A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction
Abstract
:1. Introduction
2. Methodology
2.1. Description of Vehicle Speed Data
2.2. The Autoregressive Integrated Moving Average Modeling, ARIMA
2.3. The Long Short-Term Method Modeling, LSTM
2.4. ARIMA-LSTM
Algorithm 1: ARIMA-LSTM |
Forecasting process begins 1: Predicted input vehicle speed data working speed sequence 2: Vx smoothing process (determination of parameter D) 3: Vx_ARIMA(4,4) (vehicle speed model initial order p,q) 4: (model parameter estimation) 5: If (model checking) 6: (ARIMA modeling of vehicle speed 15 s time-domain prediction) 7: End if 8: 9: Input LSTM 10: Training of LSTM 11: (Predicted output of speed residuals) 12: (ARIMA-LSTM modeling of vehicle speed 15 s time-domain prediction) 13: End if End of the prediction process, return to step 6 to loop through the prediction |
3. Analysis of Vehicle Speed Prediction
3.1. Evaluation Indicators
3.2. Linear Prediction of ARIMA Model
3.3. Nonlinear Prediction of LSTM Modeling
3.4. Coupling Prediction Results
4. Comparison and Discussion
4.1. The Prediction Performance under Single Step
4.2. The Prediction Performance under Multi-Step
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Huang, Z.; Zhang, C.; Lv, C.; Deng, C.; Hao, D.; Chen, J.; Ran, H. Improved Short-Term Speed Prediction Using Spatiotemporal-Vision-Based Deep Neural Network for Intelligent Fuel Cell Vehicles. IEEE Trans. Ind. Inform. 2021, 17, 6004–6013. [Google Scholar] [CrossRef]
- Zhang, F.; Xi, J.; Langari, R. Real-Time Energy Management Strategy Based on Velocity Forecasts Using V2V and V2I Communications. IEEE Trans. Intell. Transp. Syst. 2017, 18, 416–430. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Zhao, W. Investigating long-term vehicle speed prediction based on BP-LSTM algorithms. IET Intell. Transp. Syst. 2019, 13, 1281–1290. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, Y.; Dai, G.; Xu, X.; Wong, S.-C. A Novel STFSA-CNN-GRU Hybrid Model for Short-Term Traffic Speed Prediction. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3728–3737. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Qi, B. Combined Prediction for Vehicle Speed with Fixed Route. Chin. J. Mech. Eng. 2020, 33, 60. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Qi, B. Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction. Energy 2020, 206, 118126. [Google Scholar] [CrossRef]
- Karasu, S.; Altan, A.; Bekiros, S.; Ahmad, W. A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 2020, 212, 118750. [Google Scholar] [CrossRef]
- Altan, A.; Karasu, S. The effect of kernel values in support vector machine to forecasting performance of financial time series and cognitive decision making. J. Cogn. Syst. 2019, 4, 17–21. [Google Scholar]
- Zhang, X.; Lei, Y.; Chen, H.; Zhang, L.; Zhou, Y. Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet. IEEE Trans. Ind. Inform. 2021, 17, 4635–4645. [Google Scholar] [CrossRef]
- Li, C.; Tang, G.; Xue, X.; Saeed, A.; Hu, X. Short-Term Wind Speed Interval Prediction Based on Ensemble GRU Model. IEEE Trans. Sustain. Energy 2020, 11, 1370–1380. [Google Scholar] [CrossRef]
- Altan, A.; Karasu, S.; Bekiros, S. Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques. Chaos Solitons Fractals 2019, 126, 325–336. [Google Scholar] [CrossRef]
- Lefevre, S.; Sun, C.; Bajcsy, R.; Laugier, C. Comparison of parametric and non-parametric approaches for vehicle speed prediction. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 3494–3499. [Google Scholar] [CrossRef]
- Huang, Y.; Qian, L.; Feng, A.; Wu, Y.; Zhu, W. RFID Data-Driven Vehicle Speed Prediction via Adaptive Extended Kalman Filter. Sensors 2018, 18, 2787. [Google Scholar] [CrossRef]
- Turki, A.I.; Hasson, S.T. A Markova-Chain Approach to Model Vehicles Traffic Behavior. In Proceedings of the 2022 International Conference of Science and Information Technology in Smart Administration (ICSINTESA), Denpasar, Indonesia, 10–12 November 2022; pp. 117–122. [Google Scholar] [CrossRef]
- Jiang, B.; Fei, Y. Vehicle Speed Prediction by Two-Level Data Driven Models in Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1793–1801. [Google Scholar] [CrossRef]
- Jing, J.; Kurt, A.; Ozatay, E.; Michelini, J.; Filev, D.; Ozguner, U. Vehicle Speed Prediction in a Convoy Using V2V Communication. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 2861–2868. [Google Scholar] [CrossRef]
- Park, J.; Murphey, Y.L.; McGee, R.; Kristinsson, J.G.; Kuang, M.L.; Phillips, A.M. Intelligent Trip Modeling for the Prediction of an Origin–Destination Traveling Speed Profile. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1039–1053. [Google Scholar] [CrossRef]
- Ivanyuk, V. Forecasting of digital financial crimes in Russia based on machine learning methods. J. Comput. Virol. Hacking Tech. 2023, 1–14. [Google Scholar] [CrossRef]
- Young, P.; Shellswell, S. Time series analysis, forecasting and control. IEEE Trans. Autom. Control 1972, 17, 281–283. [Google Scholar] [CrossRef]
- Wilson, G.T. Time Series Analysis: Forecasting and Control, 5th ed.; Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M., Eds.; John Wiley and Sons Inc.: Hoboken, NJ, USA; p. 712. ISBN 978-1-118-67502-1.
