Power Forecasting for Photovoltaic Microgrid Based on MultiScale CNN-LSTM Network Models
Abstract
:1. Introduction
2. Correlation Studies
2.1. Correlation Analysis
2.2. Convolutional Neural Networks
2.3. Long Short-Term Memory Network
3. Methodology
3.1. Correlation Analysis and Feature Fusion
3.2. Framework of MultiScale CNN-LSTM
3.3. Two-Stage Cascaded Multiscale CNN-LSTM Architecture
3.4. Performance Evaluation Indicators
4. Experimental Analysis
4.1. Experimental Setting
4.2. Correlation Analysis
4.3. Experimental Results
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 2019, 31, 2727–2740. [Google Scholar] [CrossRef]
- Espinar, B.; Aznarte, J.L.; Girard, R.; Mbairadjim Moussa, A.; Kariniotakis, G. Photovoltaic Forecasting: A state of the art. In Proceedings of the 5th European PV-Hybrid and Mini-Grid Conference, Tarragona, Spain, 29–30 April 2010; OTTI-Ostbayerisches Technologie-Transfer-Institut: Regensburg, Germany, 2010; pp. 250–255, ISBN 978-3-941785-15-1. [Google Scholar]
- Mellit, A.; Massi Pavan, A.; Ogliari, E.; Leva, S.; Lughi, V. Advanced methods for photovoltaic output power forecasting: A review. Appl. Sci. 2020, 10, 487. [Google Scholar] [CrossRef]
- VanDeventer, W.; Jamei, E.; Thirunavukkarasu, G.S.; Seyedmahmoudian, M.; Soon, T.K.; Horan, B.; Mekhilef, S.; Stojcevski, A. Short-term PV power forecasting using hybrid GASVM technique. Renew. Energy 2019, 140, 367–379. [Google Scholar] [CrossRef]
- Theocharides, S.; Theristis, M.; Makrides, G.; Kynigos, N.; Spanias, C.; Georghiou, G.E. Comparative analysis of machine learning models for day-ahead photovoltaic power production forecasting. Energies 2021, 14, 1081. [Google Scholar] [CrossRef]
- Markovics, D.; Mayer, M.J. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renew. Sustain. Energy Rev. 2022, 161, 112364. [Google Scholar] [CrossRef]
- Mayer, M.J. Benefits of physical and machine learning hybridization for photovoltaic power forecasting. Renew. Sustain. Energy Rev. 2022, 168, 112772. [Google Scholar] [CrossRef]
- Pombo, D.V.; Bacher, P.; Ziras, C.; Bindner, H.W.; Spataru, S.V.; Sørensen, P.E. Benchmarking physics-informed machine learning-based short term PV-power forecasting tools. Energy Rep. 2022, 8, 6512–6520. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, K.; Zhang, S.; Zhang, Z. Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy. Renew. Sustain. Energy Rev. 2022, 162, 112473. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Hawash, H.; Chakrabortty, R.K.; Ryan, M. PV-Net: An innovative deep learning approach for efficient forecasting of short-term photovoltaic energy production. J. Clean. Prod. 2021, 303, 127037. [Google Scholar] [CrossRef]
- Qu, Y.; Xu, J.; Sun, Y.; Liu, D. A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting. Appl. Energy 2021, 304, 117704. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, J.; Zhu, L.; Duan, X.; Liu, Y. Wind speed prediction with spatio–temporal correlation: A deep learning approach. Energies 2018, 11, 705. [Google Scholar] [CrossRef]
