Stochastic Optimal Strategies and Management of Electric Vehicles and Microgrids
Abstract
:1. Introduction
2. Methods
−∑n,t [(BLt) × (CTf,n) × (fprf,n,t)]
−∑t,s [(PROBs) × (CTMf) × (fbyf,t,s)]
+Σs {PROBs × Σi,s,t [(FCVC × BLt × fcgi,s,t)
+ (FCRC × fcfi,s,t) +(GTVC × BLt × gtgi,s,t) + (GTRC × gtfi,s,t)
+ELEPt × BLt × (buyi,s,t − selli,s,t)]}
+(buyi,s,t − selli,s,t) + fcgi,s,t + gtgi,s,t + PVGNi,s,t × pvni + WDGNi,s,t × wdni ∀ i, s, t
btsi,s,t, btii,s,t, btoi,s,t, evsi,s,t, evii,s,t, evoi,s,t ≥ 0 ∀ i, s, t
buyi,s,t, selli,s,t, pini,s,t ≥ 0 ∀ i, s, t
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Indices | |
f, g | Electricity retailer, f = 1, 2, 3,…, F |
h | Electric vehicle, h = 1, 2,…, H |
i | Node of transmission network, i = 1, 2,…, I |
k | Transmission capacity of interface, k = 1, 2,…, K |
n | Generator, n = 1, 2, 3,…, N |
s | Stochastic scenario, s = 1, 2,…, S |
t | Time period, t = 1, 2,…, T |
tt | Time period for charging electric vehicle, tt = 1, 2,…, TT |
Coefficients | |
BLt | Hours of time t |
BTCPi | Energy storage capacity of battery in node i (kWh) |
CTf,n | Power generation cost of generator n of electricity retailer f (NTD/kWh) |
CTMf | Electricity selling price from the microgrid to electricity retailer f (NTD/kWh) |
ELEPt | Electricity selling price at time period t from the main grid (NTD/kWh) |
ERFC | Carbon dioxide emission rate for fuel cell (kg/kWh) |
ERGT | Carbon dioxide emission rate for gas turbine (kg/kWh) |
EVCPh,i | Energy storage capacity of electric vehicle h in node i (kWh) |
FCAPf,n | Installed generation capacity of generator n of electricity retailer f (kW) |
FCCPi | Power generation capacity of fuel cell in node i (kW) |
FCFC | Fixed cost of fuel cell (NTD/kW) |
FCRC | Fuel cost of hydrogen for fuel cell (NTD/m3) |
FCVC | Variable cost of fuel cell (NTD/kWh) |
FRFC | Hydrogen for fuel cell consumption per kWh (m3/kWh) |
FRGT | Natural gas for gas turbine consumption per kWh (m3/kWh) |
GTCPi | Power generation capacity of gas turbine in node i (kW) |
GTFC | Fixed cost of gas turbine (NTD/kW) |
GTRC | Fuel cost of natural gas for gas turbine (NTD/m3) |
GTVC | Variable cost of gas turbine (NTD/kWh) |
PIt | Price intercept of demand curve at time period t |
PODMi,s,t | Energy demand in node i at time period t for scenario s (kW) |
PROBs | Probability of scenario s (dimensionless) |
PTDFi,k | Power transmission distribution factor of node i for transmission interface k (kW) |
PVFC | Fixed cost of photovoltaic system (NTD/kW) |
PVGNi,s,t | Power generation of solar power in node i at time period t for scenario s (kW) |
QIt | Quantity intercept of demand curve at time period t |
TCLWk | Lower bound of transmission capacity for interface k (kW) |
TCUPk | Upper bound of transmission capacity for interface k (kW) |
WDFC | Fixed cost of wind power generator (NTD/kW) |
WDGNi,s,t | Power generation of wind power in node i at time period t for scenario s (kW) |
Decision variables | |
btii,s,t | Power inflow of battery in node i at time period t for scenario s (kWh) |
btni | Number of batteries installed in node i (dimensionless) |
btoi,s,t | Power outflow of battery in node i at time period t for scenario s (kWh) |
btsi,s,t | Energy stored of battery in node i at time period t for scenario s (kWh) |
