | 258°∠66° | 141 | N 39°02′11.29″ | E 111°02′35.42″ | 54°∠51° |
27 | N 38°46′1.61″ | E 111°04′9.33″ | 315°∠87° | 142 | N 39°02′11.29″ | E 111°02′35.42″ | 63°∠54° |
28 | N 38°46′1.61″ | E 111°04′9.33″ | 43°∠82° | 143 | N 39°02′11.29″ | E 111°02′35.42″ | 358°∠85° |
29 | N 38°46′2.58″ | E 111°04′11.09″ | 12°∠73° | 144 | N 38°30′14.85″ | E 111°10′14.05″ | 97°∠56° |
30 | N 38°46′2.58″ | E 111°04′11.09″ | 115°∠61° | 145 | N 38°30′14.85″ | E 111°10′14.05″ | 23°∠82° |
31 | N 38°46′0.10″ | E 111°04′11.78″ | 149°∠72° | 146 | N 38°30′14.85″ | E 111°10′14.05″ | 352°∠87° |
32 | N 38°46′0.10″ | E 111°04′11.78″ | 52°∠74° | 147 | N 38°30′14.85″ | E 111°10′14.05″ | 94°∠73° |
33 | N 38°45′59.16″ | E 111°04′12.44″ | 56°∠71° | 148 | N 38°30′15.85″ | E 111°10′14.41″ | 22°∠85° |
34 | N 38°45′59.16″ | E 111°04′12.44″ | 313°∠79° | 149 | N 38°30′15.85″ | E 111°10′14.41″ | 87°∠81° |
35 | N 38°45′58.49″ | E 111°04′20.51″ | 343°∠76° | 150 | N 38°30′12.00″ | E 111°10′11.72″ | 70°∠82° |
36 | N 38°45′58.49″ | E 111°04′20.51″ | 65°∠78° | 151 | N 38°30′12.00″ | E 111°10′11.72″ | 142°∠83° |
37 | N 38°45′58.10″ | E 111°04′22.05″ | 337°∠89° | 152 | N 38°30′1.18″ | E 111°10′11.06″ | 78°∠75° |
38 | N 38°45′58.10″ | E 111°04′22.05″ | 75°∠83° | 153 | N 38°30′1.18″ | E 111°10′11.06″ | 20°∠82° |
39 | N 38°45′58.41″ | E 111°04′23.18″ | 52°∠63° | 154 | N 38°30′1.02″ | E 111°10′8.31″ | 84°∠82° |
40 | N 38°45′58.41″ | E 111°04′23.18″ | 73°∠76° | 155 | N 38°30′1.02″ | E 111°10′8.31″ | 341°∠81° |
41 | N 38°45′58.41″ | E 111°04′23.18″ | 352°∠51° | 156 | N 38°30′0.25″ | E 111°10′7.68″ | 57°∠78° |
42 | N 38°45′58.41″ | E 111°04′23.18″ | 70°∠81° | 157 | N 38°30′0.25″ | E 111°10′7.68″ | 120°∠71° |
43 | N 38°45′58.41″ | E 111°04′23.18″ | 353°∠76° | 158 | N 38°29′57.27″ | E 111°10′4.44″ | 43°∠75° |
44 | N 38°45′58.41″ | E 111°04′23.18″ | 74°∠85° | 159 | N 38°29′57.27″ | E 111°10′4.44″ | 86°∠86° |
45 | N 38°45′58.41″ | E 111°04′23.18″ | 355°∠87° | 160 | N 38°29′57.27″ | E 111°10′4.44″ | 43°∠83° |
46 | N 38°45′58.41″ | E 111°04′23.18″ | 75°∠76° | 161 | N 38°29′57.27″ | E 111°10′4.44″ | 335°∠81° |
47 | N 38°45′58.97″ | E 111°04′40.51″ | 321°∠88° | 162 | N 38°29′55.65″ | E 111°10′2.87″ | 64°∠86° |
48 | N 38°45′58.97″ | E 111°04′40.51″ | 46°∠67° | 163 | N 38°29′55.65″ | E 111°10′2.87″ | 26°∠82° |
49 | N 38°45′58.97″ | E 111°04′40.51″ | 330°∠79° | 164 | N 37°26′27.77″ | E 110°54′12.61″ | 47°∠79° |
50 | N 38°45′58.97″ | E 111°04′40.51″ | 53°∠77° | 165 | N 37°26′27.77″ | E 110°54′12.61″ | 125°∠64° |
51 | N 38°46′2.86″ | E 111°05′14.02″ | 201°∠88° | 166 | N 37°26′39.75″ | E 110°53′51.22″ | 145°∠84° |
52 | N 38°46′2.86″ | E 111°05′14.02″ | 76°∠68° | 167 | N 37°26′39.75″ | E 110°53′51.22″ | 62°∠89° |
53 | N 38°46′2.86″ | E 111°05′14.02″ | 152°∠88° | 168 | N 37°26′41.60″ | E 110°53′49.24″ | 16°∠55° |
