Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering
Abstract
:1. Introduction
2. Decarbonization versus Defossilization—On the Use of Biomasses in the Energy Transition
3. Criteria for the Evaluation of Technologies, in Particular for the Production of Energy
3.1. Technological Readiness
3.2. Additional Criteria for Technology Evaluation
4. Evaluation of Virtually “Zero GHG Emission” Electrical Energy Production Technologies
Fuel | Technology [27] | Emission fuel gCO2/kWh [37] | Life Cycle Emission gCO2eq/kWh [38] | Energy Production in 2020 | ||
---|---|---|---|---|---|---|
TWh [35] | % | |||||
Coal | Pulverized Hard Coal | 338.2 398.7 | 1095–912 | 9421.4 | 35.1 | 61.3 |
IGCC Hard Coal | 912–753 | |||||
Lignite | ||||||
Natural Gas | Combined Cycle | 200.8 | 513–403 | 6268.1 | 23.4 | |
Single Cycle | ||||||
Oil | Heavy Fuel Oil Burners | 266.5 | 758.0 | 2.8 | ||
-- | Hydroelectric | 147–6 | 4296.8 | 16.0 | ||
UO2 | Nuclear Fission | 5–6 | 2700.1 | 10.1 | ||
-- | Wind | 23–8 | 1591.2 | 5.9 | ||
-- | Solar PV | 83–23 | 855.7 | 3.2 | ||
-- | Other Renewable | 700.1 | 2.6 | |||
Total | 26,823.2 | 100.0 |
4.1. Nuclear Fission Technologies
4.2. Hydropower Technologies
4.3. Photovoltaic Technologies
4.4. Wind Technologies
4.5. Biomass-Based Electrical Energy Production Technologies
4.6. Making Green Fossil Fuel-Based Technologies by CO2 Capture and Utilization or Storage
5. Transport and Storage of Electrical Energy
5.1. On the Transport of Electrical Energy
5.2. Storage of Electrical Energy. Mechanical and Thermal Technologies
5.3. Electrochemical Devices for Energy Storage
5.3.1. Rechargeable Batteries
5.3.2. Supercapacitors and Hybrid Supercapacitors
6. On the Role of Hydrogen as an Energy Vector (Or an Energy Storage Material) for the Decarbonization of Energy Production and Transportation
6.1. The Production of Green Hydrogen through Water Electrolysis
6.2. Hydrogen from Biomasses
6.3. The Production of Blue Hydrogen from Fossil Raw Materials through CO2 Capture and Storage or Use
6.4. The Limits of Hydrogen as an Energy Vector: Transport and Storage
6.5. Dangerousness of Hydrogen Technologies
6.6. Green Hydrogen Utilization as an E-Fuel
6.7. Hydrogen Utilization with Fuel Cells
6.7.1. Polymeric Electrolyte Membrane (PEMFC)
6.7.2. Alkaline Fuel Cells (AFCs)
6.7.3. Alkaline Exchange Membrane Fuel Cells (AEMFCs)
6.7.4. Phosphoric Acid Fuel Cells (PAFCs)
6.7.5. Solid Oxide Fuel Cells (SOFCs)
FC Type | Anode Material and Feed | Electrolyte/Transported Species | Cathode Material and Feed | T °C | Power Range kW | Startup Time min | Application | TRL | Lifetime h | Challenges and Drawbacks (DOE) [196] |
---|---|---|---|---|---|---|---|---|---|---|
PEMFC | Pt/C Wet H2 | Cationic polymer membrane H+/H2O → | Pt/C O2/air | 60–80 | 0.05–1000 | <1 | mobile | 9 | >25,000 |
|
PAFC | Pt/C H2 | H3PO4 in porous SiC matrix H+/H2O → | Pt/C O2/air | 140–200 | 100–10,000 | long | small stationary, mobile (buses) | 40,000 |
| |
AFC | Pt/C Wet H2 | KOH/alkaline membrane ← HO−/H2O | Pt/C Purified air | 40–75 | 0.1–200 | <1 | mobile | >5000 | Sensitive to CO2 in fuel and air | |
AEMFC | Non PGM metals Wet H2 | Anionic polymer membrane ← HO−/H2O | Non PGM metals Purified air | 50–90 | 300–500 | High degradation rate Still at laboratory scale | ||||
SOFC | Ni H2 | Porous ceramic material ← O2= | Mixed oxide O2/air | 500–1000 | 1–100,000 | 60 | stationary | 8 | 20,000–80,000 | High-temperature corrosion and breakdown of cell components Long start-up time Limited number of shutdowns |
MCFC | Ni H2 | Molten (Na,K)CO3 in porous Li-β-alumina ← CO3= | Li-NiO O2/air with CO2 | 650–800 | 500–100,000 | 60 | stationary | 15,000–30,000 | High-temperature corrosion and breakdown of cell components Long start-up time Low power density |
6.7.6. Molten Carbonate Fuel Cells (MCFCs)
6.8. Green Hydrogen Application in Processes Other Than Energy Production
7. E-Fuels and Biofuels for Decarbonizing Transport
7.1. E-Fuels
7.2. Biofuels
7.2.1. Biogas and Biomethane
7.2.2. Biogasolines
7.2.3. Biodiesel
7.2.4. Hydrotreated Vegetable Oils (HVOs)
8. Considerations on Zero Emissions Transport
9. Approaching the Entire Life Cycle and the End of Life of the Devices and of the Technologies
- -
- Mining of minerals
- -
- Processing to produce chemicals/compounds
- -
- Reacting/processing to produce materials
- -
- Structuring to produce devices
- -
- Using devices
- -
- End-of-life of spent devices
- -
- Reuse of the object, if possible
- -
- Dismantling the object and reuse of its separate parts, if possible
- -
- Dismantling the parts into materials, and reuse of materials, if possible
- -
- Regeneration of the materials, if possible
- -
- Recovery of chemicals from unregenerable materials, if possible
- -
- Converting to produce energy, if possible
- -
- Wasting, as the very last choice
10. Conclusions
- (i)
- Technologies considered today for energy transition toward zero emissions demonstrate strong drawbacks in terms of environmental and societal impacts, efficiency, and real sustainability, in the absence of statal funding.
- (ii)
- Chemistry and chemical engineering are and will continue to be crucial fields for improving existing technologies and developing new technologies for efficient and clean energy production and management.
- (iii)
- As always in the field of chemical engineering, catalysis and electrocatalysis are key phenomena to be exploited for improving efficiency in thermochemical and electrochemical processes for the production of devices, materials, and fuels (including hydrogen).
- (iv)
- In particular, materials chemistry is the key discipline to develop electro- and photo-chemical devices (batteries, fuel cells, photovoltaic systems, etc.) and materials for mechanical systems, most of which need decisive improvement with respect to those that are used today. Better devices need new materials.
- (v)
- Technologies allowing the enhanced production of biomass available for energy applications should be carefully considered, because they may represent ways to take advantage of solar energy with reduced energy and material costs. Together, positive environmental and social impacts could be obtained.
- (vi)
- In any case, the use of biomasses should not be excluded a priori because of dogmatic prejudices or because of the constrasting economic interests of anyone.
- (vii)
- Technologies allowing the reuse of materials or the recovery of chemicals from exhausted devices are urgently needed to avoid waste production and resource consumption. This point should be defined for any technology before it comes into widespread use.
- (viii)
- Catalytic materials and technologies are needed to approach the many chemical steps needed in the production of materials and in the recovery of chemicals. In particular, hydrogen production from biomass, e-fuel and biofuel manufacturing, recovery of chemicals from waste polymeric materials, hydrogen carrier molecules, etc. are necessary technologies needing efficient catalysts to be developed.
- (ix)
- Complete and well-structured life-cycle analyses are needed before allowing the commercialization of new technologies, to reveal their actual impact and real sustainability. In particular, energetic and economic sustainability in the absence of statal funding, as well as the absence of production of unusable wastes at their end-of-life, are key features to be considered.