buyi,s,t | Electricity purchase of microgrid in node i at time period t for scenario s (kW) |
evih,i,s,t | Power inflow of electric vehicle h in node i at time period t for scenario s (kWh) |
evsh,i,s,t | Energy stored of electric vehicle h in node i at time period t for scenario s (kWh) |
evoh,i,s,t | Power outflow of electric vehicle h in node i at time period t for scenario s (kWh) |
fbyf,t,s | Electricity sale from the microgrids to electricity retailer f at time period t of scenario s (kWh) |
fcei,s,t | CO2 emission of fuel cell in node i at time period t for scenario s (kg) |
fcfi,s,t | Fuel demand of fuel cell in node i at time period t for scenario s (m3) |
fcgi,s,t | Power generation of fuel cell in node i at time period t for scenario s (kW) |
fcni | Number of fuel cells installed in node i (dimensionless) |
fprf,n,t | Power generation of generator n of electricity retailer f at time period t (kW) |
fsef,t | Electricity sale of electricity retailer f at time period t (kW) |
gtei,s,t | CO2 emission of gas turbine in node i at time period t for scenario s (kg) |
gtfi,s,t | Fuel demand of gas turbine in node i at time period t for scenario s (m3) |
gtgi,s,t | Power generation of gas turbine in node i at time period t for scenario s (kW) |
gtni | Number of gas turbines installed in node i (dimensionless) |
num | Number of electric vehicles |
pini,s,t | Power inflow of transmission system in node i at time period t for scenario s (kW) |
pvni | Number of photovoltaic systems installed in node i (dimensionless) |
selli,s,t | Electricity sale of microgrid in node i at time period t for scenario s (kW) |
wdni | Number of wind power generators installed in node i (dimensionless) |
θf,t | Dual variable of the power balance constraint of electricity retailer f at time period t |
λ | Poisson average arrival rate of electric vehicles |
ρf,n,t | Dual variable of the generation capacity constraint of generator n of electricity retailer f at time period t |
σf,t,s | Dual variable of the electricity sale constraint from the microgrids to electricity retailer f at time period t of scenario s |
Appendix A
t | BL(t) | PI(t) | QI(t) |
---|---|---|---|
1 | 2260 | 194.29 | 64,764.59 |
2 | 5000 | 173.34 | 57,779.86 |
3 | 1500 | 152.39 | 50,795.14 |
Electricity Retailer (f) | Generator (n) | CT(f,n) | FCAP(f,n) |
---|---|---|---|
Taipower | 1 | 87.42 | 2000 |
Taipower | 2 | 27.53 | 600 |
Taipower | 3 | 80.25 | 300 |
Taipower | 4 | 80.245 | 2898 |
Taipower | 5 | 27.53 | 5500 |
Taipower | 6 | 80.25 | 280 |
Taipower | 7 | 80.25 | 1785 |
Taipower | 8 | 80.25 | 1118 |
Taipower | 9 | 27.53 | 2100 |
Taipower | 10 | 80.25 | 2226 |
Taipower | 11 | 27.53 | 600 |
Taipower | 12 | 87.42 | 750 |
Taipower | 13 | 80.25 | 1050 |
Taipower | 14 | 80.25 | 87 |
EverPower | 1 | 80.25 | 900 |
KuoKuang | 1 | 80.25 | 480 |
HsinTao | 1 | 80.25 | 600 |
StarEnergy | 1 | 80.25 | 490 |
MaiLao | 1 | 27.53 | 1800 |
ChiaHui | 1 | 80.25 | 670 |
SunBa | 1 | 80.25 | 980 |
HoPing | 1 | 27.53 | 1300 |
Source | Scenario | Time (hour) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | ||
Photovoltaic | 1 | 10 | 20 | 30 | 40 | 40 | 40 | 20 | 10 | ||||||||||||||||
2 | 20 | 40 | 60 | 80 | 80 | 80 | 40 | 20 | |||||||||||||||||