54 | N 38°46′2.86″ | E 111°05′14.02″ | 77°∠72° | 169 | N 37°26′41.60″ | E 110°53′49.24″ | 107°∠80° |
55 | N 38°46′2.86″ | E 111°05′14.02″ | 206°∠86° | 170 | N 37°26′41.60″ | E 110°53′49.24″ | 117°∠83° |
56 | N 38°46′2.86″ | E 111°05′14.02″ | 106°∠59° | 171 | N 37°26′41.60″ | E 110°53′49.24″ | 44°∠75° |
57 | N 38°45′27.48″ | E 111°06′44.02″ | 321°∠84° | 172 | N 37°26′41.60″ | E 110°53′49.24″ | 86°∠88° |
58 | N 38°45′27.48″ | E 111°06′44.02″ | 73°∠66° | 173 | N 37°33′30.36″ | E 110°53′51.46″ | 298°∠80° |
59 | N 38°45′26.41″ | E 111°06′46.27″ | 144°∠81° | 174 | N 37°33′30.36″ | E 110°53′51.46″ | 195°∠84° |
60 | N 38°45′26.41″ | E 111°06′46.27″ | 81°∠69° | 175 | N 37°33′35.10″ | E 110°53′33.25″ | 290°∠87° |
61 | N 38°45′26.41″ | E 111°06′46.27″ | 346°∠88° | 176 | N 37°33′35.10″ | E 110°53′33.25″ | 75°∠75° |
62 | N 38°45′26.41″ | E 111°06′46.27″ | 74°∠74° | 177 | N 37°33′35.07″ | E 110°53′33.50″ | 297°∠86° |
63 | N 38°45′26.41″ | E 111°06′46.27″ | 155°∠76° | 178 | N 37°33′35.07″ | E 110°53′33.50″ | 194°∠89° |
64 | N 38°45′26.41″ | E 111°06′46.27″ | 74°∠65° | 179 | N 37°33′8.90″ | E 110°51′58.80″ | 52°∠83° |
65 | N 38°45′27.10″ | E 111°06′47.15″ | 4°∠65° | 180 | N 37°33′8.90″ | E 110°51′58.80″ | 141°∠68° |
66 | N 38°45′27.10″ | E 111°06′47.15″ | 97°∠73° | 181 | N 37°33′9.01″ | E 110°51′58.85″ | 183°∠89° |
67 | N 38°45′27.10″ | E 111°06′47.15″ | 341°∠82° | 182 | N 37°33′9.01″ | E 110°51′58.85″ | 81°∠66° |
68 | N 38°45′27.10″ | E 111°06′47.15″ | 74°∠78° | 183 | N 37°33′10.65″ | E 110°51′55.53″ | 75°∠70° |
69 | N 38°45′24.64″ | E 111°06′56.57″ | 322°∠82° | 184 | N 37°33′10.65″ | E 110°51′55.53″ | 155°∠78° |
70 | N 38°45′24.64″ | E 111°06′56.57″ | 74°∠67° | 185 | N 37°33′9.98″ | E 110°51′54.10″ | 196°∠89° |
71 | N 38°45′22.63″ | E 111°07′0.53″ | 123°∠68° | 186 | N 37°33′9.98″ | E 110°51′54.10″ | 81°∠75° |
72 | N 38°45′22.63″ | E 111°07′0.53″ | 52°∠74° | 187 | N 37°33′10.09″ | E 110°51′51.38″ | 85°∠79° |
73 | N 38°45′21.75″ | E 111°07′3.08″ | 18°∠61° | 188 | N 37°33′10.09″ | E 110°51′51.38″ | 184°∠83° |
74 | N 38°45′21.75″ | E 111°07′3.08″ | 86°∠74° | 189 | N 37°33′9.76″ | E 110°51′50.04″ | 183°∠84° |
75 | N 38°45′21.75″ | E 111°07′3.08″ | 150°∠78° | 190 | N 37°33′9.76″ | E 110°51′50.04″ | 285°∠81° |
76 | N 38°45′21.75″ | E 111°07′3.08″ | 76°∠72° | 191 | N 37°33′9.76″ | E 110°51′50.04″ | 78°∠89° |
77 | N 38°45′20.86″ | E 111°07′14.95″ | 146°∠75° | 192 | N 37°33′9.76″ | E 110°51′50.04″ | 152°∠73° |
78 | N 38°45′20.86″ | E 111°07′14.95″ | 85°∠89° | 193 | N 37°32′55.11″ | E 110°49′30.59″ | 57°∠81° |
79 | N 39°03′23.56″ | E 111°07′6.74″ | 188°∠56° | 194 | N 37°32′55.11″ | E 110°49′30.59″ | 129°∠84° |
80 | N 39°03′23.56″ | E 111°07′6.74″ | 100°∠76° | 195 | N 37°32′55.11″ | E 110°49′30.59″ | 51°∠79° |
81 | N 39°03′19.84″ | E 111°07′4.13″ | 219°∠82° | 196 | N 37°32′55.11″ | E 110°49′30.59″ | 142°∠80° |