- (x)
- In any case, we should be aware that, for many potential technologies, revolutionary systems are needed, because, many of those have been under development until today already have shown excessive limits before they come to widespread commercialization. The beginning of the large-scale application of several technologies is already resulting the emersion of their strong limits.
Funding
Data Availability Statement
Conflicts of Interest
References
- Connolly, R.; Soon, W.; Connolly, M.; Baliunas, S.; Berglund, J.; Butler, C.J.; Cionco, R.G.; Elias, A.G.; Fedorov, V.M.; Harde, H.; et al. How much has the Sun influenced Northern Hemisphere temperature trends? An ongoing debate. Res. Astron. Astrophys. 2021, 21, 131. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Onof, C.; Kundzewicz, Z.W.; Christofides, A. On Hens, Eggs, Temperatures and CO2: Causal Links in Earth’s Atmosphere. Atmos. Sci. 2023, 5, 35. [Google Scholar] [CrossRef]
- Romanova, E.S.; Masalkova, A.A. Risks of switching to renewable energy sources. SHS Web Conf. 2021, 101, 01010. [Google Scholar] [CrossRef]
- Dou, X.; Hong, J.; Ciais, P.; Chevallier, F.; Yan, F.; Yu, Y.; Hu, Y.; Huo, D.; Sun, Y.; Wang, Y.; et al. Near-real-time global gridded daily CO2 emissions 2021. Sci. Data 2023, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- IEA. Global Energy Review: CO2 Emissions in 2021; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (accessed on 1 July 2024).
- Rockström, A.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A roadmap for rapid decarbonization. Emissions inevitably approach zero with a “carbon law”. Science 2017, 355, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T. Ways to Defossilization. MTZ Worldw. 2021, 82, 14–15. [Google Scholar] [CrossRef]
- Kilpeläinen, A.; Torssonen, P.; Strandman, H.; Kellomäki, S.; Asikainen, A.; Peltola, H. Net climate impacts of forest biomass production and utilization in managed boreal forests. GCB Bioenergy 2016, 8, 307–316. [Google Scholar] [CrossRef]
- Titus, B.D.; Brown, K.; Helmisaari, H.S.; Vanguelova, E.; Stupak, I.; Evans, A.; Clarke, N.; Guidi, C.; Bruckman, V.J.; Varnagiryte-Kabasinskiene, I.; et al. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 2021, 11, 10. [Google Scholar] [CrossRef]
- Carrino, L.; Visconti, D.; Fiorentino, N.; Fagnano, F. Biofuel Production with Castor Bean: A Win–Win Strategy for Marginal Land. Agronomy 2020, 10, 1690. [Google Scholar] [CrossRef]
- Abobatta, W.F. Jatropha curcas, a Novel Crop for Developing the Marginal Lands. In Biofuels and Biodiesel, Methods in Molecular Biology; Basu, C., Ed.; Springer, Humana: New York, NY, USA, 2021; Volume 2290, pp. 79–100. [Google Scholar]
- Available online: https://www.eni.com/en-IT/media/press-release/2022/07/eni-launches-first-production-vegetable-oil-biorefining-kenya.html (accessed on 1 July 2024).
- Maliha, A.; Abu-Hijleh, B. A review on the current status and post-pandemic prospects of third-generation biofuels. Energy Syst. 2023, 14, 1185–1216. [Google Scholar] [CrossRef]
- Garbarino, G.; Pampararo, G.; Phung, T.K.; Riani, P.; Busca, G. Heterogeneous Catalysis in (Bio)Ethanol Conversion to Chemicals and Fuels: Thermodynamics, Catalysis, Reaction Paths, Mechanisms and Product Selectivities. Energies 2020, 13, 3587. [Google Scholar] [CrossRef]
- Phung, T.K.; Le Minh Oham, T.; Vu, K.B.; Busca, G. (Bio)Propylene production processes: A critical review. J. Environ. Chem. Eng. 2021, 9, 105673. [Google Scholar] [CrossRef]
- Busca, G. Production of Gasolines and Monocyclic Aromatic Hydrocarbons: From Fossil Raw Materials to Green Processes. Energies 2021, 14, 4061. [Google Scholar] [CrossRef]
- Barasa Kabeyi, M.J.; Akanni Olanrewaju, O. Biogas Production and Applications in the Sustainable Energy Transition. J. Energy 2022, 2022, 8750221. [Google Scholar]
- Kumar, R.; Kumar, A. Recent advances of biogas reforming for hydrogen production: Methods, purification, utility and techno-economics analysis. Int. J. Hydrogen Energy 2024, 76, 108–140. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820-annex-g-trl_en.pdf (accessed on 1 July 2024).
- Available online: https://www.iea.org/reports/innovation-gaps (accessed on 1 July 2024).
- Meschini, S.; Laviano, F.; Ledda, F.; Pettinari, D.; Testoni, R.; Torsello, D.; Panella, B. Review of commercial nuclear fusion projects. Front. Energy Res. 2023, 11, 1157394. [Google Scholar] [CrossRef]
- Mohamed, M.; Zakuan, N.D.; Tengku Hassan, T.N.A.; Lock, S.S.M.; Mohd Shariff, A. Global Development and Readiness of Nuclear Fusion Technology as the Alternative Source for Clean Energy Supply. Sustainability 2024, 16, 4089. [Google Scholar] [CrossRef]
- Available online: https://www.iea.org/data-and-statistics/data-tools/etp-clean-energy-technology-guide (accessed on 1 July 2024).
- Sandri, S.; Contessa, G.M.; D’Arienzo, M.; Guardati, M.; Guarracino, M.; Poggi, C.; Villari, R. A Review of Radioactive Wastes Production and Potential Environmental Releases at Experimental Nuclear Fusion Facilities. Environments 2020, 7, 6. [Google Scholar] [CrossRef]
- Lukacs, M.; Williams, L.G. Nuclear safety issues for fusion power plants. Fusion Eng. Des. 2020, 150, 111377. [Google Scholar] [CrossRef]
- Hemeida, M.G.; Hemeida, A.M.; Senjyu, T.; Osheba, D. Renewable Energy Resources Technologies and Life Cycle Assessment: Review. Energies 2022, 15, 9417. [Google Scholar] [CrossRef]
- Wang, S.; Hausfather, Z.; Davis, S.; Lloyd, J.; Olson, E.B.; Liebermann, L.; Núñez-Mujica, G.D.; McBride, J. Future demand for electricity generation materials under different climate mitigation scenarios. Joule 2023, 7, 309–332. [Google Scholar] [CrossRef]
- Kis, Z.; Pandya, N.; Koppelaar, R.H.E.M. Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction. Energy Policy 2018, 120, 144–157. [Google Scholar] [CrossRef]
- Lovering, J.; Swain, M.; Blomqvist, L.; Hernandez, R.R. Land-use intensity of electricity production and tomorrow’s energy landscape. PLoS ONE 2022, 17, e0270155. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen Nøland, J.; Auxepaules, J.; Rousset, A.; Perney, B.; Falletti, G. Spatial energy density of large-scale electricity generation from power sources worldwide. Sci. Rep. 2022, 12, 21280. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.R.; Frumkin, H.; Balakrishnan, K.; Butler, C.D.; Chafe, Z.A.; Fairlie, I.; Kinney, P.; Kjellstrom, T.; Mauzerall, D.L.; McKone, T.E.; et al. Energy and Human Health. Annu. Rev. Public Health 2013, 34, 159–188. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Spang, E.S.; Moomaw, W.R.; Gallagher, K.S.; Kirshen, P.H.; Marks, D.H. The water consumption of energy production: An international comparison. Environ. Res. Lett. 2014, 9, 105002. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. The levelized cost of energy and modifications for use in electricity generation planning. Energy Rep. 2023, 9, 495–534. [Google Scholar] [CrossRef]
- British Petroleum. Statistical Review of World Energy 2021, 70th ed.; British Petroleum: London, UK, 2021. [Google Scholar]
- Tamor, M.A.; Stechel, E.B. Electrification of transportation means a lot more than a lot more electric vehicles. iScience 2022, 25, 104376. [Google Scholar] [CrossRef]
- Available online: https://www.volker-quaschning.de/datserv/CO2-spez/index_e.php (accessed on 1 June 2023).
