Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selected Environmental Challenges Facing the Economy
2.2. Research Problem
2.3. Characteristics of the Analyzed Pumping Station
2.4. Project Assumptions
3. Results
3.1. Adapted Variants of Energy Self-Sufficiency Models Associated with Mine Wastewater Pumping
3.2. Equipment and Principle of Operation of Variants 1 and 1S Generating Power Exclusively for Own Consumption
3.3. Equipment and Principle of Operation of Variants 2 and 2S Distributing Surplus Electricity on a So-Called Virtual Prosumer Basis
3.4. Equipment and Principle of Operation of Variants 3 and 3S Involving Hydrogen Retailing
3.5. Equipment and Principle of Operation of Variants 4 and 4S Involving Hydrogen Wholesale
3.6. Equipment and Principle of Operation of Variants 5 and 5S Involving Hydrogen Combustion
3.7. Equipment and Principle of Operation of Variants 6 and 6S Using Battery Storages
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Changqing, L.; Jong-Beom, B. The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 2021, 87, 106162. [Google Scholar] [CrossRef]
- Gajdzik, B.; Jaciow, M.; Wolniak, R.; Wolny, R.; Grebski, W.W. Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data. Resources 2023, 12, 111. [Google Scholar] [CrossRef]
- Kaczmarek, J. The Balance of Outlays and Effects of Restructuring Hard Coal Mining Companies in Terms of Energy Policy of Poland PEP 2040. Energies 2022, 15, 1853. [Google Scholar] [CrossRef]
- Kaczmarek, J.; Kolegowicz, K.; Szymla, W. Restructuring of the Coal Mining Industry and the Challenges of Energy Transition in Poland (1990–2020). Energies 2022, 15, 3518. [Google Scholar] [CrossRef]
- Bondaruk, J.; Janson, E.; Wysocka, M.; Chałupnik, S. Identification of hazards for water environment in the Upper Silesian Coal Basin caused by the discharge of salt mine water containing particularly harmful substances and radionuclides. J. Sustain. Min. 2015, 14, 179–187. [Google Scholar] [CrossRef]
- Mhlongo, S.E. Evaluating the post-mining land uses of former mine sites for sustainable purposes in South Africa. J. Sustain. Min. 2023, 2, 3. [Google Scholar] [CrossRef]
- Smoliński, A.; Howaniec, N. Hydrogen energy, electrolyzers and fuel cells–The future of modern energy sector. Int. J. Hydrogen Energy 2020, 45, 5607. [Google Scholar] [CrossRef]
- Tokarski, S.; Magdziarczyk, M.; Smoliński, A. Risk management scenarios for investment program delays in the Polish power industry. Energies 2021, 14, 5210. [Google Scholar] [CrossRef]
- Tokarski, S.; Magdziarczyk, M.; Smoliński, A. An Analysis of Risks and Challenges to the Polish Power Industry in the Year 2024. Energies 2024, 17, 1044. [Google Scholar] [CrossRef]
- Manowska, A.; Bluszcz, A.; Chomiak-Orsa, I.; Wowra, R. Towards Energy Transformation: A Case Study of EU Countries. Energies 2024, 17, 1778. [Google Scholar] [CrossRef]
- Manowska, A.; Nowrot, A. Solar Farms as the Only Power Source for the Entire Country. Energies 2022, 15, 5297. [Google Scholar] [CrossRef]
- Wojtacha-Rychter, K.; Kucharski, P.; Smoliński, A. Conventional and alternative sources of thermal energy in the production of cement an impact on CO2 emission. Energies 2021, 15, 4176. [Google Scholar] [CrossRef]
- Ramos, A.; Monteiro, E.; Silva, V.; Rouboa, A. Co-gasification and recent developments on waste-to-energy conversion: A Review. Renew. Sustain. Energy Rev. 2018, 81, 380–398. [Google Scholar] [CrossRef]
- Howaniec, N.; Smoliński, A.; Cempa-Balewicz, M. Experimental study of nuclear high temperature reactor excess heat use in the coal and energy crops co-gasification process to hydrogen-rich gas. Energy 2015, 84, 455–461. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, C.; Xu, J.; Yang, X. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor. Bioresour. Technol. 2015, 183, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Smoliński, A.; Stańczyk, K.; Howaniec, N. Steam gasification of selected energy crops in a fixed bed reactor. Renew. Energy 2010, 35, 397–404. [Google Scholar] [CrossRef]