- Alomari, E.S.; Nuiaa, R.R.; Alyasseri, Z.A.A.; Mohammed, H.J.; Sani, N.S.; Sani, M.I.; Musawi, B.A. Malware detection using deep learning and correlation-based feature selection. Symmetry 2023, 15, 123. [Google Scholar] [CrossRef]
- Gupta, P.; Singh, R. PV power forecasting based on data-driven models: A review. Int. J. Sustain. Eng. 2021, 14, 1733–1755. [Google Scholar] [CrossRef]
- Al-Hilfi, H.A.; Shahnia, F.; Abu-Siada, A. An improved technique to estimate the total generated power by neighboring photovoltaic systems using single-point irradiance measurement and correlational models. IEEE Trans Ind. Informat. 2019, 16, 3905–3917. [Google Scholar] [CrossRef]
- Liu, Y.; Mu, Y.; Chen, K.; Li, Y.; Guo, J. Daily activity feature selection in smart homes based on pearson correlation coefficient. Neural Process. Lett. 2020, 51, 1771–1787. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Lim, S.C.; Huh, J.H.; Hong, S.H.; Park, C.-Y.; Kim, J.-C. Solar Power Forecasting Using CNN-LSTM Hybrid Model. Energies 2022, 15, 8233. [Google Scholar] [CrossRef]
Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
correlation coefficient | 0.125 | 0.216 | 0.039 | 0.274 | 0.175 | 0.303 | 0.652 | 0.701 |
CNN-LSTM (Cascade) | CNN-LSTM (Multiscale) | CNN | LSTM | CNN-LSTM | ||
---|---|---|---|---|---|---|
A | RMSE | 0.2825 | 0.3241 | 0.3841 | 0.4647 | 0.4561 |
MAE | 0.1984 | 0.2415 | 0.2723 | 0.3985 | 0.3763 | |
B | RMSE | 0.2207 | 0.2744 | 0.3526 | 0.4027 | 0.4025 |
MAE | 0.1353 | 0.1879 | 0.2593 | 0.3082 | 0.2949 | |
C | RMSE | 0.2744 | 0.2856 | 0.4235 | 0.4736 | 0.4546 |
MAE | 0.1948 | 0.1994 | 0.3394 | 0.3990 | 0.3741 | |
D | RMSE | 0.2087 | 0.2674 | 0.3382 | 0.4485 | 0.3845 |
MAE | 0.1201 | 0.1859 | 0.2585 | 0.3684 | 0.2727 | |
E | RMSE | 0.2215 | 0.2813 | 0.3651 | 0.4176 | 0.4053 |
MAE | 0.1362 | 0.1974 | 0.2608 | 0.3351 | 0.3150 | |
F | RMSE | 0.2673 | 0.3049 | 0.4024 | 0.4586 | 0.4574 |
MAE | 0.1728 | 0.2014 | 0.2883 | 0.3772 | 0.3768 | |
Total | RMSE | 0.2423 | 0.2954 | 0.3834 | 0.4478 | 0.4251 |
MAE | 0.1510 | 0.2003 | 0.2697 | 0.3681 | 0.3427 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, H.; Ma, J.; Zhang, J.; Jin, P.; Wu, J.; Du, F. Power Forecasting for Photovoltaic Microgrid Based on MultiScale CNN-LSTM Network Models. Energies 2024, 17, 3877. https://doi.org/10.3390/en17163877
Xue H, Ma J, Zhang J, Jin P, Wu J, Du F. Power Forecasting for Photovoltaic Microgrid Based on MultiScale CNN-LSTM Network Models. Energies. 2024; 17(16):3877. https://doi.org/10.3390/en17163877
Chicago/Turabian StyleXue, Honglin, Junwei Ma, Jianliang Zhang, Penghui Jin, Jian Wu, and Feng Du. 2024. "Power Forecasting for Photovoltaic Microgrid Based on MultiScale CNN-LSTM Network Models" Energies 17, no. 16: 3877. https://doi.org/10.3390/en17163877
APA StyleXue, H., Ma, J., Zhang, J., Jin, P., Wu, J., & Du, F. (2024). Power Forecasting for Photovoltaic Microgrid Based on MultiScale CNN-LSTM Network Models. Energies, 17(16), 3877. https://doi.org/10.3390/en17163877