- Available online: https://www.world-nuclear.org/information-library/energy-and-the-environment/carbon-dioxide-emissions-from-electricity.aspx (accessed on 1 July 2024).
- Pioro, I.; Duffey, R. Current and future nuclear power reactors and plants. In Managing Global Warming an Interface of Technology and Human Issues; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 117–197. [Google Scholar]
- Chesser, R.K.; Rodgers, B.E. Chernobyl. In Encyclopedia of Toxicology, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 795–802. [Google Scholar]
- World Health Organization. World Health Organization Report Explains the Health Impacts of the World’s Worst-Ever Civil Nuclear Accident; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Kawashima, M.; Sawano, T.; Murakami, M.; Moriyama, N.; Kitazawa, K.; Uchi, Y.; Nonaka, S.; Ito, N.; Saito, H.; Abe, T.; et al. Association between the deaths indirectly caused by the Fukushima Daiichi nuclear power plant accident (disaster-related deaths) and pre-disaster long-term care certificate level: A retrospective observational analysis. Int. J. Disaster Risk Reduct. 2023, 96, 103989. [Google Scholar] [CrossRef]
- Lars Kramm, L. The German Nuclear Phase-Out After Fukushima: A Peculiar Path or an Example for Others? Renew. Energy Law Policy Rev. 2012, 3, 251–262. [Google Scholar]
- Liu, L.; Guo, H.; Dai, L.; Liu, M.; Xiao, Y.; Cong, T.; Gu, H. The role of nuclear energy in the carbon neutrality goal. Progr. Nucl. Energy 2023, 162, 104772. [Google Scholar] [CrossRef]
- Hussein, E.M.A. Emerging small modular nuclear power reactors: A critical review. Phys. Open 2020, 5, 100038. [Google Scholar] [CrossRef]
- Hassan, I.A.; Badawi, A.A.; El Saghir, A.; Mohamed, N.M.A.; Abdelmaksoud, A.; Khalil, S. Core analysis of fully ceramic microencapsulated fuel (FCM) for SMART reactor under normal operation and reactivity insertion accident. Nuclear Eng. Des. 2024, 419, 112915. [Google Scholar] [CrossRef]
- Jin, J.; Bang, I.C. The time for revolutionizing small modular reactors: Cost reduction strategies from innovations in operation and maintenance. Progr. Nucl. Energy 2024, 174, 105288. [Google Scholar] [CrossRef]
- Available online: https://www.iaea.org/bulletin/nuclear-decommissioning-addressing-the-past-and-ensuring-the-future (accessed on 1 July 2024).
- Killingtveit, Å. Hydroelectric Power. In Future Energy, 3rd ed.; Letcher, T.M., Ed.; Improved, Sustainable and Clean Options for our Planet; Elsevier: Amsterdam, The Netherlands, 2020; pp. 315–330. [Google Scholar]
- Rahman, M.A.; Kim, J.H.; Hossain, S. Recent advances of energy storage technologies for grid: A comprehensive review. Energy Storage 2022, 4, e322. [Google Scholar] [CrossRef]
- Yang, D.; Liu, J.; Yang, J.; Ding, N. Life-cycle assessment of China’s multi-crystalline silicon photovoltaic modules considering international trade. J. Clean. Prod. 2015, 94, 35–45. [Google Scholar] [CrossRef]
- Bye, G.; Ceccaroli, B. Solar grade silicon: Technology status and industrial trends. Sol. Energy Mater. Sol. Cells 2014, 130, 634–646. [Google Scholar] [CrossRef]
- Maldonado, S. The Importance of New “Sand-to-Silicon” Processes for the Rapid Future Increase of Photovoltaics. ACS Energy Lett. 2020, 5, 3628–3632. [Google Scholar] [CrossRef]
- Ma, L.; Yu, Z.; Ma, W.; Qing, S.; Wu, J. Assessment and Study on the Impact on Environment by Multi-crystalline Silicon Preparation by Metallurgical Route. Silicon 2019, 11, 1383–1391. [Google Scholar] [CrossRef]
- Dai Pra, L.B. Comparison between the Energy Required for Production of PV Module and the Output Energy Througout the Product Life Time. J. Energy Power Eng. 2015, 9, 592–597. [Google Scholar]
- Available online: https://www.nrel.gov/docs/fy04osti/35489.pdf (accessed on 1 July 2024).
- Available online: https://www.iea.org/data-and-statistics/charts/utility-scale-pv-investment-cost-structure-by-component-and-by-commodity-breakdown (accessed on 1 July 2024).
- Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_Power_Generation_Costs_2020_Summary.pdf?rev=99943124d5804ae38da7a7a6661f2cc7 (accessed on 1 July 2024).
- Lazard’s Levelized Cost of Energy Analysis—Version 16.0. Available online: https://www.lazard.com/media/nltb551p/lazards-lcoeplus-april-2023.pdf (accessed on 1 July 2024).
- van deVen, D.J.; Capellan-Peréz, I.; Arto, I.; Cazcarro, I.; de Castro, C.; Patel, P.; Gonzalez-Eguino, M. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 2021, 11, 2907. [Google Scholar] [CrossRef]
- Long, J.; Lu, Z.; Miller, P.A.; Pongratz, J.; Guan, D.; Smith, B.; Zhu, Z.; Xu, J.; Zhang, Q. Large-scale photovoltaic solar farms in the Sahara affect solar power generation potential globally. Commun. Earth Environ. 2024, 5, 11. [Google Scholar] [CrossRef]
- Micheli, L.; Almonacid, F.; Bessa, J.G.; Fernandez-Solas, A.; Fernandez, E.F. The impact of extreme dust storms on the national photovoltaic energy supply. Sustain. Energy Technol. Assess. 2024, 62, 103607. [Google Scholar] [CrossRef]
- Fakour, H.; Imani, M.; Lo, S.L.; Yuan, M.H.; Chen, C.K.; Mobasser, S.; Muangthai, I. Evaluation of solar photovoltaic carport canopy with electric vehicle charging potential. Sci. Rep. 2023, 13, 2136. [Google Scholar] [CrossRef]
- Seo, B.; Kim, J.Y.; Chung, J. Overview of global status and challenges for end-of-life crystalline silicon photovoltaic panels: A focus on environmental impacts. Waste Manag. 2021, 128, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Kumar Singh, S.; Kumar, S. A comparative study of different materials used for solar photovoltaics technology. Mater. Today Proc. 2022, 66, 3522–3528. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Li, S. Composition Engineering of Perovskite Single Crystals for High-Performance Optoelectronics. Adv. Funct. Mater. 2023, 33, 2210335. [Google Scholar] [CrossRef]
- Solak, E.K.; Irmak, E. Advances in organic photovoltaic cells: A comprehensive review of materials, technologies, and performance. RSC Adv. 2023, 13, 12244. [Google Scholar] [CrossRef]
- Kurpas, D.; Mroczek, B.; Karakiewicz, B.; Kassolik, K.; Andrzejew, W. Health impact of wind farms. Agric. Environ. Med. 2013, 20, 595–604. [Google Scholar]
- Wang, S.; Wang, S. Impacts of wind energy on environment: A review. Renew. Sustain. Energy Rev. 2015, 49, 437–443. [Google Scholar] [CrossRef]
- Kumara, H.N.; Babu, S.; Rao, G.B.; Mahato, S.; Bhattacharya, M.; Rao, N.V.R.; Tamiliniyan, D.; Parengal, H.; Deepak, D.; Balakrishnan, A.; et al. Responses of birds and mammals to long-established wind farms in India. Sci. Rep. 2022, 12, 1339. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, P.; Yu, J.; Feng, G.; Zhang, Q.; Svenning, J.C. Wind farms increase land surface temperature and reduce vegetation productivity in the Inner Mongolia. Geogr. Sustain. 2024, 5, 319–328. [Google Scholar] [CrossRef]
- Farina, A.; Anctil, A. Material consumption and environmental impact of wind turbines in the USA and globally. Resour. Conserv. Recycl. 2022, 176, 105938. [Google Scholar] [CrossRef]
- Available online: https://guidetoanoffshorewindfarm.com/wind-farm-costs (accessed on 1 July 2024).