- Guo, J.; He, H.; Sun, C. ARIMA-Based Road Gradient and Vehicle Velocity Prediction for Hybrid Electric Vehicle Energy Management. IEEE Trans. Veh. Technol. 2019, 68, 5309–5320. [Google Scholar] [CrossRef]
- Shi, Q.; Abdel-Aty, M. Big Data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transp. Res. Part C Emerg. Technol. 2015, 58, 380–394. [Google Scholar] [CrossRef]
- Xing, J.; Chu, L.; Hou, Z.; Sun, W.; Zhang, Y. Energy Management Strategy Based on a Novel Speed Prediction Method. Sensors 2021, 21, 8273. [Google Scholar] [CrossRef]
- Gataullin, T.; Gataullin, S. Management of Financial Flows on Transport. In Proceedings of the 2019 Twelfth International Conference “Management of Large-Scale System Development” (MLSD), Moscow, Russia, 1–3 October 2019; pp. 1–4. [Google Scholar]
- Jiang, H.; Zou, Y.; Zhang, S.; Tang, J.; Wang, Y. Short-Term Speed Prediction Using Remote Microwave Sensor Data: Machine Learning versus Statistical Model. Math. Probl. Eng. 2016, 2016, 9236156. [Google Scholar] [CrossRef]
- Li, Y.; Wu, C.; Yoshinaga, T. Vehicle Speed Prediction with Convolutional Neural Networks for ITS. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Chongqing, China, 9–11 August 2020; pp. 41–46. [Google Scholar] [CrossRef]
- Park, J.; Li, D.; Murphey, Y.L.; Kristinsson, J.; McGee, R.; Kuang, M.; Phillips, T. Real time vehicle speed prediction using a Neural Network Traffic Model. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 2991–2996. [Google Scholar] [CrossRef]
- Du, C.; Wang, Z.; Malcolm, A.A.; Ho, C.L. Imitation Learning for Autonomous Driving Based on Convolutional and Recurrent Neural Networks. In Proceedings of the 2021 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), Macau, China, 5–7 December 2021; pp. 256–260. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.; Liu, Z.; Li, B.; Zhao, C.; Deng, Z. Long-Short Term Memory-Based Heuristic Adaptive Time-Span Strategy for Vehicle Speed Prediction. IEEE Access 2023, 11, 65559–65568. [Google Scholar] [CrossRef]
- Fan, D.; Sun, H.; Yao, J.; Zhang, K.; Yan, X.; Sun, Z. Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy 2021, 220, 119708. [Google Scholar] [CrossRef]
- Phan, T.-T.-H.; Nguyen, X.H. Combining statistical machine learning models with ARIMA for water level forecasting: The case of the Red river. Adv. Water Resour. 2020, 142, 103656. [Google Scholar] [CrossRef]
- Temür, A.S.; Akgün, M.; Temür, G. Predicting housing sales in turkey using arima, lstm and hybrid models. J. Bus. Econ. Manag. 2019, 20, 920–938. [Google Scholar] [CrossRef]
- Ma, R.; Li, Z.; Breaz, E.; Liu, C.; Bai, H.; Briois, P.; Gao, F. Data-Fusion Prognostics of Proton Exchange Membrane Fuel Cell Degradation. IEEE Trans. Ind. Appl. 2019, 55, 4321–4331. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Z.; Ma, X.; Du, Z. Hybrid Model for Efficient Anomaly Detection in Short-timescale GWAC Light Curves and Similar Datasets. Proc. Inst. Syst. Program. RAS 2019, 31, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Zou, Y.; He, K.; Zhu, B. Carbon futures price forecasting based with ARIMA-CNN-LSTM model. Procedia Comput. Sci. 2019, 162, 33–38. [Google Scholar] [CrossRef]