3 | 30 | 60 | 90 | 120 | 120 | 120 | 60 | 30 | |||||||||||||||||
Wind power generator 1 | 1 | 9 | 37.5 | 39 | 36 | 45 | 103.5 | 97.5 | 105 | 90 | 9.75 | 25.5 | 36 | 22.5 | 90 | 112.5 | 90 | 81 | 72 | 9 | 9 | 9 | |||
2 | 18 | 75 | 78 | 72 | 90 | 207 | 195 | 210 | 180 | 19.5 | 51 | 72 | 45 | 180 | 225 | 180 | 162 | 144 | 18 | 18 | 18 | ||||
3 | 27 | 112.5 | 117 | 108 | 135 | 310.5 | 292.5 | 315 | 270 | 29.25 | 76.5 | 108 | 67.5 | 270 | 337.5 | 270 | 243 | 216 | 27 | 27 | 27 | ||||
Wind power generator 2 | 1 | 0.5 | 1.5 | 2 | 1.5 | 2.5 | 3.5 | 4.5 | 5 | 5.5 | 0.5 | 1.5 | 2 | 1.25 | 5 | 6.25 | 5 | 4.5 | 4 | 0.5 | 0.5 | 0.5 | |||
2 | 1 | 3 | 4 | 3 | 5 | 7 | 9 | 10 | 11 | 1 | 3 | 4 | 2.5 | 10 | 12.5 | 10 | 9 | 8 | 1 | 1 | 1 | ||||
3 | 1.5 | 4.5 | 6 | 4.5 | 7.5 | 10.5 | 13.5 | 15 | 16.5 | 1.5 | 4.5 | 6 | 3.75 | 15 | 18.75 | 15 | 13.5 | 12 | 1.5 | 1.5 | 1.5 | ||||
Battery storage | 1 | 10 | 10 | ||||||||||||||||||||||
2 | 10 | ||||||||||||||||||||||||
3 | |||||||||||||||||||||||||
Battery inflow | 1 | 10 | |||||||||||||||||||||||
2 | 10 | ||||||||||||||||||||||||
3 | |||||||||||||||||||||||||
Battery outflow | 1 | 10 | |||||||||||||||||||||||
2 | |||||||||||||||||||||||||
3 | 10 | ||||||||||||||||||||||||
Electricity sale | 1 | 160.4 | |||||||||||||||||||||||
2 | 340.9 | ||||||||||||||||||||||||
3 | 521.3 | ||||||||||||||||||||||||
Electricity purchase | 1 | 17.55 | |||||||||||||||||||||||
2 | 35.1 | ||||||||||||||||||||||||
3 | 52.65 | ||||||||||||||||||||||||
Energy demand | 1 | 8.4 | 11.7 | 8.7 | 7.1 | 5.5 | 5.4 | 7.5 | 29.6 | 99.2 | 121.5 | 119.1 | 119.2 | 117.6 | 113.6 | 109.5 | 127.1 | 96.8 | 30.6 | 17.1 | 16.8 | 16.7 | 16.0 | 14.7 | 14.9 |
2 | 16.7 | 23.4 | 17.5 | 14.1 | 11.1 | 10.8 | 15.0 | 59.1 | 198.4 | 243.1 | 238.2 | 238.5 | 235.2 | 227.3 | 219.1 | 254.2 | 193.6 | 61.2 | 34.1 | 33.5 | 33.4 | 32.0 | 29.3 | 29.7 | |
3 | 25.1 | 35.1 | 26.2 | 21.2 | 16.6 | 16.1 | 22.4 | 88.7 | 297.5 | 364.6 | 357.2 | 357.7 | 352.7 | 340.9 | 328.6 | 381.2 | 290.3 | 91.7 | 51.2 | 50.3 | 50.0 | 48.0 | 44.0 | 44.6 |
Source | Scenario | Time (hour) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | ||
Photovoltaic | 1 | 10 | 20 | 30 | 40 | 40 | 40 | 20 | 10 | ||||||||||||||||
2 | 20 | 40 | 60 | 80 | 80 | 80 | 40 | 20 | |||||||||||||||||
3 | 30 | 60 | 90 | 120 | 120 | 120 | 60 | 30 | |||||||||||||||||
Wind power generator 1 | 1 | 9 | 37.5 | 39 | 36 | 45 | 103.5 | 97.5 | 105 | 90 | 9.75 | 25.5 | 36 | 22.5 | 90 | 112.5 | 90 | 81 | 72 | 9 | 9 | 9 | |||
2 | 18 | 75 | 78 | 72 | 90 | 207 | 195 | 210 | 180 | 19.5 | 51 | 72 | 45 | 180 | 225 | 180 | 162 | 144 | 18 | 18 | 18 | ||||
3 | 27 | 112.5 | 117 | 108 | 135 | 310.5 | 292.5 | 315 | 270 | 29.25 | 76.5 | 108 | 67.5 | 270 | 337.5 | 270 | 243 | 216 | 27 | 27 | 27 | ||||
Wind power generator 2 | 1 | 0.5 | 1.5 | 2 | 1.5 | 2.5 | 3.5 | 4.5 | 5 | 5.5 | 0.5 | 1.5 | 2 | 1.25 | 5 | 6.25 | 5 | 4.5 | 4 | 0.5 | 0.5 | 0.5 | |||
2 | 1 | 3 | 4 | 3 | 5 | 7 | 9 | 10 | 11 | 1 | 3 | 4 | 2.5 | 10 | 12.5 | 10 | 9 | 8 | 1 | 1 | 1 | ||||
3 | 1.5 | 4.5 | 6 | 4.5 | 7.5 | 10.5 | 13.5 | 15 | 16.5 | 1.5 | 4.5 | 6 | 3.75 | 15 | 18.75 | 15 | 13.5 | 12 | 1.5 | 1.5 | 1.5 | ||||
Battery storage | 1 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |||||||||||||||||