- Liu, P.; Barlow, C.Y. Wind turbine blade waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Naeher, L.P.; Brauer, M.; Lipsett, M.; Zelikoff, J.T.; Simpson, C.D.; Koenig, J.Q.; Smith, K.R. Woodsmoke health effects: A review. Inhal. Toxicol. 2007, 19, 67–106. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Shukl, A. A review on methods of flue gas cleaning from combustion of biomass. Renew. Sustain. Energy Rev. 2014, 29, 854–864. [Google Scholar] [CrossRef]
- Mishra, S.; Upadhyay, R.K. Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters. Mater. Sci. Energy Technol. 2021, 4, 329–340. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Weng, W.; He, Y.; Aldén, M.; Li, Z. Alkali metal release in thermochemical conversion of biomass and coal: Optical measurements and modeling. Progr. Energy Comb. Sci. 2024, 100, 101131. [Google Scholar] [CrossRef]
- de Oliveira, D.C.; Garcia-Péres, M.; Lora, E.E.S.; Venturini, O.J.; Maya, D.M.Y. Gas cleaning systems for integrating biomass gasification with Fischer-Tropsch synthesis—A review of impurity removal processes and their sequences. Renew. Sustain. Energy Rev. 2023, 172, 113047. [Google Scholar] [CrossRef]
- Wang, X.; Song, C. Carbon Capture From Flue Gas and the Atmosphere: A Perspective. Front. Energy Res. 2020, 8, 560849. [Google Scholar] [CrossRef]
- Krekel, D.; Samsun, R.C.; Peters, R.; Stolten, D. The separation of CO2 from ambient air—A techno-economic assessment. Appl. Energy 2018, 218, 361–381. [Google Scholar] [CrossRef]
- Dziejarski, B.; Krzyzynska, R.; Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel 2023, 342, 127776. [Google Scholar] [CrossRef]
- Nagireddi, S.; Agarwal, J.R.; Vedapuri, D. Carbon Dioxide Capture, Utilization, and Sequestration: CurrentStatus, Challenges, and Future Prospects for Global Decarbonization. ACS Eng. Au 2024, 4, 22–48. [Google Scholar] [CrossRef]
- Smit, B.; Reimer, J.R.; Oldenburg, C.M.; Bourg, I.C.I.C. Introduction to Carbon Capture and Sequestration, 1st ed.; Imperial College Press: London, UK, 2014. [Google Scholar]
- Raganati, F.; Ammendola, P. CO2 Post-combustion Capture: A Critical Review of Current Technologies and Future Directions. Energy Fuels, 2024; in press. [Google Scholar]
- Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E.A.; Fuss, S.; Mac Dowell, N.; Minx, J.C.; Smith, P.; Williams, C.K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Busca, G.; Spennati, E.; Riani, P.; Garbarino, G. Mechanistic and compositional aspects of industrial catalysts for selective CO2 hydrogenation processes. Catalysts 2024, 14, 95. [Google Scholar] [CrossRef]
- Blinov, I.; Zaitsev, I.; Kuchanskyy, V. Problems, Methods and Means of Monitoring Power Losses in Overhead Transmission Lines. In Systems, Decision and Control in Energy; Babak, V., Isaienko, V., Zaporozhets, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 123–136. [Google Scholar]
- Masnicki, R.; Mindykowski, J.; Palczynska, B. Experiment-Based Study of Heat Dissipation from the Power Cable in a Casing Pipe. Energies 2022, 15, 4518. [Google Scholar] [CrossRef]
- Akbari, H.; Browne, M.C.; Ortega, A.; Huang, M.J.; Hewitt, N.J.; Norton, B.; McCormack, S.J. Efficient energy storage technologies for photovoltaic systems. Sol. Energy 2019, 192, 144–168. [Google Scholar] [CrossRef]
- Li, B.; Liu, Z.; Wu, Y.; Wang, P.; Liu, R.; Zhang, L. Review on photovoltaic with battery energy storage system for power supply to buildings: Challenges and opportunities. J. Energy Storage 2023, 61, 106763. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ramadan, M.; Olabi, A.G.; Pullen, K.; Naher, S. A review of mechanical energy storage systems combined with wind and solar applications. Energy Convers. Manag. 2020, 210, 112670. [Google Scholar] [CrossRef]
- Seabra Vieira, F.; Perrella Balestieri, J.A.; Matelli, J.A. Applications of compressed air energy storage in cogeneration systems. Energy 2021, 214, 118904. [Google Scholar] [CrossRef]
- Hussam Jouhara, H.J.; Zabnienska-Gora, A.; Khordehgah, N.; Ahmad, D.; Lipinski, T. Latent thermal energy storage technologies and applications: A review. Int. J. Thermofluids 2020, 5–6, 100039. [Google Scholar] [CrossRef]
- Cot-Gores, J.; Castell, A.; Cabeza, L.F. Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions. Renew. Sustain. Energy Rev. 2012, 16, 5207–5224. [Google Scholar] [CrossRef]
- Masias, A.; Marcicki, J.; Paxton, W.A. Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Lett. 2021, 6, 621–630. [Google Scholar] [CrossRef]
- Khan, F.M.N.U.; Rasul, M.G.; Sayem, A.S.M.; Mandal, N. Maximizing energy density of lithium-ion batteries for electric vehicles: A critical review. Energy Rep. 2023, 9, 11–21. [Google Scholar] [CrossRef]
- Abida, M.; Taba, M.; Chakira, A.; Hachimi, H. Routing and charging of electric vehicles: Literature review. Energy Rep. 2022, 8, 556–578. [Google Scholar] [CrossRef]
- Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N.R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D.; et al. Fast Charging of Lithium-Ion Batteries: A Reviewof Materials Aspects. Adv. Energy Mater. 2021, 11, 2101126. [Google Scholar] [CrossRef]
- Lu, L.L.; Lu, Y.Y.; Zhu, Z.X.; Shao, J.X.; Yao, H.B.; Wamg, S.; Zang, T.W.; Ni, Y.; Wang, X.X.; Yu, S.H. Extremely fast-charging lithium ion battery enabled by dual-gradient structure design. Sci. Adv. 2022, 8, eabm6624. [Google Scholar] [CrossRef]
- Vikström, H.; Davidsson, S.; Höök, M. Lithium availability and future production outlooks. Appl. Energy 2013, 110, 252–266. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, C.; Dunn, J.B. Graphite Flows in the U.S.: Insights into a Key Ingredient of Energy Transition. Environ. Sci. Technol. 2023, 57, 3402–3414. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Mahandra, H.; Marth, R.; Jid, X.; Zhao, W.; Cha, S.; Travers, M.; Li, W.; Yug, F.; Li, L.; et al. An overview on the life cycle of lithium iron phosphate: Synthesis, modification, application, and recycling. Chem. Eng. J. 2024, 485, 149923. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Kong, L.; Li, C.; Jiang, J.; Pecht, M.G. Li-Ion Battery Fire Hazards and Safety Strategies. Energies 2018, 11, 2191. [Google Scholar] [CrossRef]