82 | N 39°03′19.84″ | E 111°07′4.13″ | 127°∠84° | 197 | N 37°35′33.50″ | E 110°53′10.92″ | 290°∠74° |
83 | N 39°03′20.39″ | E 111°07′3.14″ | 133°∠76° | 198 | N 37°35′33.50″ | E 110°53′10.92″ | 185°∠86° |
84 | N 39°03′20.39″ | E 111°07′3.14″ | 221°∠84° | 199 | N 37°35′33.50″ | E 110°53′10.92″ | 190°∠87° |
85 | N 39°03′20.73″ | E 111°07′2.48″ | 212°∠79° | 200 | N 37°35′33.50″ | E 110°53′10.92″ | 290°∠82° |
86 | N 39°03′20.73″ | E 111°07′2.48″ | 139°∠87° | 201 | N 37°35′30.47″ | E 110°53′0.46″ | 294°∠82° |
87 | N 39°03′20.32″ | E 111°07′2.01″ | 222°∠79° | 202 | N 37°35′30.47″ | E 110°53′0.46″ | 193°∠82° |
88 | N 39°03′20.32″ | E 111°07′2.01″ | 143°∠84° | 203 | N 37°35′30.47″ | E 110°53′0.46″ | 190°∠89° |
89 | N 39°03′19.69″ | E 111°07′1.11″ | 56°∠81° | 204 | N 37°35′30.47″ | E 110°53′0.46″ | 290°∠84° |
90 | N 39°03′19.69″ | E 111°07′1.11″ | 127°∠79° | 205 | N 37°35′30.47″ | E 110°53′0.46″ | 191°∠87° |
91 | N 39°03′18.83″ | E 111°07′0.56″ | 53°∠74° | 206 | N 37°35′30.47″ | E 110°53′0.46″ | 275°∠88° |
92 | N 39°03′18.83″ | E 111°07′0.56″ | 131°∠87° | 207 | N 37°35′26.86″ | E 110°52′50.82″ | 190°∠89° |
93 | N 39°03′21.35″ | E 111°07′4.26″ | 42°∠81° | 208 | N 37°35′26.86″ | E 110°52′50.82″ | 285°∠87° |
94 | N 39°03′21.35″ | E 111°07′4.26″ | 320°∠83° | 209 | N 37°35′26.86″ | E 110°52′50.82″ | 198°∠88° |
95 | N 39°03′21.35″ | E 111°07′4.26″ | 45°∠71° | 210 | N 37°35′26.86″ | E 110°52′50.82″ | 281°∠71° |
96 | N 39°03′21.35″ | E 111°07′4.26″ | 324°∠86° | 211 | N 37°35′25.39″ | E 110°52′48.02″ | 80°∠73° |
97 | N 39°03′35.25″ | E 111°06′19.22″ | 182°∠67° | 212 | N 37°35′25.39″ | E 110°52′48.02″ | 193°∠88° |
98 | N 39°03′35.25″ | E 111°06′19.22″ | 277°∠90° | 213 | N 37°35′25.28″ | E 110°52′41.15″ | 291°∠84° |
99 | N 39°03′35.25″ | E 111°06′19.22″ | 359°∠71° | 214 | N 37°35′25.28″ | E 110°52′41.15″ | 189°∠87° |
100 | N 39°03′35.25″ | E 111°06′19.22″ | 272°∠77° | 215 | N 37°35′22.00″ | E 110°52′35.99″ | 192°∠89° |
101 | N 39°03′35.25″ | E 111°06′19.22″ | 272°∠57° | 216 | N 37°35′22.00″ | E 110°52′35.99″ | 289°∠68° |
102 | N 39°03′35.25″ | E 111°06′19.22″ | 183°∠88° | 217 | N 37°35′20.02″ | E 110°52′30.63″ | 189°∠89° |
103 | N 39°03′34.15″ | E 111°06′20.15″ | 267°∠76° | 218 | N 37°35′20.02″ | E 110°52′30.63″ | 282°∠79° |
104 | N 39°03′34.15″ | E 111°06′20.15″ | 183°∠74° | 219 | N 37°35′20.02″ | E 110°52′30.63″ | 186°∠85° |
105 | N 39°03′30.99″ | E 111°06′19.14″ | 355°∠83° | 220 | N 37°35′20.02″ | E 110°52′30.63″ | 82°∠66° |
106 | N 39°03′30.99″ | E 111°06′19.14″ | 87°∠81° | 221 | N 37°35′19.18″ | E 110°52′26.46″ | 82°∠81° |
107 | N 39°03′30.99″ | E 111°06′19.14″ | 230°∠82° | 222 | N 37°35′19.18″ | E 110°52′26.46″ | 193°∠86° |
108 | N 39°03′30.99″ | E 111°06′19.14″ | 325°∠46° | 223 | N 37°35′13.14″ | E 110°51′57.89″ | 179°∠86° |