2 | 10 | ||||||||||||||||||||||||
3 | |||||||||||||||||||||||||
Battery inflow | 1 | 10 | |||||||||||||||||||||||
2 | 10 | ||||||||||||||||||||||||
3 | |||||||||||||||||||||||||
Battery outflow | 1 | 10 | |||||||||||||||||||||||
2 | 10 | ||||||||||||||||||||||||
3 | |||||||||||||||||||||||||
Electricity sale | 1 | 140.4 | |||||||||||||||||||||||
2 | 320.9 | ||||||||||||||||||||||||
3 | 501.3 | ||||||||||||||||||||||||
Electricity purchase | 1 | 17.55 | |||||||||||||||||||||||
2 | 35.1 | ||||||||||||||||||||||||
3 | 52.65 | ||||||||||||||||||||||||
Energy demand | 1 | 8.4 | 11.7 | 8.7 | 7.1 | 5.5 | 5.4 | 7.5 | 29.6 | 99.2 | 121.5 | 119.1 | 119.2 | 117.6 | 113.6 | 109.5 | 127.1 | 96.8 | 30.6 | 17.1 | 16.8 | 16.7 | 16.0 | 14.7 | 14.9 |
2 | 16.7 | 23.4 | 17.5 | 14.1 | 11.1 | 10.8 | 15.0 | 59.1 | 198.4 | 243.1 | 238.2 | 238.5 | 235.2 | 227.3 | 219.1 | 254.2 | 193.6 | 61.2 | 34.1 | 33.5 | 33.4 | 32.0 | 29.3 | 29.7 | |
3 | 25.1 | 35.1 | 26.2 | 21.2 | 16.6 | 16.1 | 22.4 | 88.7 | 297.5 | 364.6 | 357.2 | 357.7 | 352.7 | 340.9 | 328.6 | 381.2 | 290.3 | 91.7 | 51.2 | 50.3 | 50.0 | 48.0 | 44.0 | 44.6 |
Source | Scenario | Time (hour) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | ||
Photovoltaic | 1 | 10 | 20 | 30 | 40 | 40 | 40 | 20 | 10 | ||||||||||||||||
2 | 20 | 40 | 60 | 80 | 80 | 80 | 40 | 20 | |||||||||||||||||
3 | 30 | 60 | 90 | 120 | 120 | 120 | 60 | 30 | |||||||||||||||||
Wind power generator 1 | 1 | 9 | 37.5 | 39 | 36 | 45 | 103.5 | 97.5 | 105 | 90 | 9.75 | 25.5 | 36 | 22.5 | 90 | 112.5 | 90 | 81 | 72 | 9 | 9 | 9 | |||
2 | 18 | 75 | 78 | 72 | 90 | 207 | 195 | 210 | 180 | 19.5 | 51 | 72 | 45 | 180 | 225 | 180 | 162 | 144 | 18 | 18 | 18 | ||||
3 | 27 | 112.5 | 117 | 108 | 135 | 310.5 | 292.5 | 315 | 270 | 29.25 | 76.5 | 108 | 67.5 | 270 | 337.5 | 270 | 243 | 216 | 27 | 27 | 27 | ||||
Wind power generator 2 | 1 | 0.5 | 1.5 | 2 | 1.5 | 2.5 | 3.5 | 4.5 | 5 | 5.5 | 0.5 | 1.5 | 2 | 1.25 | 5 | 6.25 | 5 | 4.5 | 4 | 0.5 | 0.5 | 0.5 | |||
2 | 1 | 3 | 4 | 3 | 5 | 7 | 9 | 10 | 11 | 1 | 3 | 4 | 2.5 | 10 | 12.5 | 10 | 9 | 8 | 1 | 1 | 1 | ||||
3 | 1.5 | 4.5 | 6 | 4.5 | 7.5 | 10.5 | 13.5 | 15 | 16.5 | 1.5 | 4.5 | 6 | 3.75 | 15 | 18.75 | 15 | 13.5 | 12 | 1.5 | 1.5 | 1.5 | ||||
Battery storage | 1 | 10 | |||||||||||||||||||||||
2 | 10 | ||||||||||||||||||||||||
3 | |||||||||||||||||||||||||
Battery inflow | 1 | 10 | |||||||||||||||||||||||
2 | 10 | ||||||||||||||||||||||||
3 | |||||||||||||||||||||||||
Battery outflow | 1 | 10 | |||||||||||||||||||||||
2 | 10 | ||||||||||||||||||||||||
3 | |||||||||||||||||||||||||
Electricity sale | 1 | 120.4 | |||||||||||||||||||||||
2 | 300.9 | ||||||||||||||||||||||||
3 | 481.3 | ||||||||||||||||||||||||
Electricity purchase | 1 | 17.55 | |||||||||||||||||||||||
2 | 35.1 | ||||||||||||||||||||||||
3 | 52.65 | ||||||||||||||||||||||||
Energy demand | 1 | 8.4 | 11.7 | 8.7 | 7.1 | 5.5 | 5.4 | 7.5 | 29.6 | 99.2 | 121.5 | 119.1 | 119.2 | 117.6 | 113.6 | 109.5 | 127.1 | 96.8 | 30.6 | 17.1 | 16.8 | 16.7 | 16.0 | 14.7 | 14.9 |
2 | 16.7 | 23.4 | 17.5 | 14.1 | 11.1 | 10.8 | 15.0 | 59.1 | 198.4 | 243.1 | 238.2 | 238.5 | 235.2 | 227.3 | 219.1 | 254.2 | 193.6 | 61.2 | 34.1 | 33.5 | 33.4 | 32.0 | 29.3 | 29.7 | |