- Wu, P.; Zhou, W.; Su, X.; Li, J.; Su, M.; Zhou, X.; Sheldon, B.W.; Lu, W. Recent Advances in Conduction Mechanisms, Synthesis Methods, and Improvement Strategies for Li1+xAlxTi2−x(PO4)3 Solid Electrolyte for All-Solid-State Lithium Batteries. Adv. Energy Mater. 2022, 13, 2203440. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, S.; He, Y.B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, T.; Li, W.; Li, W.; Li, T.; Zhang, L.; Zhang, X.; Wang, Z. Engineering of Sodium-Ion Batteries: Opportunities and Challenges. Engineering 2023, 24, 172–183. [Google Scholar] [CrossRef]
- Anoopkumar, V.; John, B.; Mercy, T.D. Potassium-Ion Batteries: Key to Future Large-Scale Energy Storage? ACS Appl. Energy Mater. 2020, 3, 9478–9492. [Google Scholar]
- Elia, G.A.; Kravchyk, K.V.; Kovalenko, M.V.; Chacón, J.; Holland, A.; Wills, R.G.A. An overview and prospective on Al and Al-ion battery technologies. J. Power Sources 2021, 481, 228870. [Google Scholar] [CrossRef]
- Yaqoob, L.; Noor, T.; Iqbal, N. An overview of metal-air batteries, current progress, and future perspectives. J. Energy Storage 2022, 56 Pt B, 106075. [Google Scholar] [CrossRef]
- Salama, M.; Rosy; Attias, R.; Yemini, R.; Gofer, Y.; Aurbach, D.; Noked, M. Metal–Sulfur Batteries: Overview and Research Methods. ACS Energy Lett. 2019, 4, 436–446. [Google Scholar] [CrossRef]
- Simonte, G.; Di Rienzo, R.; Verani, A.; Nicodemo, N.; Baronti, F.; Roncella, R.; Saletti, R. Reliability Estimation of Commercial Na-NiCl2 Batteries Using Theoretical and Simulative Approaches. IEEE Access 2023, 11, 87641–87651. [Google Scholar] [CrossRef]
- Ashok, A.; Kumar, A. A comprehensive review of metalbased redox flow batteries: Progress and perspectives. Green Chem. Lett. Rev. 2024, 17, 2302834. [Google Scholar] [CrossRef]
- Khan, T.; Kumar Garg, A.; Gupta, A.; Madan, A.K.; Jain, P.K. Comprehensive review on latest advances on rechargeable batteries. J. Energy Storage 2023, 57, 106204. [Google Scholar] [CrossRef]
- Sarmah, S.; Lakhanlal; Kakati, B.K.; Deka, D. Recent advancement in rechargeable battery technologies. WIREs Energy Environ. 2023, 12, e461. [Google Scholar] [CrossRef]
- Duan, X.; Zhu, W.; Ruan, Z.; Xie, M.; Chen, J.; Ren, X. Recycling of Lithium Batteries-A Review. Energies 2022, 15, 1611. [Google Scholar] [CrossRef]
- Available online: https://www.europarl.europa.eu/topics/en/article/20220228STO24218/new-eu-rules-for-more-sustainable-and-ethical-batteries (accessed on 1 July 2024).
- Chatterjee, D.P.; Nandi, A.K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021, 9, 15880. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mary, N.L. An Overview on Supercapacitors and Its Applications. J. Electrochem. Soc. 2022, 169, 020552. [Google Scholar] [CrossRef]
- Elkafas, A.G.; Rivarolo, M.; Gadducci, E.; Magistri, L.; Massardo, A.F. Fuel Cell Systems for Maritime: A Review of Research Development, Commercial Products, Applications, and Perspectives. Processes 2023, 11, 97. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Tahara Cissé, C.S.; Boubacar Diallo, A. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). Int. J. Hydrogen Energy 2018, 43, 19315–19326. [Google Scholar] [CrossRef]
- Zgonnik, V. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth Sci. Rev. 2020, 203, 103140. [Google Scholar] [CrossRef]
- Scott, E. Exploring for native hydrogen. Nat. Rev. Earth Environ. 2021, 2, 589. [Google Scholar] [CrossRef]
- Chai, S.; Zhang, G.; Li, G.; Zhang, Y. Industrial hydrogen production technology and development status in China: A review. Clean Technol. Environ. Policy 2021, 23, 1931–1946. [Google Scholar] [CrossRef]
- Aasberg-Petersen, K.; Dybkjær, I.; Ovesen, C.V.; Schjødt, N.C.; Sehested, J.; Thomsen, S.G. Natural gas to synthesis gas—Catalysts and catalytic processes. J. Nat. Gas Sci. Eng. 2011, 3, 423–459. [Google Scholar] [CrossRef]
- Boretti, A.; Banik, B.K. Advances in Hydrogen Production from Natural Gas Reforming. Adv. Energy Sustain. Res. 2021, 2, 2100097. [Google Scholar] [CrossRef]
- Dai, F.; Zhang, S.; Luo, Y.; Wang, K.; Liu, Y.; Ji, X. Recent Progress on Hydrogen-Rich Syngas Production from Coal Gasification. Processes 2023, 11, 1765. [Google Scholar] [CrossRef]
- Ehlers, J.C.; Feidenhans, A.A.; Therkildsen, K.T.; Larrazábal, G.O. Affordable Green Hydrogen from Alkaline Water Electrolysis: Key Research Needs from an Industrial Perspective. ACS Energy Lett. 2023, 8, 1502–1509. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, Y.; Xu, H.; Martinez, A.; Chen, K.S. PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development—A review. Energy Environ. Sci. 2022, 15, 2288. [Google Scholar] [CrossRef]
- Pinsky, R.; Sabharwall, P.; Hartvigsen, J.; O’Brien, J. Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progr. Nucl. Energy 2020, 123, 103317. [Google Scholar] [CrossRef]
- Khan, S.N.; Yang, Z.; Dong, W.; Zhao, M. Cost and technology readiness level assessment of emerging technologies, new perspectives, and future research directions in H2 production. Sustain. Energy Fuels 2022, 6, 4357. [Google Scholar] [CrossRef]
- Beenackers, A.A.C.M.; van Swaaij, W.P.M. Methanol from wood I. Process principles and technologies for producing methanol from biomass. Int. J. Sol. Energy 1984, 2, 349–367. [Google Scholar] [CrossRef]
- Rauch, R.; Hrbek, J.; Hofbauer, H. Biomass Gasification for Synthesis Gas Production and Applications of the Syngas. In Advances in Bioenergy: The Sustainability Challenge; Lund, P.D., Byrne, J., Berndes, G., Vasalos, I.A., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 73–91. [Google Scholar]
- Lepage, T.; Kammoun, M.; Schmetz, Q.; Riche, A. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenergy 2021, 144, 105920. [Google Scholar] [CrossRef]
- Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art overview. J. Energy Chem. 2016, 25, 10–25. [Google Scholar] [CrossRef]
- Sansaniwal, S.K.; Pal, K.; Rosen, M.A.; Tyagi, S.K. Recent advances in the development of biomass gasification technology: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 72, 363–384. [Google Scholar] [CrossRef]
- Available online: https://www.energy.gov/sites/prod/files/2015/04/f22/demonstration_market_transformation_knight_3417.pdf (accessed on 1 July 2024).