109 | N 39°03′30.26″ | E 111°06′18.75″ | 359°∠82° | 224 | N 37°35′13.14″ | E 110°51′57.89″ | 270°∠79° |
110 | N 39°03′30.26″ | E 111°06′18.75″ | 273°∠79° | 225 | N 37°35′13.14″ | E 110°51′57.89″ | 175°∠84° |
111 | N 39°03′30.15″ | E 111°06′13.40″ | 224°∠75° | 226 | N 37°35′13.14″ | E 110°51′57.89″ | 283°∠84° |
112 | N 39°03′30.15″ | E 111°06′13.40″ | 82°∠87° | 227 | N 37°35′13.70″ | E 110°51′57.07″ | 184°∠82° |
113 | N 39°03′31.40″ | E 111°06′11.67″ | 337°∠66° | 228 | N 37°35′13.70″ | E 110°51′57.07″ | 272°∠85° |
114 | N 39°03′31.40″ | E 111°06′11.67″ | 54°∠75° | 229 | N 37°35′14.15″ | E 110°51′51.27″ | 177°∠72° |
115 | N 39°03′31.40″ | E 111°06′11.67″ | 209°∠73° | 230 | N 37°35′14.15″ | E 110°51′51.27″ | 280°∠69° |
References
- Johnson, R.D.; Flores, R.M. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet–Matanuska basin, Alaska, U.S.A. and Canada. Int. J. Coal Geol. 1998, 35, 241–282. [Google Scholar] [CrossRef]
- Salmachi, A.; Rajabi, M.; Wainman, C.; Mackie, S.; McCabe, P.; Camac, B.; Clarkson, C. History, Geology, In Situ Stress Pattern, Gas Content and Permeability of Coal Seam Gas Basins in Australia: A Review. Energies 2021, 14, 2651. [Google Scholar] [CrossRef]
- Li, S.; Qin, Y.; Tang, D.; Shen, J.; Wang, J.; Chen, S. A comprehensive review of deep coalbed methane and recent developments in China. Int. J. Coal Geol. 2023, 279, 104369. [Google Scholar] [CrossRef]
- Kang, Y.; Huangfu, Y.; Zhang, B.; He, Z.; Jiang, S.; Ma, Y.Z. Gas oversaturation in deep coals and its implications for coal bed methane development: A case study in Linxing Block, Ordos Basin, China. Front. Earth Sci. 2023, 10, 1031493. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Tang, S.; Elsworth, D. Re-evaluating adsorbed and free methane content in coal and its ad- and desorption processes analysis. Chem. Eng. J. 2022, 428, 131946. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, H.; Sun, B.; Liu, Y.; Fu, X.; Dou, W.; Du, L.; Zhang, B.; Luo, B.; Yang, M.; et al. Quantitative Prediction of Deep Coalbed Methane Content in Daning-Jixian Block, Ordos Basin, China. Processes 2023, 11, 3093. [Google Scholar] [CrossRef]
- Chen, B.; Stuart, F.M.; Xu, S.; Györe, D.; Liu, C. The effect of Cenozoic basin inversion on coal-bed methane in Liupanshui Coalfield, Southern China. Int. J. Coal Geol. 2022, 250, 103910. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, Q.; Zhu, S.; Han, C.; Wang, X.; Zhao, Y. NMR investigation on gas desorption characteristics in CBM recovery during dewatering in deep and shallow coals. J. Geophys. Eng. 2023, 20, 12–20. [Google Scholar] [CrossRef]
- Ni, X.; Jia, Q.; Wang, Y. The Relationship between Current Ground Stress and Permeability of Coal in Superimposed Zones of Multistage Tectonic Movement. Geofluids 2019, 2019, 9021586. [Google Scholar] [CrossRef]