3 | 25.1 | 35.1 | 26.2 | 21.2 | 16.6 | 16.1 | 22.4 | 88.7 | 297.5 | 364.6 | 357.2 | 357.7 | 352.7 | 340.9 | 328.6 | 381.2 | 290.3 | 91.7 | 51.2 | 50.3 | 50.0 | 48.0 | 44.0 | 44.6 |
References
- Kavousi-Fard, A.; Khodaei, A. Efficient integration of plug-in electric vehicles via reconfigurable microgrids. Energy 2016, 111, 653–663. [Google Scholar] [CrossRef]
- Lan, T.; Jermsittiparsert, K.; Alrashood, S.; Rezaei, M.; Al-Ghussain, L.; Mohamed, M. An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand. Energies 2021, 14, 569. [Google Scholar] [CrossRef]
- Lee, J.; Park, G. Integrated Coordination of Electric Vehicle Operations and Renewable Energy Generation in a Microgrid. Int. J. Electr. Comput. Eng. 2017, 7, 706–712. [Google Scholar] [CrossRef]
- Sayed, K.; Abo-Khalil, A.; Alghamdi, A. Optimum Resilient Operation and Control DC Microgrid Based Electric Vehicles Charging Station Powered by Renewable Energy Sources. Energies 2019, 12, 4240. [Google Scholar] [CrossRef]
- Muhtadi, A.; Pandit, D.; Nguyen, N.; Mitra, J. Distributed Energy Resources Based Microgrid: Review of Architecture, Control, and Reliability. IEEE Trans. Ind. Appl. 2021, 57, 2223–2235. [Google Scholar] [CrossRef]
- Ahmad, F.; Alam, M.; Asaad, M. Developments in xEVs charging infrastructure and energy management system for smart microgrids including xEVs. Sustain. Cities Soc. 2017, 35, 552–564. [Google Scholar] [CrossRef]
- Eid, A.; Ibrahim, M.; Kamel, S. Optimal Planning of Microgrids Including Charging Stations and Renewable Energy Sources. In Proceedings of the 2021 22nd International Middle East Power Systems Conference (MEPCON), Assiut, Egypt, 14–16 December 2021. [Google Scholar] [CrossRef]
- The Electricity Act. Available online: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=J0030011 (accessed on 26 May 2024).
- Taiwan’s Pathway to Net-Zero Emissions in 2050. Available online: https://www.ndc.gov.tw/en/Content_List.aspx?n=B154724D802DC488 (accessed on 26 May 2024).
- Taiwan’s 2050 Net Zero Carbon Emission Path and Strategic Planning—ELECTRIC & CARBON-FREE VEHICLES. Available online: https://service.cca.gov.tw/File/Get/climatetalks/zh-tw/YaujFH6FboOTMDG (accessed on 26 May 2024).
- Saber, A.Y.; Venayagamoorthy, G.K. Plug-in vehicles and renewable energy sources for cost and emission reductions. IEEE Trans. Ind. Electron. 2011, 58, 1229–1238. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. Electric vehicles: Solution or new problem? Environ. Dev. Sustain. 2018, 20, 7–22. [Google Scholar] [CrossRef]
- Teixeira, A.C.R.; Sodré, J.R. Simulation of the impacts on carbon dioxide emissions from replacement of a conventional Brazilian taxi fleet by electric vehicles. Energy 2016, 115, 1617–1622. [Google Scholar] [CrossRef]
- Alanazi, F. Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation. Appl. Sci. 2023, 13, 6016. [Google Scholar] [CrossRef]
- Bryła, P.; Chatterjee, S.; Ciabiada-Bryła, B. Consumer Adoption of Electric Vehicles: A Systematic Literature Review. Energies 2023, 16, 205. [Google Scholar] [CrossRef]
- Engel, H.; Hensley, R.; Knupfer, S.; Sahdev, S. The Potential Impact of Electric Vehicles on Global Energy Systems. Available online: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-potential-impact-of-electric-vehicles-on-global-energy-systems (accessed on 26 May 2024).
