Thermophysical Characterization of Materials for Energy-Efficient Double Diaphragm Preforming
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Through Thickness Thermal Conductivity of Carbon Fabrics with Binder
2.3. Thermal Conductivity of Silicone Membrane
2.4. Specific Heat Capacity of Materials
3. Results and Discussion
3.1. Through Thickness Thermal Conductivity of Fabrics with Binder
3.2. Thermal Conductivity of Silicone Membrane
3.3. Specific Heat Capacity of the Materials
3.3.1. Chopped Carbon Fibers (CCF), Binder, and CCF—Binder Mixture
3.3.2. Powdered Carbon Fibers (PCFs) and PCF—Binder Mixture
3.3.3. Effect of Reheating on Specific Heat for Powdered PCF and Binder Mixture
3.3.4. Specific Heat Capacity of Silicone Membrane
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luby, S.; Bernardon, E. Design of Fabric Preforms for Double Diaphragm Forming. In Proceedings of the FAA, Ninth DOD (NASA) FAA Conference on Fibrous Composites in Structural Design; Draper (Charles Stark) Lab., Inc.: Cambridge, MA, USA, 1992. [Google Scholar]
- Chen, S.; McGregor, O.P.L.; Endruweit, A.; Elsmore, M.T.; De Focatiis, D.S.A.; Harper, L.T.; Warrior, N.A. Double Diaphragm Forming Simulation for Complex Composite Structures. Compos. Part A Appl. Sci. Manuf. 2017, 95, 346–358. [Google Scholar] [CrossRef]
- Verpoest, I. Composite Preforming Techniques. In Comprehensive Composite Materials; Kelly, A., Zweben, C., Eds.; Pergamon: Oxford, UK, 2000; Volume 2, pp. 623–669. [Google Scholar]
- Lomov, S.V.; Verpoest, I. Textile Composite Materials: Polymer Matrix Composites. In Encyclopedia of Aerospace Engineering; Blockley, R., Shyy, W., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 2159–2176. [Google Scholar]
- Widmaier, N.; Radjef, R.; Middendorf, P.; Fox, B. Double Diaphragm Forming of Bindered Unidirectional Dry-Fibre Tapes: Experimental Analysis of Forming Temperature. In Proceedings of the 20th Australian International Aerospace Congress, Melbourne, Australia, 27 February–1 March 2023; Engineers Australia: Melbourne, Australia, 2023. [Google Scholar]
- Cunningham, J.E.; Monaghan, P.F.; Brogan, M.T. Predictions of the Temperature Profile within Composite Sheets during Pre-Heating. Compos. Part A Appl. Sci. Manuf. 1998, 29, 51–61. [Google Scholar] [CrossRef]
- Aranda, S.; Klunker, F.; Ziegmann, G. Compaction Response of Fibre Reinforcements Depending on Processing Temperature. In Proceedings of the ICCM17-17th International Conference on Composite Materials, Edinburgh, Scotland, 27–31 July 2009. [Google Scholar]
- Aranda, S.; Klunker, F.; Ziegmann, G. Influence of the Binding System on the Compaction Behaviour of NCF Carbon Fibre Reinforcements. In Proceedings of the ICCM 18: International Conferences on Composite Materials, Jeju, Republic of Korea, 21–26 August 2011; ICCM: Jeju, Republic of Korea, 2011. [Google Scholar]
- Wu, W.; Jiang, B.; Xie, L.; Klunker, F.; Aranda, S.; Ziegmann, G. Effect of Compaction and Preforming Parameters on the Compaction Behavior of Bindered Textile Preforms for Automated Composite Manufacturing. Appl. Compos. Mater. 2013, 20, 907–926. [Google Scholar] [CrossRef]
- Wei, K.; Liang, D.; Mei, M.; Wang, D.; Yang, X.; Qu, Z. Preforming Behaviors of Carbon Fiber Fabrics with Different Contents of Binder and under Various Process Parameters. Compos. Part B Eng. 2019, 166, 221–232. [Google Scholar] [CrossRef]
- Bussetta, P.; Correia, N. Numerical Forming of Continuous Fibre Reinforced Composite Material: A Review. Compos. Part A Appl. Sci. Manuf. 2018, 113, 12–31. [Google Scholar] [CrossRef]
- Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Wang, Y.; Bwar, K.H.; Zhang, K. Review of Approaches to Minimise the Cost of Simulation-Based Optimisation for Liquid Composite Moulding Processes. Materials 2023, 16, 7580. [Google Scholar] [CrossRef]
- Boisse, P.; Akkerman, R.; Carlone, P.; Kärger, L.; Lomov, S.V.; Sherwood, J.A. Advances in Composite Forming through 25 Years of ESAFORM. Int. J. Mater. Form. 2022, 15, 39. [Google Scholar] [CrossRef]
- Bigot, N.; Guzman-Maldonado, E.; Boutaous, M.; Xin, S.; Hamila, N. A Coupled Thermo-Mechanical Modelling Strategy Based on Alternating Direction Implicit Formulation for the Simulation of Multilayered CFRTP Thermo-Stamping Process. Appl. Compos. Mater. 2022, 29, 2321–2341. [Google Scholar] [CrossRef]
- Furrer, D.U.; Dimiduk, D.M.; Cotton, J.D.; Ward, C.H. Making the Case for a Model-Based Definition of Engineering Materials. Integr. Mater. Manuf. Innov. 2017, 6, 249–263. [Google Scholar] [CrossRef]