- Li, Y.; Tang, D.; Xu, H.; Yu, T. In-situ stress distribution and its implication on coalbed methane development in Liulin area, eastern Ordos basin, China. J. Petrol. Sci. Eng. 2014, 122, 488–496. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, D.; Xu, H.; Li, Y.; Li, S.; Tao, S.; Lin, W.; Liu, Z. Characteristic of In Situ Stress and Its Control on the Coalbed Methane Reservoir Permeability in the Eastern Margin of the Ordos Basin, China. Rock Mech. Rock Eng. 2016, 49, 3307–3322. [Google Scholar] [CrossRef]
- Reeher, L.J.; Hughes, A.N.; Davis, G.H.; Kemeny, J.M.; Ferrill, D.A. Finding the right place in Mohr circle space: Geologic evidence and implications for applying a non-linear failure criterion to fractured rock. J. Struct. Geol. 2023, 166, 104773. [Google Scholar] [CrossRef]
- Maerten, L.; Maerten, F.; Lejri, M.; Gillespie, P. Geomechanical paleostress inversion using fracture data. J. Struct. Geol. 2016, 89, 197–213. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Y.; Tang, Z.; Lu, L.; Zhang, B.; Yang, H. Methodology for quantitative prediction of low-order faults in rift basins: Dongtai Depression, Subei Basin, China. Mar. Petrol. Geol. 2024, 160, 106618. [Google Scholar] [CrossRef]
- Xie, Q.; Li, G.; Yang, X.; Peng, H. Evaluating the Degree of Tectonic Fracture Development in the Fourth Member of the Leikoupo Formation in Pengzhou, Western Sichuan, China. Energies 2023, 16, 1797. [Google Scholar] [CrossRef]
- Liu, S.; Sang, S.; Pan, Z.; Tian, Z.; Yang, H.; Hu, Q.; Sang, G.; Qiao, M.; Liu, H.; Jia, J. Study of characteristics and formation stages of macroscopic natural fractures in coal seam #3 for CBM development in the east Qinnan block, Southern Quishui Basin, China. J. Nat. Gas Sci. Eng. 2016, 34, 1321–1332. [Google Scholar] [CrossRef]
- Zamani, G.B. Geodynamics and tectonic stress model for the Zagros fold-thrust belt and classification of tectonic stress regimes. Mar. Petrol. Geol. 2023, 155, 106340. [Google Scholar] [CrossRef]
- Li, J.; Qin, Q.; Li, H.; Zhou, J.; Wang, S.; Zhao, S.; Qin, Z. Numerical simulation of the palaeotectonic stress field and prediction of the natural fracture distribution in shale gas reservoirs: A case study in the Longmaxi Formation of the Luzhou area, southern Sichuan Basin, China. Geol. J. 2023, 58, 4165–4180. [Google Scholar] [CrossRef]
- Jiu, K.; Ding, W.; Huang, W.; You, S.; Zhang, Y.; Zeng, W. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, east China. J. Petrol. Sci. Eng. 2013, 110, 119–131. [Google Scholar] [CrossRef]
- Gao, X.; Wang, Y.; Ni, X.; Li, Y.; Wu, X.; Zhao, S.; Yu, Y. Recovery of tectonic traces and its influence on coalbed methane reservoirs: A case study in the Linxing area, eastern Ordos Basin, China. J. Nat. Gas Sci. Eng. 2018, 56, 414–427. [Google Scholar] [CrossRef]