- Kokalj, F.; Arbiter, B.; Samec, N. Sewage sludge gasification as an alternative energy storage model. Energy Convers. Manag. 2017, 149, 738–747. [Google Scholar] [CrossRef]
- Krawczyk, P.; Howaniec, N.; Smoliński, A. Economic efficiency analysis of substitute natural gas (SNG) production in steam gasification of coal with the utilization of HTR excess heat. Energy 2016, 114, 1207–1213. [Google Scholar] [CrossRef]
- Skoglund, N.; Bäfver, L.; Fahlströmd, J.; Holmén, E.; Renström, C. Fuel design in co-combustion of demolition wood chips and municipal sewage sludge. Fuel Process. Technol. 2016, 141, 196–201. [Google Scholar] [CrossRef]
- Lin, Y.; Liao, Y.; Yu, Z.; Fang, S.; Ma, X. The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis. Thermochim. Acta 2017, 653, 71–78. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Huo, C.; Hu, M.; Guo, D.; Xiao, B. Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge. Energy Convers. Manag. 2015, 106, 1212–1218. [Google Scholar] [CrossRef]
- Badakhshan, N.; Shahriar, K.; Afraei, S.; Bakhtavar, E. Evaluating the impacts of the transition from open-pit to underground mining on sustainable development indexes. J. Sustain. Min. 2023, 22, 6. [Google Scholar] [CrossRef]
- Krzemień, A.; Álvarez Fernández, J.J.; Riesgo Fernández, P.; Fidalgo Valverde, G.; Garcia-Cortes, S. Restoring Coal Mining-Affected Areas: The Missing Ecosystem Services. Int. J. Environ. Res. Public Health 2022, 19, 14200. [Google Scholar] [CrossRef]
- Riesgo Fernández, P.; Rodríguez Granda, G.; Krzemień, A.; García Cortés, S.; Fidalgo Valverde, G. Subsidence versus natural landslides when dealing with property damage liabilities in underground coal mines. Int. J. Rock Mech. Min. Sci. 2020, 126, 104175. [Google Scholar] [CrossRef]
- Chand, K.; Paladino, O. Recent developments of membranes and electrocatalysts for the hydrogen production by anion exchange membrane water electrolysers: A review. Arab. J. Chem. 2023, 16, 104451. [Google Scholar] [CrossRef]
- Martín Narbaitz, R.; Chartrand, Z.G.; Sartaj, M.; Downey, J. Ammonia-Ca-K competitive ion-exchange on zeolites in mining wastewater treatment: Batch regeneration and column performance. J. Sustain. Min. 2020, 19, 1. [Google Scholar] [CrossRef]
- Fernández-Muñiz, Z.; Pallero, J.L.G.; Fernández-Martínez, J.L. Anomaly shape inversion via model reduction and PSO. Comput. Geosci. 2020, 140, 104492. [Google Scholar] [CrossRef]
- Gado, M.G.; Hassan, H. Potential of prospective plans in MENA countries for green hydrogen generation driven by solar and wind power sources. Sol. Energy 2023, 263, 111942. [Google Scholar] [CrossRef]
- Gupta, J. Application of Green Management in Business Processes. Natl. J. Leg. Res. Innov. Ideas 2023, 3, 84–97. [Google Scholar]
- Gupta, J. Role Of United Nations Environment Programme In Addressing the Issue of Climate Change. Bharat Manthan Multidiscip. Res. J. 2023, 3, 83–91. [Google Scholar]
- Łabaj, P.; Wysocka, M.; Janson, E.; Deska, M. Application of the Unified Stream Assessment Method to Determine the Direction of Revitalization of Heavily Transformed Urban Rivers. Water Resour. 2020, 47, 521–529. [Google Scholar] [CrossRef]
- Al-Orabi, A.M.; Osman, M.G.; Sedhom, B.E. Analysis of the economic and technological viability of producing green hydrogen with renewable energy sources in a variety of climates to reduce CO2 emissions: A case study in Egypt. Appl. Energy 2023, 338, 120958. [Google Scholar] [CrossRef]
- Barszczowska, B. Monitoring i kontrola procesu restrukturyzacji górnictwa węgla kamiennego w latach 2003–2023. In Jak to z Tym Węglem Było, Jest i Będzie; Galos, K., Barszczowska, B., Eds.; Wydawnictwo Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk: Kraków, Poland, 2023; pp. 31–43. Available online: https://se.min-pan.krakow.pl/pelne_teksty36/k36_monografia_ARP.pdf (accessed on 29 July 2024).