- Rajeevan, A.K.; Shouri, P.V.; Nair, U. ARIMA Based Wind Speed Modeling for Wind Farm Reliability Analysis and Cost Estimation. J. Electr. Eng. Technol. 2016, 11, 869–877. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.-M.; Li, D.; Tan, Z.; Zhou, J. Short term electricity load forecasting using a hybrid model. Energy 2018, 158, 774–781. [Google Scholar] [CrossRef]
- Tsapin, D.; Pitelinskiy, K.; Suvorov, S.; Osipov, A.; Pleshakova, E.; Gataullin, S. Machine learning methods for the industrial robotic systems security. J. Comput. Virol. Hacking Tech. 2023, 1–18. [Google Scholar] [CrossRef]
Count | Mean | Min | Max | Standard Derivation | |
---|---|---|---|---|---|
4-th Ring | 1746 | 37.3143 | 2.436 | 69.0444 | 16.5624 |
3-rd Ring | 2302 | 25.7561 | 0.019 | 67.704 | 18.1411 |
UDDS | 1397 | 30.8974 | 0 | 91.0156 | 23.4633 |
NEDC | 1165 | 34.0779 | 0 | 120 | 30.8298 |
Name | p Value | D Value | q Value |
---|---|---|---|
4-th Ring | 4 | 2 | 4 |
3-rd Ring | 5 | 2 | 5 |
UDDS | 5 | 2 | 4 |
NEDC | 3 | 2 | 5 |
Name | RMSE | MAPE/% | MAE |
---|---|---|---|
4-th Ring | 1.6448 | 8.38 | 1.1543 |
3-rd Ring | 2.8286 | 3.76 | 1.9545 |
UDDS | 5.2525 | 9.37 | 3.8257 |
NEDC | 0.174 | 0.25 | 0.1259 |
Name | RMSE | MAPE/% | MAE |
---|---|---|---|
4-th Ring | 0.1422 | 18.57 | 0.1125 |
3-rd Ring | 0.2429 | 175.3 | 0.1729 |
UDDS | 0.5431 | 14.10 | 0.4243 |
NEDC | 0.0206 | 150.7 | 0.0191 |
Speed | Model | RMSE | MAPE/% | MAE |
---|---|---|---|---|
4-th Ring | ARIMA | 1.1075 | 4.29 | 0.8251 |
LSTM | 0.5873 | 2.43 | 0.4774 | |
ARIMA-LSTM | 0.2440 | 0.71 | 0.1746 | |
RNN | 0.8666 | 2.71 | 0.7299 | |
CNN | 1.6578 | 5.99 | 1.2204 | |
WNN | 0.6499 | 4.92 | 0.5396 | |
3-rd Ring | ARIMA | 1.2428 | 7.17 | 0.8157 |
LSTM | 1.1171 | 2.53 | 0.9098 | |
ARIMA-LSTM | 0.1028 | 1.35 | 0.0739 | |
RNN | 1.7329 | 2.67 | 1.2673 | |
CNN | 0.5461 | 1.76 | 0.3996 | |
WNN | 0.5492 | 1.88 | 0.3184 | |
UDDS | ARIMA | 3.5427 | 43.3 | 2.5384 |
LSTM | 0.9391 | 3.83 | 0.7126 | |
ARIMA-LSTM | 0.3505 | 2.94 | 0.2797 | |
RNN | 0.8574 | 9.95 | 0.6988 | |
CNN | 0.7657 | 9.95 | 0.5692 | |
WNN | 0.6477 | 5.86 | 0.4256 | |
NEDC | ARIMA | 1.1945 | 0.80 | 0.5941 |
LSTM | 2.3907 | 2.62 | 2.2250 | |
ARIMA-LSTM | 0.3105 | 0.30 | 0.2279 | |
RNN | 0.3289 | 0.33 | 0.2741 | |
CNN | 0.6321 | 0.63 | 0.4785 | |
WNN | 0.6640 | 0.75 | 0.4183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Ma, B.; Guo, X.; Chen, Y.; Xu, Y. A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction. Energies 2024, 17, 3736. https://doi.org/10.3390/en17153736
Wang W, Ma B, Guo X, Chen Y, Xu Y. A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction. Energies. 2024; 17(15):3736. https://doi.org/10.3390/en17153736
Chicago/Turabian StyleWang, Wei, Bin Ma, Xing Guo, Yong Chen, and Yonghong Xu. 2024. "A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction" Energies 17, no. 15: 3736. https://doi.org/10.3390/en17153736
APA StyleWang, W., Ma, B., Guo, X., Chen, Y., & Xu, Y. (2024). A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction. Energies, 17(15), 3736. https://doi.org/10.3390/en17153736