- Liu, J.; Cao, D.; Tan, J.; Zhang, Y. Gzhelian cyclothem development in the western North China cratonic basin and its glacioeustatic, tectonic, climatic and autogenic implications. Mar. Petrol. Geol. 2023, 155, 106355. [Google Scholar] [CrossRef]
- Ju, W.; Shen, J.; Li, C.; Yu, K.; Yang, H. Natural fractures within unconventional reservoirs of Linxing Block, eastern Ordos Basin, central China. Front. Earth Sci. 2020, 14, 770–782. [Google Scholar] [CrossRef]
- Pu, Y.; Li, S.; Tang, D.; Chen, S. Effect of Magmatic Intrusion on In Situ Stress Distribution in Deep Coal Measure Strata: A Case Study in Linxing Block, Eastern Margin of Ordos Basin, China. Na. Resour. Res. 2022, 31, 2919–2942. [Google Scholar] [CrossRef]
- Shu, Y.; Lin, Y.; Liu, Y.; Yu, Z. Control of magmatism on gas accumulation in Linxing area, Ordos Basin, NW China: Evidence from fluid inclusions. J. Petrol. Sci. Eng. 2019, 180, 1077–1087. [Google Scholar] [CrossRef]
- Paul, S.; Chatterjee, R. Mapping of cleats and fractures as an indicator of in-situ stress orientation, Jharia coalfield, India. Int. J. Coal Geol. 2011, 88, 113–122. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhou, X.; Xiang, W.; Chen, C. Paleotectonic Stress and Present Geostress Fields and Their Implications for Coalbed Methane Exploitation: A Case Study from Dahebian Block, Liupanshui Coalfield, Guizhou, China. Energies 2024, 17, 101. [Google Scholar] [CrossRef]
- Han, W.; Wang, Y.; Li, Y.; Ni, X.; Wu, X.; Wu, P.; Zhao, S. Recognizing fracture distribution within the coalbed methane reservoir and its implication for hydraulic fracturing: A method combining field observation, well logging, and micro-seismic detection. J. Nat. Gas Sci. Eng. 2021, 92, 103986. [Google Scholar] [CrossRef]
- Ning, F.; Wu, N.; Li, S.; Zhang, K.; Yu, Y.; Liu, L.; Sun, J.; Jiang, G.; Sun, C.; Chen, G. Estimation of in-situ mechanical properties of gas hydrate-bearing sediments from well logging. Petrol. Explor. Develop. 2013, 40, 542–547. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Yu, L.; Zhang, S.; Gai, K.; Fan, Y.; Huo, W. Geophysical logging in brittleness evaluation on the basis of rock mechanics parameters: A case study of sandstone of Shanxi formation in Yanchang gas feld, Ordos Basin. J. Pet. Explor. Prod. Technol. 2023, 13, 151–162. [Google Scholar] [CrossRef]
- Wojtowicza, M.; Jarosiński, M. Reconstructing the mechanical parameters of a transversely-isotropic rock based on log and incomplete core data integration. Int. J. Rock Mech. Min. 2019, 115, 111–120. [Google Scholar] [CrossRef]
- Xie, X.; Wang, W. Seismic Conjugate Ruptures and Limiting Principal Stresses Accompanying Variation of Depths in the Crust -Take 1975 Haicheng Earthquake with M7.3 as an Example. Earthq. Res. China 2002, 18, 166–174, (Chinese Journal with English Abstract). [Google Scholar]