- Faddel, S.; Al-Awami, A.; Mohammed, O.A. Charge Control and Operation of Electric Vehicles in Power Grids: A Review. Energies 2018, 11, 701. [Google Scholar] [CrossRef]
- Cai, S.; Jiang, L.; Li, Y.; Zhang, S. Research on Electric Vehicle Charge and Discharge Dispatching Strategy Considering the Demand on Both Sides of Supply and Demand. In Proceedings of the 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 20–23 September 2020. [Google Scholar] [CrossRef]
- Palahalli, H.; Diaz-Londono, C.; Maffezzoni, P.; Gruosso, G. Analyzing the Impact of Coordinated Charging of Electric Vehicles on the Power System. In Proceedings of the 2023 International Conference on Clean Electrical Power (ICCEP), Terrasini, Italy, 27–29 June 2023. [Google Scholar] [CrossRef]
- Bayod-Rújula, A.A. Future development of the electricity systems with distributed generation. Energy 2009, 34, 377–383. [Google Scholar] [CrossRef]
- El-Hendawi, M.; Gabbar, H.A.; El-Saady, G.; Ibrahim, E.-N.A. Control and EMS of a Grid-Connected Microgrid with Economical Analysis. Energies 2018, 11, 129. [Google Scholar] [CrossRef]
- Ferahtia, S.; Djeroui, A.; Rezk, H.; Houari, A.; Zeghlache, S.; Machmoum, M. Optimal control and implementation of energy management strategy for a DC microgrid. Energy 2022, 238, 121777. [Google Scholar] [CrossRef]
- Shafiullah, M.; Refat, A.M.; Haque, M.E.; Chowdhury, D.M.H.; Hossain, M.S.; Alharbi, A.G.; Alam, M.S.; Ali, A.; Hossain, S. Review of recent developments in microgrid energy management strategies. Sustainability 2022, 14, 4794. [Google Scholar] [CrossRef]
- Jafari, M.; Malekjamshidi, Z.; Zhu, J.; Khooban, M. A Novel Predictive Fuzzy Logic-Based Energy Management System for Grid-Connected and Off-Grid Operation of Residential Smart Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 1391–1404. [Google Scholar] [CrossRef]
- Kelleher, J.; Ringwood, J.V. A computational tool for evaluating the economics of solar and wind microgeneration of electricity. Energy 2009, 34, 401–409. [Google Scholar] [CrossRef]
- Chaurey, A.; Kandpal, T.C. A techno-economic comparison of rural electrification based on solar home systems and PV microgrids. Energy Policy 2010, 38, 3118–3129. [Google Scholar] [CrossRef]
- Tooryan, F.; Hassanzadehfard, H.; Collins, E.R.; Jin, S.S.; Ramezani, B. Smart integration of renewable energy resources, electrical, and thermal energy storage in microgrid applications. Energy 2020, 212, 118716. [Google Scholar] [CrossRef]
- Nagarajan, K.; Rajagopalan, A.; Angalaeswari, S.; Natrayan, L.; Mammo, W.D. Combined Economic Emission Dispatch of Microgrid with the Incorporation of Renewable Energy Sources Using Improved Mayfly Optimization Algorithm. Comput. Intell. Neurosci. 2022, 2022, 6461690. [Google Scholar] [CrossRef]
- Ferris, M.C.; Munson, T.S. GAMS/PATH User Guide, Version 4.3; GAMS Development Corporation: Washington, DC, USA, 2000; p. 3. [Google Scholar]
- Rosenthal, R.E. GAMS: A User’s Guide; GAMS Development Corporation: Washington, DC, USA, 2016; pp. 483–484. [Google Scholar]
- Masrur, H.; Shafie-khah, M.; Hossain, M.J.; Senjyu, T. Multi-energy Microgrids Incorporating EV Integration: Optimal Design and Resilient Operation. IEEE Trans. Smart Grid 2022, 13, 3508–3518. [Google Scholar] [CrossRef]