- Baran, I.; Cinar, K.; Ersoy, N.; Akkerman, R.; Hattel, J.H. A Review on the Mechanical Modeling of Composite Manufacturing Processes. Arch. Comput. Methods Eng. 2016, 24, 365–395. [Google Scholar] [CrossRef]
- Schnurr, R.; Gabriel, F.; Beuscher, J.; Dröder, K. Model-Based Heating and Handling Strategy for Pre-Assembled Hybrid Fibre-Reinforced Metal-Thermoplastic Preforms. In Proceedings of the 2nd CIRP Conference on Composite Material Parts Manufacturing, Catcliffe, UK, 10–11 October 2019; Advanced Manufacturing Research Centre: Catcliffe, UK, 2019. [Google Scholar]
- Borgwardt, H. Continuous Preforming with Variable Web Height Adjustment. In Adaptive, Tolerant and Efficient Composite Structures; Wiedemann, M., Sinapius, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 317–324. [Google Scholar]
- Codau, E.; Codau, T.-C.; Lupu, I.-G.; Raru, A.; Farima, D. Heat Transfer Simulation through Textile Porous Media. J. Text. Inst. 2023, 114, 257–264. [Google Scholar] [CrossRef]
- Yang, Y. Thermal Conductivity of Carbon Fibre Fabrics and Multi-Scale Composites with Heat Transfer Simulations for RFI Manufacturing. Masters Thesis, Université d’Ottawa/University of Ottawa, Ottawa, Canada, 2013. [Google Scholar]
- Hind, S.; Robitaille, F. Measurement, Modeling, and Variability of Thermal Conductivity for Structural Polymer Composites. Polym. Compos. 2010, 31, 847–857. [Google Scholar] [CrossRef]
- Kearney, P.; Lekakou, C.; Belcher, S. Measurement of the Heat Transfer Properties of Carbon Fabrics via Infrared Thermal Mapping. J. Compos. Sci. 2022, 6, 155. [Google Scholar] [CrossRef]
- Penide-Fernandez, R.; Sansoz, F. Anisotropic Thermal Conductivity under Compression in Two-Dimensional Woven Ceramic Fibers for Flexible Thermal Protection Systems. Int. J. Heat Mass Transf. 2019, 145, 118721. [Google Scholar] [CrossRef]
- Liu, X.; Wang, T.; Zhuang, M.; Xin, B.; Liu, W. Investigation of the Thermal Transfer Behavior of Single Layer Woven Fabrics at Different Temperatures. J. Eng. Fibers Fabr. 2016, 11, 155892501601100202. [Google Scholar] [CrossRef]
- Shen, H.; Yokoyama, A.; Sukigara, S. Modeling of Heterogeneous Heat Transfer in Fabrics. Text. Res. J. 2018, 88, 1164–1172. [Google Scholar] [CrossRef]
- Yu, H.; Heider, D.; Advani, S. Comparison of Two Finite Element Homogenization Prediction Approaches for through Thickness Thermal Conductivity of Particle Embedded Textile Composites. Compos. Struct. 2015, 133, 719–726. [Google Scholar] [CrossRef]
- Siddiqui, M.O.R.; Sun, D.; Butler, I.B. Geometrical Modelling and Thermal Analysis of Nonwoven Fabrics. J. Ind. Text. 2018, 48, 405–431. [Google Scholar] [CrossRef]
- Yang, Y.; Qian, J.; Chen, Y. Multi-Scale Modeling and Thermal Transfer Properties of Electric Heating Fabrics System. Int. J. Cloth. Sci. Technol. 2019, 31, 825–838. [Google Scholar] [CrossRef]
- Liu, T.; Chen, M.; Dong, J.; Sun, R.; Yao, M. Numerical Simulation and Experiment Verified for Heat Transfer Processes of High-Property Inorganic Fiber Woven Fabrics. Text. Res. J. 2022, 92, 2368–2378. [Google Scholar] [CrossRef]
- Siddiqui, M.O.R.; Sun, D. Thermal Analysis of Conventional and Performance Plain Woven Fabrics by Finite Element Method. J. Ind. Text. 2018, 48, 685–712. [Google Scholar] [CrossRef]
- Zhao, D.; Qian, X.; Gu, X.; Jajja, S.A.; Yang, R. Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials. J. Electron. Packag. Trans. ASME 2016, 138, 040802. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Li, Y.; Wang, H.; Wang, P.; Zhang, Y. The Through-Thickness Thermal Conductivity and Heat Transport Mechanism of Carbon Fiber Three-Dimensional Orthogonal Woven Fabric Composite. J. Text. Inst. 2024, 115, 308–315. [Google Scholar] [CrossRef]
- Macías, J.D.; Bante-Guerra, J.; Cervantes-Alvarez, F.; Rodrìguez-Gattorno, G.; Arés-Muzio, O.; Romero-Paredes, H.; Arancibia-Bulnes, C.A.; Ramos-Sánchez, V.; Villafán-Vidales, H.I.; Ordonez- Miranda, J.; et al. Thermal Characterization of Carbon Fiber-Reinforced Carbon Composites (C/C). Appl. Compos. Mater. 2019, 26, 321–337. [Google Scholar] [CrossRef]
- Pradere, C.; Batsale, J.C.; Goyhénèche, J.M.; Pailler, R.; Dilhaire, S. Thermal Properties of Carbon Fibers at Very High Temperature. Carbon 2009, 47, 737–743. [Google Scholar] [CrossRef]
- ASTM E1461-13; Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM International: West Conshohocken, PA, USA, 2022.