- Andersson, K.J.; Rasmussen, M.S.S.; Højlund Nielsen, P.E. Industrial-scale gas conditioning including Topsoe tar reforming and purification downstream biomass gasifiers: An overview and recent examples. Fuel 2017, 203, 1026–1030. [Google Scholar] [CrossRef]
- Narnaware, S.L.; Panwar, N.L. Catalysts and their role in biomass gasification and tar abatement: A review. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Yu, J.; Guo, Q.; Gong, Y.; Ding, L.; Wang, J.; Yu, G. A review of the effects of alkali and alkaline earth metal species on biomass gasification. Fuel Proc. Technol. 2021, 214, 106723. [Google Scholar] [CrossRef]
- Lopez, G.; Santamaria, L.; Lemonidou, A.; Zhang, S.; Wu, C.; Sipra, A.T.; Gao, N. Hydrogen generation from biomass by pyrolysis. Nat. Rev. 2022, 2, 20. [Google Scholar] [CrossRef]
- Khan, I.U.; Othman, M.H.D.; Hashim, H.; Matsuura, T.; Ismail, A.F.; Rezaei-DashtArzhandi, M.; Wan Azelee, I. Biogas as a renewable energy fuel—A review of biogas upgrading, utilisation and storage. Energy Convers. Manag. 2017, 150, 277–294. [Google Scholar] [CrossRef]
- García-Diéguez, M.; Finocchio, E.; Larrubia, M.A.; Alemany, L.J.; Busca, G. Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane. J. Catal. 2010, 274, 11–20. [Google Scholar] [CrossRef]
- Zhao, X.; Joseph, B.; Kuhn, J.; Ozcan, S. Biogas Reforming to Syngas: A Review. iScience 2020, 23, 101082. [Google Scholar] [CrossRef] [PubMed]
- Phung, T.K.; Busca, G. Selective Bioethanol Conversion to Chemicals and Fuels via Advanced Catalytic Approaches. In Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals; Nanda, S., Vo, D.-V.N., Sarangi, P.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 75–103. [Google Scholar]
- Chen, W.H.; Biswas, P.P.; Hwai Chyuan Ong, H.C.; Hoang, A.T.; Nguyen, T.B.; Dong, C.D. A critical and systematic review of sustainable hydrogen production from ethanol/bioethanol: Steam reforming, partial oxidation, and autothermal reforming. Fuel 2023, 333, 126526. [Google Scholar] [CrossRef]
- Garbarino, G.; Cavattoni, T.; Riani, P.; Brescia, R.; Canepa, F.; Busca, G. On the Role of Support in Metallic Heterogeneous Catalysis: A Study of Unsupported Nickel–Cobalt Alloy Nanoparticles in Ethanol Steam Reforming. Catal. Lett. 2019, 149, 929–941. [Google Scholar] [CrossRef]
- Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/866383/Phase_1_-_Wood_-_Novel_Renewable_Ethanol_Steam_Reformer.pdf (accessed on 14 May 2021).
- Oakley, J.H.; Hoadley, A.F.A. Industrial scale steam reforming of bioethanol: A conceptual study. Int. J. Hydrogen Energy 2010, 35, 8472–8485. [Google Scholar] [CrossRef]
- Garbarino, G.; Pugliese, F.; Cavattoni, T.; Busca, G.; Costamagna, P. A Study on CO2 Methanation and Steam Methane Reforming over Commercial Ni/Calcium Aluminate Catalysts. Energies 2020, 13, 2792. [Google Scholar] [CrossRef]
- Di Nardo, A.; Portarapillo, M.; Russo, D.; Di Benedetto, A. Hydrogen production via steam reforming of different fuels: Thermodynamic comparison. Int. J. Hydrogen Energy 2024, 55, 1143–1160. [Google Scholar] [CrossRef]
- Marquevich, M.; Farriol, X.; Medina, F.; Montané, D. Hydrogen Production by Steam Reforming of Vegetable Oils Using Nickel-Based Catalysts. Ind. Eng. Chem. Res. 2001, 40, 4757–4766. [Google Scholar] [CrossRef]
- Setiabudi, H.D.; Aziz, M.A.A.; Abdullah, S.; The, L.P.; Jusoh, R. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review. Int. J. Hydrogen Energy 2020, 45, 18376–18397. [Google Scholar] [CrossRef]
- Wismann, S.T.; Engbæk, J.S.; Vendelbo, S.B.; Bendixen, F.B.; Eriksen, W.L.; Aasberg-Petersen, K.; Frandsen, C.; Chorkendorff, I.; Mortensen, P.M. Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science 2019, 364, 756–759. [Google Scholar] [CrossRef]
- Available online: www.energy.gov/eere/fuelcells/hydrogen-pipelines (accessed on 1 July 2024).
- Available online: www.energy.gov/eere/fuelcells/hydrogen-delivery (accessed on 1 July 2024).
- Available online: https://www.linde-gas.com/en/images/RLD_01_K19004_15_Hydrogen_Fuel_Tech_Broschuere_RZ_VIEW_tcm17-610582.pdf (accessed on 1 July 2024).
- Jensen, J.O.; Vestbø, A.P.; Li, Q.; Bjerrum, N.J. The energy efficiency of onboard hydrogen storage. J. Alloys Compd. 2007, 446–447, 723–728. [Google Scholar] [CrossRef]
- Peschka, W. Liquid Hydrogen; Springer: New York, NY, USA, 1992. [Google Scholar]
- Khwaja, S.A.; Paul, S. Inspection of Coated Hydrogen Transportation Pipelines. Appl. Sci. 2022, 12, 9503. [Google Scholar] [CrossRef]
- Kojima, Y. Hydrogen storage materials for hydrogen and energy carriers. Int. J. Hydrogen Energy 2019, 44, 18179–18192. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, Z.; Zheng, J.; Li, X.; Akiba, E.; Li, H.W. Perspectives and challenges of hydrogen storage in solid-state hydrides. Chin. J. Chem. Eng. 2021, 29, 1–12. [Google Scholar] [CrossRef]
- Klopčič, N.; Grimmer, I.; Winkler, F.; Sartory, M.; Trattner, A. A review on metal hydride materials for hydrogen storage. J. Energy Storage 2023, 72 Pt B, 108456. [Google Scholar] [CrossRef]
- Møller, K.T.; Jensen, T.R.; Akibab, E.; Li, H.W. Hydrogen—A sustainable energy carrier. Progr. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Marques, F.; Balcerzak, M.; Winkelmann, F.; Zepon, G.; Felderhof, M. Review and outlook on high-entropy alloys for hydrogen storage. Energy Environ. Sci. 2021, 14, 5191. [Google Scholar] [CrossRef]
- Shah, R.R.; Gupta, A.K.; Kumari, P. Perspectives of high entropy alloys as hydrogen storage materials. Int. J. Hydrogen Energy 2023, 48, 21412–21428. [Google Scholar] [CrossRef]
- Chen, Z.; Kirlikovali, K.O.; Idrees, K.B.; Wasson, M.C.; Farha, O.K. Porous materials for hydrogen storage. Chem 2022, 8, 693–716. [Google Scholar] [CrossRef]
- Niermann, M.; Beckendorff, A.; Kaltschmitt, M.; Bonhoff, K. Liquid Organic Hydrogen Carrier (LOHC)—Assessment based on chemical and economic properties. Int. J. Hydrogen Energy 2019, 44, 6631–6654. [Google Scholar] [CrossRef]
- Oner, O.; Khalilpour, K. Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool. Renew. Sustain. Energy Rev. 2022, 168, 112764. [Google Scholar] [CrossRef]
- Southall, E.; Lukashuk, L. Analysis of Liquid Organic Hydrogen Carrier Systems. Johns. Matthey Technol. Rev. 2022, 66, 271–284. [Google Scholar] [CrossRef]
- Yang, F.; Wang, T.; Deng, X.; Dang, J.; Huang, Z.; Hu, S.; Li, Y.; Ouyang, M. A Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process. Int. J. Hydrogen Energy 2021, 46, 31467–31488. [Google Scholar] [CrossRef]
- Song, X.; Deng, S.; Lu, H.; Li, W.; Wu, Y.; Li, B.; Xie, L.; Wang, M.; He, Y. Effects of hydrogen concentration, number of obstacles, and blockage ratio on vented hydrogen-air explosions and its consequence analysis. Appl. Therm. Eng. 2024, 249, 123398. [Google Scholar] [CrossRef]
- Su, Z.; Liu, L.; Li, K.; Chen, X.; Chen, T.; Huang, C. Theoretical prediction model for minimum ignition energy of combustible gas mixtures. Int. J. Hydrogen Energy 2024, 69, 103–111. [Google Scholar] [CrossRef]
- Reddy, V.J.; Hariram, N.P.; Maity, R.; Ghazali, M.F.; Kumarasamy, S. Sustainable E-Fuels: Green Hydrogen, Methanol and Ammonia for Carbon-Neutral Transportation. World Electr. Veh. J. 2023, 14, 349. [Google Scholar] [CrossRef]
- Shadidi, B.; Najafi, G.; Yusaf, T. A Review of Hydrogen as a Fuel in Internal Combustion Engines. Energies 2021, 14, 6209. [Google Scholar] [CrossRef]
- Teoh, Y.H.; How, H.G.; Le, T.D.; Nguyen, H.T.; Loo, D.L.; Rashid, T.; Sher, F. A review on production and implementation of hydrogen as a green fuel in internal combustion engines. Fuel 2023, 333, 126525. [Google Scholar] [CrossRef]
- Available online: https://www.cycleworld.com/story/motorcycle-news/kawasaki-reveals-hydrogen-fueled-bike-plans/ (accessed on 1 July 2024).