- Lin, Y. Relation Between Conjugate Shearing Angle and Values of Confining Pressure. J. Prog. Geophys. 1993, 8, 133–139, (Chinese Journal with English Abstract). [Google Scholar]
- Mahetaji, M.; Brahma, J. A critical review of rock failure Criteria: A scope of Machine learning approach. Eng. Fail. Anal. 2024, 159, 107998. [Google Scholar] [CrossRef]
- Feng, J.; Dai, J.; Lu, J.; Li, X. Quantitative Prediction of 3-D Multiple Parameters of Tectonic Fractures in Ti Sandstone Reservoirs Based on Geomechanical Method. IEEE Access 2018, 6, 39096–39116. [Google Scholar] [CrossRef]
- Zhao, Y.; Mishra, B.; Shi, Q.; Zhao, G. Size-dependent Mohr-Coulomb failure criterion. Bull. Eng. Geol. Environ. 2023, 82, 218. [Google Scholar] [CrossRef]
- Koca, M.Y.; Kincal, C.; Onur, A.H.; Koca, T.K. Determining the inclination angles of anchor bolts for sliding and toppling failures: A case study of Izmir, Turkiye. Bull. Eng. Geol. Environ. 2023, 82, 47. [Google Scholar] [CrossRef]
Geologic Bodies | Poisson’s Ratio | Young’s Modulus (GPa) | Density (g/cm3) |
---|---|---|---|
Roof | 0.22 | 21.33 | 2.730 |
Coal seam | 0.36 | 6.2 | 1.480 |
Floor | 0.21 | 21.55 | 2.750 |
Others | 0.23 | 20 | 1.655 |
Nodes | CT1 | CT2 | CS1 | CS2 | F | Nodes | CT1 | CT2 | CS1 | CS2 | F |
---|---|---|---|---|---|---|---|---|---|---|---|
1149 | −0.06 | −0.60 | −0.06 | 0.04 | 0.55 | 11,651 | −0.05 | −0.51 | −0.09 | −0.12 | 0.45 |
1409 | −0.07 | −0.83 | −0.05 | 0.02 | 0.54 | 11,916 | −0.04 | −0.53 | −0.09 | −0.30 | 0.41 |
1565 | −0.07 | −0.95 | −0.06 | 0.04 | 0.53 | 12,124 | −0.04 | −0.44 | −0.09 | −0.30 | 0.41 |
1669 | −0.07 | −1.01 | −0.06 | 0.05 | 0.53 | 12,332 | −0.04 | −0.33 | −0.09 | −0.14 | 0.48 |
1773 | −0.08 | −1.09 | −0.04 | 0.19 | 0.59 | 12,701 | −0.02 | −0.32 | −0.09 | −0.32 | 0.41 |
1877 | −0.07 | −1.14 | −0.06 | 0.06 | 0.52 | 12,805 | −0.03 | −0.42 | −0.09 | −0.40 | 0.39 |
1981 | −0.07 | −1.19 | −0.06 | −0.01 | 0.49 | 12,909 | −0.02 | −0.35 | −0.08 | 0.00 | 0.54 |
2033 | −0.08 | −1.24 | −0.05 | 0.15 | 0.56 | 13,387 | −0.02 | −0.33 | −0.10 | −0.38 | 0.39 |
2298 | −0.06 | −0.69 | −0.06 | 0.01 | 0.53 | 13,491 | 0.01 | −0.21 | −0.06 | 0.15 | 0.65 |
2402 | −0.07 | −0.76 | −0.05 | 0.14 | 0.59 | 14,021 | −0.01 | −0.30 | −0.09 | −0.48 | 0.37 |
3291 | −0.06 | −0.62 | −0.06 | 0.01 | 0.54 | 14,125 | 0.07 | 0.07 | 0.02 | 0.37 | 0.92 |
3499 | −0.07 | −0.80 | −0.07 | 0.00 | 0.52 | 14,230 | 0.01 | 0.00 | −0.12 | 0.28 | 0.59 |
3707 | −0.07 | −0.95 | −0.07 | −0.09 | 0.47 | 14,707 | 0.03 | −0.08 | −0.04 | 0.05 | 0.66 |
3915 | −0.07 | −1.08 | −0.07 | −0.14 | 0.44 | 14,811 | 0.05 | 0.12 | −0.07 | 0.07 | 0.65 |
4123 | −0.07 | −1.15 | −0.06 | 0.11 | 0.53 | 15,237 | −0.01 | −0.22 | −0.10 | −0.63 | 0.32 |