- Krzemień, A.; Álvarez Fernández, J.J.; Riesgo Fernández, P.; Fidalgo Valverde, G.; Garcia-Cortes, S. Valuation of Ecosystem Services Based on EU Carbon Allowances—Optimal Recovery for a Coal Mining Area. Int. J. Environ. Res. Public Health 2023, 20, 381. [Google Scholar] [CrossRef] [PubMed]
- Salom, A.T.; Kivinen, S. Closed and abandoned mines in Namibia: A critical review of environmental impacts and constraints to rehabilitation. South Afr. Geogr. J. 2020, 102, 389–405. [Google Scholar] [CrossRef]
- Gajdzik, B.; Tobór-Osadnik, K.; Wolniak, R.; Grebski, W.W. European Climate Policy in the Context of the Problem of Methane Emissions from Coal Mines in Poland. Energies 2024, 17, 2396. [Google Scholar] [CrossRef]
- Howaniec, N.; Zdeb, J.; Gogola, K.; Smoliński, A. Utilization of Carbon Dioxide and Fluidized Bed Fly Ash in Post-Industrial Land Remediation. Materials 2023, 16, 4572. [Google Scholar] [CrossRef]
- Chmiela, A.; Wrona, P.; Magdziarczyk, M.; Liu, R.; Zhang, L.; Smolinski, A. Hydrogen Storage and Combustion for Blackout Protection of Mine Water Pumping Stations. Energies 2024, 17, 2357. [Google Scholar] [CrossRef]
- Gado, M.G.; Nasser, M.; Hassan, H. Potential of solar and wind-based green hydrogen production frameworks in African countries. Int. J. Hydrogen Energy 2024, 68, 520–536. [Google Scholar] [CrossRef]
- Magdziarczyk, M.; Chmiela, A.; Dychkovskyi, R.; Smoliński, A. The Cost Reduction Analysis of Green Hydrogen Production from Coal Mine Underground Water for Circular Economy. Energies 2024, 17, 2289. [Google Scholar] [CrossRef]
- Amoah, N.; Stemn, E. Siting a centralised processing centre for artisanal and small-scale mining—A spatial multi-criteria approach. J. Sustain. Min. 2021, 17, 215–225. [Google Scholar] [CrossRef]
- Barszczowska, B. Hydrogen valleys as opportunities for SME in Poland. In Preserving, Evaluating And Developing the Mediterranean; Institute of Social Sciences Ivo Pilar, VERN’ University: Zagreb, Croatia, 2023; pp. 379–386. [Google Scholar]
- Prakash Pandey, B.; Prasad Mishra, D. Improved Methodology for Monitoring the Impact of Mining Activities on Socio-Economic Conditions of Local Communities. J. Sustain. Min. 2022, 21, 65–79. [Google Scholar] [CrossRef]
- Barszczowska, B. Nowy system wsparcia dla sektora górnictwa węgla kamiennego–istota i wyzwania związane z monitoringiem i kontrolą systemu dopłaty do redukcji zdolności produkcyjnych. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią Pol. Akad. Nauk. 2024, 1, 93–102. [Google Scholar] [CrossRef]
- Abramov, Y.; Basmanov, O.; Krivtsova, V.; Mikhayluk, A.; Makarov, Y. Determining the functioning efficiency of a fire safety subsystem when operating the hydrogen storage and supply system. East.-Eur. J. Enterp. Technol. 2024, 2, 75–84. [Google Scholar] [CrossRef]
- Abramov, Y.; Kryvtsova, V.; Mikhailyuk, A. Justification of the characteristics of the fire-safe condition control system of the storage system and hydrogen supply. Eng. Sci. Archit. 2023, 1, 125–130. [Google Scholar] [CrossRef]
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Cui, S.; Zhu, G.; He, L.; Wang, X.; Zhang, X. Analysis of the fire hazard and leakage explosion simulation of hydrogen fuel cell vehicles. Therm. Sci. Eng. Prog. 2023, 41, 101754. [Google Scholar] [CrossRef]
- Nasser, M.; Hassan, H. Green hydrogen production mapping via large scale water electrolysis using hybrid solar, wind, and biomass energies systems: 4E evaluation. Fuel 2024, 371, 131929. [Google Scholar] [CrossRef]
- Manowska, A.; Dylong, A.; Tkaczyk, B.; Manowski, J. Analysis and Monitoring of Maximum Solar Potential for Energy Production Optimization Using Photovoltaic Panels. Energies 2024, 17, 72. [Google Scholar] [CrossRef]