- Available online: https://global.toyota/en/newsroom/corporate/35209996.html (accessed on 1 July 2024).
- Available online: https://www.sae.org/news/2022/05/hydrogen-technology-commercial-trucks (accessed on 1 July 2024).
- Available online: https://www.rolls-royce.com/media/press-releases/2022/28-11-2022-rr-and-easyjet-set-new-aviation-world-first-with-successful-hydrogen-engine-run.aspx.
- Available online: https://global.kawasaki.com/en/hydrogen/ (accessed on 1 July 2024).
- Genovese, M.; Schluter, A.; Scionti, E.; Piraino, F.; Corigliano, O.; Fragiacomo, P. Power-to-hydrogen and hydrogen-to-X energy systems for the industry of the future in Europe. Int. J. Hydrogen Energy 2023, 48, 16545–16568. [Google Scholar] [CrossRef]
- Felseghi, R.A.; Carcadea, E.; Raboaca, M.S.; Trufin, C.N.; Filote, C. Hydrogen fuel cell technology for the sustainable future of stationary applications. Energies 2019, 12, 4593. [Google Scholar] [CrossRef]
- Cigolotti, V.; Genovese, M.; Fragiacomo, P. Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems. Energies 2021, 14, 4963. [Google Scholar] [CrossRef]
- Borup, R.L.; Kusoglu, A.; Neyerlin, K.C.; Mukundan, R.; Ahluwali, R.K.; Cullen, D.A.; More, K.L.; Weber, A.Z.; Myers, D.J. Recent developments in catalyst-related PEM fuel cell durability. Curr. Opin. Electrochem. 2020, 21, 192–200. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Wang, X.; Peng, J.-K.; Konduru, V.; Arisetty, S.; Ramaswamy, N.; Kumaraguru, S. Achieving 5,000-h and 8,000-h Low-PGM Electrode Durability on Automotive Drive Cycles. J. Electrochem. Soc. 2021, 168, 044518. [Google Scholar] [CrossRef]
- Cullen, D.A.; Neyerlin, K.C.; Ahluwalia, R.K.; Mukundan, R.; More, K.L.; Borup, R.L.; Weber, A.Z.; Myers, D.J.; Kusoglu, A. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 2021, 6, 462–474. [Google Scholar] [CrossRef]
- Rosli, R.E.; Sulong, A.B.; Daud, W.R.W.; Zulkifley, M.A.; Husaini, T.; Rosli, M.I.; Majlan, E.H.; Haque, M.A. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energy 2017, 42, 9293–9314. [Google Scholar] [CrossRef]
- Ferriday, T.B.; Middleton, P.H. Alkaline fuel cell technology—A review. Int. J. Hydrogen Energy 2021, 46, 18489–18510. [Google Scholar] [CrossRef]
- Hren, M.; Bǒzic, M.; Fakin, D.; Kleinschek, K.S.; Gorgieva, S. Alkaline membrane fuel cells: Anion exchange membranes and fuels. Sustain. Energy Fuels 2021, 5, 604. [Google Scholar] [CrossRef]
- Sammes, N.; Bove, R.; Stahl, K. Phosphoric acid fuel cells: Fundamentals and applications. Curr. Opin. Solid State Mater. Sci. 2004, 8, 372–378. [Google Scholar] [CrossRef]
- Dwivedi, S. Solid oxide fuel cell: Materials for anode, cathode and electrolyte. Int. J. Hydrogen Energy 2020, 45, 23988–24013. [Google Scholar] [CrossRef]
- Golkhatmi, S.Z.; Asghar, M.I.; Lund, P.D. A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renew. Sustain. Energy Rev. 2022, 161, 112339. [Google Scholar] [CrossRef]
- Comparison of Fuel Cell Technologies (energy.gov). Available online: https://www.energy.gov/eere/fuelcells/articles/comparison-fuel-cell-technologies-fact-sheet (accessed on 1 July 2024).
- Kulkarni, A.; Giddey, S. Materials issues and recent developments in molten carbonate fuel cells. J. Solid State Electrochem. 2012, 16, 3123–3146. [Google Scholar] [CrossRef]
- Contreras, R.R.; Almarza, J.; Rincó, L. Molten carbonate fuel cells: A technological perspective and review. Energy Sources A 2021, 1–15. [Google Scholar] [CrossRef]
- Wang, F.; Deng, S.; Zhang, H.; Wang, J.; Zhao, J.; Miao, H.; Yuan, J.; Yan, J. A comprehensive review on high-temperature fuel cells with carbon capture. Appl. Energy 2020, 275, 11534. [Google Scholar] [CrossRef]
- Sheikh, A.A.; Bianchi, F.R.; Bove, D.; Bosio, B. A review on MCFC matrix: State-of-the-art, degradation mechanisms and technological improvements. Heliyon 2024, 10, e25847. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.; Tarrant, A. Molten Carbonate Fuel Cells for 90% Post Combustion CO2 Capture From a New Build CCGT. Front. Energy Res. 2021, 9, 668431. [Google Scholar] [CrossRef]
- Tang, J.; Chu, M.S.; Li, F.; Feng, C.; Liu, Z.G.; Zhou, Y.S. Development and progress on hydrogen metallurgy. Int. J. Miner. Metall. Mater. 2020, 27, 713. [Google Scholar] [CrossRef]
- Wang, R.R.; Zhao, Y.Q.; Babich, A.; Senk, D.; Fan, X.Y. Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities. J. Clean. Prod. 2021, 329, 129797. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, W.; Wang, Y.; Shen, J.; Wang, Y.; Geng, Z.; Wang, Q.; Zhu, T. Progress of CCUS technology in the iron and steel industry and the suggestion of the integrated application schemes for China. Chem. Eng. J. 2022, 450, 138438. [Google Scholar] [CrossRef]
- Available online: https://www.linde-engineering.com/en/about-linde-engineering/success-stories/hydrogen-for-the-petrochemical-sector.html (accessed on 1 July 2024).
- Nemmour, A.; Inayat, A.; Janajreh, I.; Ghenai, C. Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. Int. J. Hydrogen Energy 2023, 48, 29011–29033. [Google Scholar] [CrossRef]
- Available online: https://www.shippingitaly.it/2024/04/06/battezzata-astrid-maersk-seconda-nave-della-flotta-maersk-a-metanolo/ (accessed on 1 July 2024).