5225 | −0.05 | −0.52 | −0.07 | −0.05 | 0.52 | 15,341 | 0.02 | −0.09 | −0.07 | −0.33 | 0.48 |
5433 | −0.06 | −0.67 | −0.07 | −0.06 | 0.50 | 15,445 | 0.05 | 0.11 | −0.08 | −0.26 | 0.51 |
5641 | −0.07 | −0.84 | −0.08 | −0.09 | 0.47 | 15,923 | −0.01 | −0.24 | −0.09 | −0.75 | 0.29 |
5849 | −0.07 | −0.98 | −0.08 | −0.08 | 0.45 | 16,027 | 0.00 | −0.15 | −0.07 | −0.56 | 0.40 |
6057 | −0.07 | −1.10 | −0.08 | −0.02 | 0.46 | 16,132 | 0.00 | −0.18 | −0.10 | −0.48 | 0.37 |
7367 | −0.05 | −0.53 | −0.08 | −0.12 | 0.48 | 16,505 | −0.01 | −0.25 | −0.10 | −0.76 | 0.27 |
7575 | −0.06 | −0.71 | −0.08 | −0.13 | 0.46 | 16,609 | −0.01 | −0.30 | −0.10 | −0.82 | 0.25 |
7783 | −0.06 | −0.86 | −0.08 | −0.18 | 0.42 | 16,713 | −0.01 | −0.34 | −0.10 | −0.85 | 0.24 |
7991 | −0.07 | −0.93 | −0.08 | −0.25 | 0.39 | 17,295 | −0.02 | −0.39 | −0.10 | −0.89 | 0.22 |
8199 | −0.07 | −1.09 | −0.09 | −0.16 | 0.40 | 17,400 | −0.02 | −0.41 | −0.10 | −0.92 | 0.21 |
9301 | −0.04 | −0.46 | −0.08 | −0.21 | 0.45 | 17,959 | −0.01 | −0.34 | −0.10 | −0.87 | 0.23 |
9509 | −0.05 | −0.59 | −0.08 | −0.11 | 0.47 | 18,115 | −0.02 | −0.47 | −0.09 | −1.00 | 0.18 |
9717 | −0.06 | −0.80 | −0.09 | −0.25 | 0.40 | 18,271 | −0.03 | −0.62 | −0.09 | −1.05 | 0.16 |
9925 | −0.05 | −0.70 | −0.05 | 0.15 | 0.60 | 18,428 | −0.04 | −0.67 | −0.09 | −0.84 | 0.23 |
10,133 | −0.07 | −0.97 | −0.10 | −0.17 | 0.39 | 18,848 | −0.03 | −0.46 | −0.11 | −0.88 | 0.20 |
11,443 | −0.04 | −0.49 | −0.09 | −0.24 | 0.43 | 18,952 | −0.03 | −0.51 | −0.11 | −0.91 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Wang, Y.; Liu, Y.; Liu, Z.; Wu, X.; Chen, X.; Zhang, J. Evaluation of Favorable Fracture Area of Deep Coal Reservoirs Using a Combination of Field Joint Observation and Paleostress Numerical Simulation: A Case Study in the Linxing Area. Energies 2024, 17, 3424. https://doi.org/10.3390/en17143424
Zhao S, Wang Y, Liu Y, Liu Z, Wu X, Chen X, Zhang J. Evaluation of Favorable Fracture Area of Deep Coal Reservoirs Using a Combination of Field Joint Observation and Paleostress Numerical Simulation: A Case Study in the Linxing Area. Energies. 2024; 17(14):3424. https://doi.org/10.3390/en17143424
Chicago/Turabian StyleZhao, Shihu, Yanbin Wang, Yali Liu, Zengqin Liu, Xiang Wu, Xinjun Chen, and Jiaqi Zhang. 2024. "Evaluation of Favorable Fracture Area of Deep Coal Reservoirs Using a Combination of Field Joint Observation and Paleostress Numerical Simulation: A Case Study in the Linxing Area" Energies 17, no. 14: 3424. https://doi.org/10.3390/en17143424
APA StyleZhao, S., Wang, Y., Liu, Y., Liu, Z., Wu, X., Chen, X., & Zhang, J. (2024). Evaluation of Favorable Fracture Area of Deep Coal Reservoirs Using a Combination of Field Joint Observation and Paleostress Numerical Simulation: A Case Study in the Linxing Area. Energies, 17(14), 3424. https://doi.org/10.3390/en17143424