- Seheda, M.S.; Beshta, O.S.; Gogolyuk, P.; Blyznak, F.; Yu, V.; Dychkovskyi, R.; Smoliński, A. Mathematical model for the management of the wave processes in three-winding transformers with consideration of the main magnetic flux in mining industry. J. Sustain. Min. 2024, 23, 20–39. [Google Scholar] [CrossRef]
- Squadrito, G.; Maggio, G.; Nicita, A. The green hydrogen revolution. Renew. Energy 2023, 216, 119041. [Google Scholar] [CrossRef]
- Taha, A.M.; Abdel-Wahab, E.I. Water used by soybean and maize intercropping patterns as affected by different soybean cultivars and plant population. J. Soils Crops 2024, 34, 29–39. [Google Scholar]
- Álvarez, M.; Bodeman, C.; Cafferata Ferri, S.; Di Blasi Regner, M.; Fasce, C.; Morgaday, M.E.; Santos, S. Modelización Matemática. Propuestas Para su Enseñanza; Dunken: Buenos Aires, Argentina, 2024. [Google Scholar]
- Calderón, I.; Di Blasi, M.; Capello, V.; Tomazzeli, G.; Balbi, M.; Cuello, N.; Ochoa Rodirguez, P.; Sacco, L.; Martínez, H.; Rozenhauz, J.; et al. Buenas prácticas Desarrollo de la Competencia de Modelización Matemática; edUTecNe–Editorial de la Universidad Tecnológica Nacional: Buenos Aires, Argentina, 2023. [Google Scholar]
- Kashkarov, S.; Dadashzadeh, M.; Sivaraman, S.; Molkov, V. Quantitative Risk Assessment Methodology for Hydrogen Tank Rupture in a Tunnel Fire. Hydrogen 2022, 3, 512–530. [Google Scholar] [CrossRef]
- Jae-Chan, K.; Junhyeong, K.; Jong Chel, P.; Sang Hyun, A.; Dong-Wan, K. Ru2P nanofibers for high-performance anion exchange membrane water electrolyzer. Chem. Eng. J. 2021, 420, 130491. [Google Scholar] [CrossRef]
- Vladyko, O.; Maltsev, D.; Sala, D.; Cichoń, D.; Buketov, V.; Dychkovskyi, R. Simulation of leaching processes of polymetallic ores using the similarity theorem. Rud.-Geološko-Naft. Zb. 2022, 37, 169–180. [Google Scholar] [CrossRef]
- Wrona, P. The influence of climate change on CO2 and CH4 concentration near closed shaft-numerical simulations. Arch. Min. Sci. 2017, 62, 639–652. [Google Scholar] [CrossRef]
- Barszczowska, B. Polska Strategia Wodorowa. Rola dolin wodorowych. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią Pol. Akad. Nauk. 2023, 1, 109–116. [Google Scholar] [CrossRef]
- Gawęda, A. Sustainability Reporting: Case of European Stock Companies. Eur. J. Sustain. Dev. 2021, 10, 41–53. [Google Scholar] [CrossRef]
- Gawęda, A.; Złoty, M. The impact of ESG ratings on the market performance of commodity stock sector before and during the COVID-19 pandemic. Ekon. I Prawo. Econ. Law 2023, 22, 531–553. [Google Scholar] [CrossRef]
- Schoenmaker, D.; Schramade, W. Principles of Sustainable Finance; Oxford University Press: Oxford, London, 2019. [Google Scholar]
- Gawęda, A. ESG Rating and Market Valuation of the Firm: Sector Approach. Eur. J. Sustain. Dev. 2022, 11, 91. [Google Scholar] [CrossRef]
- Janicka, M.; Sajnóg, A. The ESG Reporting of EU Public Companies–Does the Company’s Capitalisation Matter? Sustainability 2022, 14, 7. [Google Scholar] [CrossRef]
- Gawęda, A.; Sajnóg, A. Cross-sectoral detection of the Return on Equity determinants based on the 7-factor DuPont model. Stud. Prawno-Ekon. 2020, 114, 217–234. [Google Scholar] [CrossRef]
- Khomenko, D.; Jelonek, I. Study of a Low-Cost Method for Estimating Energy Fuel Resources in Anthropogenic Sediments. Manag. Syst. Prod. Eng. 2023, 31, 434–441. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Nagaj, R.; Grebski, W.; Romanyshyn, T. Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries. Energies 2023, 16, 7364. [Google Scholar] [CrossRef]
- Fidalgo-Valverde, G.; Menéndez-Díaz, A.; Krzemień, A.; Riesgo-Fernández, P.; Marqués Sierra, A.L. Environmental risk assessment in coal mining with methane degassing. In Proceedings of the 11th International Symposium on Occupational Health and Safety (SESAM), Bucharest, Romania, 18 October 2023. [Google Scholar] [CrossRef]