- Reghat, M.; Ravandi, M.; Zinnecker, V.; Di Pietro, A. Through-Thickness Thermal Conductivity Characterisation of Dry Carbon Fibre Fabric. Mater. Lett. 2024, 361, 136116. [Google Scholar] [CrossRef]
- ASTM D7984; Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument. ASTM International: West Conshohocken, PA, USA, 2021.
- C-Therm Technologies, Ltd. Thermal Conductivity Instrument-Transient Plane Source (TPS) Flex: ISO 22007-2, GB/T 32064. Available online: https://ctherm.com/thermal-conductivity-instruments/trident/ (accessed on 13 July 2024).
- Zheng, Q.; Kaur, S.; Dames, C.; Prasher, R.S. Analysis and Improvement of the Hot Disk Transient Plane Source Method for Low Thermal Conductivity Materials. Int. J. Heat Mass Transf. 2020, 151, 119331. [Google Scholar] [CrossRef]
- NETZSCH-Geraetebau GmbH: Determine the Specific Heat Capacity during an Isothermal Measurement–Use the Temperature-Modulated DSC 214 Polyma. Available online: https://analyzing-testing.netzsch.com/_Resources/Persistent/1/1/3/a/113a82aa25c66d466843e79a134e449ecb15ac00/DSC_214_Polyma_en_web.pdf (accessed on 28 March 2023).
- ASTM E1269-11; Standard Test Method for Measuring the Heat Capacity and Thermal Conductivity by Modulated Temperature Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2011.
- Thermal Properties of Mosites #1453 Silicone | Silicone Rubber Data. Available online: https://www.mositesrubber.com/technical-resources/silicone-rubber-technical-info/thermal-properties-of-mosites-1453-silicone/ (accessed on 22 February 2024).
Run | Time [s] | Probing Depth [mm] | Number of Data Points | [°C] | Power Level [W] |
---|---|---|---|---|---|
1 | 3.50 | 1.15 | 207 | 10.0 | 0.36 |
2 | 5.07 | 1.18 | 298 | 10.0 | 0.30 |
3 | 4.02 | 1.14 | 236 | 8.0 | 0.30 |
4 | 20.0 | 4.91 | 1196 | 1.0 | 0.01 |
5 | 310 | 16.0 | 18,596 | 2.0 | 0.20 |
6 | 90.0 | 6.39 | 5395 | 1.6 | 0.02 |
7 | 70.0 | 6.59 | 4270 | 1.6 | 0.02 |
Material | Sample Mass [mg] | Crucible Mass [mg] | Samples Tested | Sapphire Mass [mg] |
---|---|---|---|---|
CF chopped | 6.90 ± 0.28 | 51.37 ± 0.35 | 5 | 37.7 |
CF powdered | 22.36 ± 0.25 | 51.57 ± 0.21 | 7 | 37.7 |
Binder | 8.99 ± 0.26 | 51.50 ± 0.21 | 5 | 37.7 |
CF chopped with 1.8 wt% binder | 7.60 ± 0.62 | 50.98 ± 0.18 | 5 | 37.7 |
CF powder with 3.6 wt% binder | 17.39 ± 0.04 | 50.99 ± 0.21 | 5 | 37.7 |
Silicone | 20.66 ± 0.23 | 51.20 ± 0.08 | 5 | 37.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dandangi, S.; Ravandi, M.; Naser, J.; Di Pietro, A. Thermophysical Characterization of Materials for Energy-Efficient Double Diaphragm Preforming. Energies 2024, 17, 3758. https://doi.org/10.3390/en17153758
Dandangi S, Ravandi M, Naser J, Di Pietro A. Thermophysical Characterization of Materials for Energy-Efficient Double Diaphragm Preforming. Energies. 2024; 17(15):3758. https://doi.org/10.3390/en17153758
Chicago/Turabian StyleDandangi, Srikara, Mohammad Ravandi, Jamal Naser, and Adriano Di Pietro. 2024. "Thermophysical Characterization of Materials for Energy-Efficient Double Diaphragm Preforming" Energies 17, no. 15: 3758. https://doi.org/10.3390/en17153758
APA StyleDandangi, S., Ravandi, M., Naser, J., & Di Pietro, A. (2024). Thermophysical Characterization of Materials for Energy-Efficient Double Diaphragm Preforming. Energies, 17(15), 3758. https://doi.org/10.3390/en17153758