- Siddiqui, A.S.; Marnay, C. Distributed generation investment by a microgrid under uncertainty. Energy 2008, 33, 1729–1737. [Google Scholar] [CrossRef]
- Ghadikolaei, E.R.; Ghafouri, A.; Sedighi, M. Probabilistic Energy Management of DGs and Electric Vehicle Parking Lots in a Smart Grid considering Demand Response. Int. J. Energy Res. 2024, 2024, 5543500. [Google Scholar] [CrossRef]
- Azarhooshang, A.; Sedighizadeh, D.; Sedighizadeh, M. Two-stage stochastic operation considering day-ahead and real-time scheduling of microgrids with high renewable energy sources and electric vehicles based on multi-layer energy management system. Electr. Power Syst. Res. 2021, 201, 107527. [Google Scholar] [CrossRef]
- Wu, G.L.; Huang, Y.; Yuan, H.; Zheng, W.; Liu, J.Y.; Wang, K.K. Stochastic Optimization of a Microgrid Considering Classification of Electric Vehicles. In Proceedings of the 2023 Panda Forum on Power and Energy (PandaFPE), Chengdu, China, 27–30 April 2023. [Google Scholar] [CrossRef]
- Diaz-Cachinero, P.; Muñoz-Hernandez, J.I.; Contreras, J.A. Microgrid Model with EV Demand Uncertainty and Detailed Operation of Storage Systems. IEEE Trans. Ind. Appl. 2022, 58, 2497–2511. [Google Scholar] [CrossRef]
- García-Torres, F.; Bordons, C.; Tobajas, J.; Real-Calvo, R.; Santiago, I.; Grieu, S. Stochastic Optimization of Microgrids With Hybrid Energy Storage Systems for Grid Flexibility Services Considering Energy Forecast Uncertainties. IEEE Trans. Power Syst. 2021, 36, 5537–5547. [Google Scholar] [CrossRef]
- Xie, S.Y. Nash Equilibrium Theory; Shanghai University of Finance and Economics Press: Shanghai, China, 1999; pp. 106–117. [Google Scholar]
- Klein, T. Cournot (Nash) Equilibrium, Global Dictionary of Competition Law, Concurrences, Art. N° 85400. Available online: https://www.concurrences.com/en/dictionary/cournot-nash-equilibrium (accessed on 6 July 2024).
- Introduction to Probability, Statistics and Random Processes. Available online: https://www.probabilitycourse.com/chapter11/11_1_1_counting_processes.php (accessed on 6 July 2024).
- Kaut, M. Scenario Generation for Stochastic Programming Introduction and Selected Methods; SINTEF Technology and Society: Trondheim, Norway, 2011; pp. 3–10. [Google Scholar]
- Rayati, M.; Bozorg, M.; Carpita, M.; Cherkaoui, R. Stochastic Optimization and Markov Chain-Based Scenario Generation for Exploiting the Underlying Flexibilities of An Active Distribution Network. Sustain. Energy Grids Netw. 2023, 34, 100999. [Google Scholar] [CrossRef]
- Casals, L.C.; Etxandi-Santolaya, M.; Bibiloni-Mulet, P.A.; Corchero, C.; Trilla, L. Electric Vehicle Battery Health Expected at End of Life in the Upcoming Years Based on UK Data. Batteries 2022, 8, 164. [Google Scholar] [CrossRef]
- U.S. Department of Energy Solar Energy Technologies Office (SETO). End-of-Life Management for Solar Photovoltaics. Available online: https://www.energy.gov/eere/solar/end-life-management-solar-photovoltaics (accessed on 6 July 2024).
- National Renewable Energy Laboratory. Photovoltaic Lifetime Project. Available online: https://www.nrel.gov/pv/lifetime.html (accessed on 6 July 2024).
- Argue, C. How Long Do Electric Car Batteries Last? What 6300 Electric Vehicles Tell Us about EV Battery Life. Available online: https://www.geotab.com/blog/ev-battery-health/ (accessed on 6 July 2024).