- Melendez, J.R.; Mátyás, B.; Hena, S.; Lowy, D.A.; El Salous, A. Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses. Renew. Sustain. Energy Rev. 2022, 160, 112260. [Google Scholar] [CrossRef]
- Hoekmanetal, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–165. [Google Scholar]
- Afonso, F.; Sohst, M.; Diogo, C.M.A.; Rodrigues, S.S.; Ferreira, A.; Ribeiro, I.; Marques, R.; Rego, F.F.C.; Sohouli, A.; Portugal-Pereira, J.; et al. Strategies towards a more sustainable aviation: A systematic review. Progr. Aerosp. Sci. 2023, 137, 1008782. [Google Scholar] [CrossRef]
- Rony, Z.I.; Mofijur, M.; Hasan, M.M.; Rasul, M.G.; Jahirul, M.I.; Ahmed, S.F.; Kalam, M.A.; Badruddin, I.A.; Yunus Khan, T.M.; Show, P.L. Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals. Fuel 2023, 338, 127220. [Google Scholar] [CrossRef]
Dou et al. [4] | IEA [5] | ||
---|---|---|---|
Sector | Gt | Gt | Sector |
Power | 14.1 | 14.6 | Electricity and Heat Production |
Industry | 10.3 | 9.4 | Industry |
Residential Consumption | 3.5 | 1.7 | Residential Consumption of Building Sect |
Ground Transport | 6.3 | 6.1 | Road + Rail + Pipeline Transport |
Domestic + Intern. Aviation | 0.6 | 0.7 | International Aviation |
International Shipping | 0.7 | 0.8 | Interational Shipping |
TRL | European Union [19] | IEA [20] |
---|---|---|
1 | Basic principles observed | Initial idea: basic principles have been defined |
2 | Technology concept formulated | Application formulated: the concept and application of the solution have been formulated |
3 | Experimental proof of concept | Concept needs validation: the solution needs to be prototyped and applied |
4 | Technology validated in lab | Early prototype: prototype proven in test conditions |
5 | Technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) | Large prototype: components proven in conditions to be deployed |
6 | Technology demonstrated in relevant environment (industrially relevant environment in the case of key enabling technologies) | Full prototype at scale: prototype proven at scale in conditions to be deployed |
7 | System prototype demonstration in the operational environment | Pre-commercial demonstration: solution working in expected conditions |
8 | System complete and qualified | First-of-a-kind commercial: commercial demonstration, full-scale deployment in final form |
9 | Actual system proven in the operational environment (competitive manufacturing in the case of key enabling technologies; or in space) | Commercial operation in the relevant environment: the solution is commercially available, but needs evolutionary improvement to stay competitive |
10 | -------------- | Integration at scale: the solution is commercial but needs further integration efforts |
11 | -------------- | Proof of stability: predictable growth |
Criterium | Ref. |
---|---|
Readiness level | |
Continuity versus discontinuity | |
Predictability versus unpredictability | |
Application constraints | [26] |
Materials intensity | [27,28] |
Land occupation and land use change | [29,30] |
Effects on human health | [26,31,32] |
Impact on ecosystems | [26,31] |
Water use or consumption | [33] |
Safety risks | [32] |
Diminishing land aesthetic values and loss of habitat quality | [26] |
Social effects: job creation and people satisfaction | [27] |
In life and end-of-life management of devices | |
Capital costs, operational costs, lifetime, levelized cost | [26,27,34] |
Technology | TRL (IEA) | Drawbacks/Application Constraints | |
---|---|---|---|
Hydropower | 11 | Limited to hilly or mountainous territories rich in water, in poorly populated areas. Strong environmental impact and limited to soil use. Already largely employed in several countries. | |
Photovoltaic | Crystalline Silicon | 9–10 | More efficient in high solar irradiance areas, need for availability of large areas, limited coupled use of land. Limited roof orientation availability. Discontinuous. |
Perovskite | 4–5 | ||
Thin Film | 8 | ||
Organic Thin Film | 5–6 | ||
Wind | OnShore | 9–10 | Limited to continually strong windy territories. Limited coupled use of land. Discontinuous. Limited to protect human health, landscape, and avian fauna. |
OffShore | 8–9 | Limited to continually strong windy sea areas. Need for available sea areas, limited coupled use of such marine areas. Discontinuous. Limited to protect landscapes and avian fauna. | |
Hydrogen | Gas Turbine | 7–9 | Transforms energy with low efficiency, without producing it. |
Solid Oxide Fuel Cells | 8–9 | Transforms energy without producing it, low durability. | |
Geothermal | 11 | Limited to territories with near-surface hot water/steam sources. | |
Ocean | 4–7 | Limited to sea areas with high-temperature differences (OTEC) or large waves. Limited coupled use of such marine areas. Possible landscape damage. | |
Tidal | 9 | Limited to coastal areas with high tides. Limited coupled use of such marine areas. | |
Nuclear Fission | Slow Neutron | 11 | Radioactive raw materials, spent fuel, and byproducts. Risks of radioactive matter loss. |
Fast Neutron | 10 | Radioactive raw materials, risks of radioactive matter loss. | |
Nuclear Fusion | 1–3 | Still at very early stages of development, safety limits and practical production conditions still not well established. | |
Coal with CCUS | 9 | Limited by usability of CO2 and possibility of storage. | |
Natural Gas with CCUS | 8 | Limited by usability of CO2 and possibility of storage. | |
Biomass | Combustion | 10 | Limited availability of large masses of un-edible biomass. Pollutant waste gases. |
Gasification and Combustion | 8 |
Technology | TRL |
---|---|
Chemicals from CO2 (urea, methanol, polycarbonates……) | 7–9 |
Fuels from CO2 (methanol, hydrocarbons, methane……) | 8 |
Feed for microalgae production | 7 |
Inert gas in the production of food | 9 |
Sparkling beverages | 9 |
Metallurgical processes | 9 |
Storage in saline formations | 9 |
Storage and enhanced oil recovery | 9 |
Storage and enhanced gas recovery | 7 |
Storage in depleted oil and natural gas fields | 7 |
Storage through mineral carbonation (basaltic rocks, ultramafic rocks) | 2–6 |
Storage with enhanced coal bed methane recovery | 2–3 |
Ocean storage | 2 |
Raw Materials | Color | Process | TRL [23] | Notes | ||
---|---|---|---|---|---|---|
Natural gas + water/O2 | Grey, Blue with CCS | Steam reforming | 11 | May become carbon neutral with CCUS and/or electrification of reactors | ||
Partial oxidation/autothermal | 9 | |||||
Hydrocarbons (naphtha) | Catalytic reforming | 11 | Used in refineries Coproduction of aromatic hydrocarbons | |||
Coal + water | Brown | Gasification | 11 | May become carbon neutral with CCUS | ||
Water | Green, pink, yellow | Electrolysis | Alkaline cells | 9 | Today’s durability > 105 h | Energetically most expensive |
PEMEC | 8 | Today’s durability: 104 h | ||||
SOEC | 7 | Today’s durability: 103 h | ||||
Thermal decomposition | 3 | Needs very high temperatures | ||||
Biomass | Gasification | 6 | Very complex gas purification | |||
Pyrolysis | Very low | Early stage of development |
Generation | Characteristics |
---|---|
First | Obtained from food crops such as edible vegetable oils or starch-containing vegetables such as corn. |
Second | Obtained from wastes of the agri-food industry, from the organic fraction of municipal waste, or from ligneocellulosic biomass not intended for food production. |
Third | Obtained from algae as raw materials. This kind of fuel is still not produced commercially, but there are conclusive findings proving its feasibility. |
Forth | Obtained from genetically modified microorganisms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busca, G. Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering. Energies 2024, 17, 3565. https://doi.org/10.3390/en17143565
Busca G. Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering. Energies. 2024; 17(14):3565. https://doi.org/10.3390/en17143565
Chicago/Turabian StyleBusca, Guido. 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering" Energies 17, no. 14: 3565. https://doi.org/10.3390/en17143565
APA StyleBusca, G. (2024). Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering. Energies, 17(14), 3565. https://doi.org/10.3390/en17143565