- Doorga, J.R.S.; Hall, J.W.; Eyre, N. Geospatial multi-criteria analysis for identifying optimum wind and solar sites in Africa: Towards effective power sector decarbonization. Renew. Sustain. Energy Rev. 2022, 158, 112107. [Google Scholar] [CrossRef]
- Skibski, M.; Barszczowska, B. Sektor górnictwa węgla kamiennego po 8 miesiącach 2023 roku. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią Pol. Akad. Nauk. 2024, 1, 83–92. [Google Scholar] [CrossRef]
- Villar, Y.; Menéndez, M.; Fernández, Z.; Bernardo, A. Sustainable earthworks: Optimization with the ICOM method. Energy Rep. 2020, 6, 404–419. [Google Scholar] [CrossRef]
- Kamiński, P.; Niedbalski, Z.; Małkowski, P.; Bozic, D. Application of composite materials in underground mining industry–fore-shaft closing platform. Min. Mach. 2022, 40, 19–31. [Google Scholar] [CrossRef]
Variants | Savings | Expenditure | Return on Investment | Independence of the Company | Reduction of CO2 | License | |
---|---|---|---|---|---|---|---|
[Multiple of Expenditure] | [Years] | [%] | [Mg CO2/Year] | ||||
1 | Producing energy solely for own consumption | 0.333 | 1.00 | 3.00 | 2.85% | 6975 | |
1S | 0.452 | 3.44 | 7.61 | 3.87% | 9465 | ||
2 | Feeding back surplus electricity on a so-called virtual prosumer basis | 1.212 | 3.96 | 3.27 | 10.37% | 25,365 | E |
2S | 1.334 | 6.40 | 4.80 | 10.53% | 25,738 | E | |
3 | Covering retail sales of hydrogen | 1.319 | 8.31 | 6.30 | 11.29% | 10,274 | H |
3S | 1.425 | 10.75 | 7.54 | 12.31% | 10,882 | H | |
4 | Covering the wholesale of hydrogen | 1.107 | 7.83 | 7.08 | 9.48% | 10,882 | H |
4S | 1.217 | 10.27 | 8.44 | 10.53% | 10,882 | H | |
5 | Employing hydrogen combustion | 0.765 | 8.38 | 10.96 | 6.56% | 10,278 | H |
5S | 0.896 | 10.82 | 12.07 | 7.67% | 10,886 | H | |
6 | Using battery storage | 0.912 | 29.69 | 32.54 | 10.76% | 15,744 | E |
6S | 1.017 | 31.22 | 30.72 | 11.80% | 16,161 | E | |
Result: | Best | Second | Third | E—license for electricity production H—hydrogen storage license | |||
Source: Author’s own study. |
Evaluated Advantage of the Variant of Starting Water Pumping Stations | Evaluated Variants (Y—YES) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1S | 2 | 2S | 3 | 3S | 4 | 4S | 5 | 5S | 6 | 6S | |
The smallest expenditure | Y | Y | ||||||||||
The highest energy consumption costs | Y | Y | Y | Y | Y | |||||||
The shortest payback time | Y | Y | Y | Y | Y | Y | Y | |||||
The greatest satisfaction of the Company’s energy needs | Y | Y | Y | Y | Y | Y | Y | |||||
The highest auto-consumption of generated energy | Y | Y | Y | Y | Y | Y | ||||||
The highest reduction of CO2 | Y | Y | Y | Y | ||||||||
Water purification | Y | Y | Y | Y | Y | Y | ||||||
Heat dissipation into the heating network | Y | Y | ||||||||||
Expanding the production of consents and permits | Y | Y | Y | Y | Y | Y | Y | Y | ||||
Operation independent of power supply | Y | Y | Y | Y | ||||||||
The shortest reaction time to the accumulated surplus electricity | Y | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magdziarczyk, M.; Chmiela, A.; Su, W.; Smolinski, A. Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study. Energies 2024, 17, 3771. https://doi.org/10.3390/en17153771
Magdziarczyk M, Chmiela A, Su W, Smolinski A. Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study. Energies. 2024; 17(15):3771. https://doi.org/10.3390/en17153771
Chicago/Turabian StyleMagdziarczyk, Małgorzata, Andrzej Chmiela, Weijian Su, and Adam Smolinski. 2024. "Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study" Energies 17, no. 15: 3771. https://doi.org/10.3390/en17153771
APA StyleMagdziarczyk, M., Chmiela, A., Su, W., & Smolinski, A. (2024). Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study. Energies, 17(15), 3771. https://doi.org/10.3390/en17153771