- Yilmaz, M.; Krein, P.T. Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces. IEEE Trans. Power Electron. 2013, 28, 5673–5689. [Google Scholar] [CrossRef]
- He, T.; Lu, D.D.-C.; Wu, M.; Yang, Q.; Li, T.; Liu, Q. Four-Quadrant Operations of Bidirectional Chargers for Electric Vehicles in Smart Car Parks: G2V, V2G, and V4G. Energies 2021, 14, 181. [Google Scholar] [CrossRef]
Battery | Electricity Trading | |||||
---|---|---|---|---|---|---|
Uncertainty 1 | Total Storage (kWh) | Total Input (kWh) | Total Output (kWh) | Total Sale (kWh) | Total Purchase (kWh) | Total Demand (kWh) |
Low Uncertainty | 20 | 10 | 10 | 160.43 | 17.55 | 1233.88 |
Medium Uncertainty | 10 | 10 | 0 | 340.85 | 35.10 | 2467.75 |
High Uncertainty | 0 | 0 | 10 | 521.28 | 52.65 | 3701.63 |
Battery | Electricity Trading | |||||
---|---|---|---|---|---|---|
Uncertainty 1 | Total Storage (kWh) | Total Input (kWh) | Total Output (kWh) | Total Sale (kWh) | Total Purchase (kWh) | Total Demand (kWh) |
Low Uncertainty | 70 | 10 | 10 | 140.43 | 17.55 | 1233.88 |
Medium Uncertainty | 10 | 10 | 10 | 320.85 | 35.10 | 2467.75 |
High Uncertainty | 0 | 0 | 0 | 501.28 | 52.65 | 3701.63 |
Battery | Electricity Trading | |||||
---|---|---|---|---|---|---|
Uncertainty 1 | Total Storage (kWh) | Total Input (kWh) | Total Output (kWh) | Total Sale (kWh) | Total Purchase (kWh) | Total Demand (kWh) |
Low Uncertainty | 10 | 10 | 10 | 120.43 | 17.55 | 1233.88 |
Medium Uncertainty | 10 | 10 | 10 | 300.85 | 35.10 | 2467.75 |
High Uncertainty | 0 | 0 | 0 | 481.28 | 52.65 | 3701.63 |
Scenarios | Electricity Retailer | Peak Load (MWh) | Medium Load (MWh) | Base Load (MWh) | Total Load (MWh) |
---|---|---|---|---|---|
0% scenario | Taipower | 42,110,580 | 93,165,000 | 26,991,671 | 162,267,251 |
Total | 58,427,780 | 129,265,000 | 35,436,452 | 223,129,232 | |
5% scenario | Taipower | 44,216,109 | 97,823,250 | 26,991,671 | 169,031,030 |
Total | 60,533,309 | 133,923,250 | 35,436,452 | 229,893,011 | |
10% scenario | Taipower | 46,321,638 | 102,481,500 | 26,991,671 | 175,794,809 |
Total | 62,638,838 | 138,581,500 | 35,436,452 | 236,656,790 | |
15% scenario | Taipower | 48,427,167 | 103,458,039 | 26,991,671 | 178,876,877 |
Total | 64,744,367 | 139,558,039 | 35,436,452 | 239,738,858 | |
20% scenario | Taipower | 50,532,696 | 103,458,039 | 26,991,671 | 180,982,406 |
Total | 75,272,012 | 156,801,045 | 39,935,064 | 272,008,122 | |
30% scenario | Taipower | 54,655,552 | 103,458,039 | 26,991,671 | 185,105,262 |
Total | 83,585,572 | 163,432,971 | 41,665,300 | 288,683,843 |
Scenarios | Electricity Retailer | Peak Load (MWh) | Medium Load (MWh) | Base Load (MWh) | Total Load (MWh) |
---|---|---|---|---|---|
0% scenario | Taipower | 42,110,580 | 93,165,000 | 26,991,671 | 162,267,251 |
Total | 58,427,780 | 129,265,000 | 35,436,452 | 223,129,232 | |
5% scenario | Taipower | 44,216,109 | 97,823,250 | 26,962,609 | 169,001,968 |
Total | 61,349,169 | 135,728,250 | 35,465,515 | 232,542,934 | |
10% scenario | Taipower | 46,321,638 | 101,653,039 | 26,933,546 | 174,908,223 |
Total | 64,270,558 | 141,363,039 | 35,494,577 | 241,128,174 | |
15% scenario | Taipower | 48,427,167 | 100,750,539 | 26,904,484 | 176,082,190 |
Total | 67,191,947 | 142,265,539 | 35,523,640 | 244,981,126 | |
20% scenario | Taipower | 50,532,696 | 99,848,039 | 26,875,421 | 177,256,156 |
Total | 70,113,336 | 143,168,039 | 35,552,702 | 248,834,077 | |
30% scenario | Taipower | 52,207,972 | 98,043,039 | 26,817,296 | 177,068,307 |
Total | 73,420,332 | 144,973,039 | 35,610,827 | 254,004,199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.-J.; Lu, S.-Y.; Hu, M.-C.; Chen, Y.-H. Stochastic Optimal Strategies and Management of Electric Vehicles and Microgrids. Energies 2024, 17, 3726. https://doi.org/10.3390/en17153726
Lin F-J, Lu S-Y, Hu M-C, Chen Y-H. Stochastic Optimal Strategies and Management of Electric Vehicles and Microgrids. Energies. 2024; 17(15):3726. https://doi.org/10.3390/en17153726
Chicago/Turabian StyleLin, Faa-Jeng, Su-Ying Lu, Ming-Che Hu, and Yen-Haw Chen. 2024. "Stochastic Optimal Strategies and Management of Electric Vehicles and Microgrids" Energies 17, no. 15: 3726. https://doi.org/10.3390/en17153726
APA StyleLin, F. -J., Lu, S. -Y., Hu, M. -C., & Chen, Y. -H. (2024). Stochastic Optimal Strategies and Management of Electric Vehicles and Microgrids. Energies, 17(15), 3726. https://doi.org/10.3390/en17153726