The Impact of Air Renewal with Heat-Recovery Technologies on Energy Consumption for Different Types of Environments in Brazilian Buildings
Abstract
:1. Introduction
2. Analysis of the Brazilian Bioclimatic Zones
3. Energy Impact of Air Renewal without Energy Recovery
- In most countries, the minimal efficiency of sensible heat recovery varies between 70% and 80%, while this minimal efficiency is uniquely necessary in some countries of North America and Europe, such as the US, Finland, and Canada;
- Thermal wheels, also called energy-recovery wheels, are extensively utilized, principally due to their elevated efficiency as heat-recovery systems and frost resistors in cold temperatures. A limitation of energy-recovery wheel use is cross-contamination, which involves pressure transfer and leaks. A purge section and a suitable fan can reduce cross-contamination;
- Flat plate exchangers, another heat-recovery ventilation system, are considered to be attractive for their reliability. Easy duct sealing avoids transfer problems. Additionally, water-vapor-permeable membranes recuperate sensible and latent heat. The moisture recovery during winter operation increases freezing limits;
- The quasi-counterflow system has been recently developed and is characterized by offering a simpler duct isolate compared with the conventional counterflow system, which increases the efficiency by around 5% compared to the traditional crossflow exchanger.
4. Technologies for Recovering Energy from Renewed Air
4.1. Desiccant Wheel Heat-Recovery Units
- the level of humidity control achieved is superior compared to that achieved using vapor compression systems;
- the system begins to show efficiency when the latent heat load exceeds the sensible heat load;
- it can eliminate polluting particles in the air;
- it uses negligible amounts of electrical energy, and due to its regenerative nature, the system allows solar and waste energy to be used throughout;
- reduces fossil fuel consumption and equivalent emissions of GHG in the HVAC process;
- improvement in indoor air quality is often attributed to the greater quantity of outside air;
- in specific scenarios, the energy cost for desiccant regeneration can be lower than that associated with dehumidifying the air by cooling it below its dew-point temperature.
4.2. Air-to-Air Enthalpy Wheel
4.3. Plate Heat-Recovery Units
5. Analysis of Technology Implementation with Energy Recovery
5.1. Review of Implemented Systems
5.2. Considerations for Various Brazilian Regions: Study Case
5.3. Assessment of Brazilian Case Considering the Köppen Classification
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- IEA. The Future of Cooling; IEA: Paris, France, 2018. [Google Scholar]
- Santos, A.F.; Gaspar, P.D.; de Souza, H.J.L. New HVAC Sustainability Index-TWI (Total Water Impact). Energies 2020, 13, 1590. [Google Scholar] [CrossRef]
- Alawadhi, M.; Phelan, P.E. Review of Residential Air Conditioning Systems Operating under High Ambient Temperatures. Energies 2022, 15, 2880. [Google Scholar] [CrossRef]
- Shah, N.; Waide, P.; Phadke, A. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2013.
- Dreyfus, G.; Borgford-Parnell, N.; Christensen, J.; Fahey, D.W.; Motherway, B.; Peters, T.; Picolotti, R.; Shah, N.; Xu, Y. Assessment of Climate and Development Benefits of Efficient and Climate-Friendly Cooling; Institute for Governance & Sustainable Development and Centro Mario Molina: Washington, DC, USA, 2020. [Google Scholar]
- Campbell, I.; Kalanki, A.; Sachar, S. Solving the Global Cooling Challenge How to Counter the Climate Threat from Room Air Conditioners; Rocky Mountain Institute: Basalt, CA, USA, 2018. [Google Scholar]
- Augustus de Melo, C.; Cunha, K.B.; Santiago Suárez, G.P. MEPS for Air Conditioners in Brazil: Regulatory Developments and Future Perspectives. Renew. Sustain. Energy Rev. 2022, 163, 112504. [Google Scholar] [CrossRef]
- Vettorazzi, E.; Figueiredo, A.; Rebelo, F.; Vicente, R.; Feiertag, G.A. Beyond Passive House: Use of Evolutionary Algorithms in Architectural Design. J. Build. Eng. 2023, 76, 107058. [Google Scholar] [CrossRef]
- Yoshino, H.; Hong, T.; Nord, N. IEA EBC Annex 53: Total Energy Use in Buildings—Analysis and Evaluation Methods. Energy Build. 2017, 152, 124–136. [Google Scholar] [CrossRef]
- Empresa de Pesquisa Energética. Atlas of Energy Efficiency Brazil 2019; Empresa de Pesquisa Energética: Brasília, Brazil, 2019.
- Empresa de Pesquisa Energética. Plano Decenal de Expansão de Energia 2029; Empresa de Pesquisa Energética: Brasília, Brazil, 2020.
- Eli, L.G.; Krelling, A.F.; Olinger, M.S.; Melo, A.P.; Lamberts, R. Thermal Performance of Residential Building with Mixed-Mode and Passive Cooling Strategies: The Brazilian Context. Energy Build. 2021, 244, 111047. [Google Scholar] [CrossRef]
- da Silva Oliveira Morais, T.; de Hollanda Cavalcanti Tsuha, C.; Neto, L.A.B.; Singh, R.M. Effects of Seasonal Variations on the Thermal Response of Energy Piles in an Unsaturated Brazilian Tropical Soil. Energy Build. 2020, 216, 109971. [Google Scholar] [CrossRef]
- ELETROBRAS. Pésquisa de Posse é Hábitos de Uso de Equipamentos Elétricos Na Classe Residencial; ELETROBRAS: Rio de Janeiro, 2019. [Google Scholar]
- Corton, M.L.; Zimmermann, A.; Phillips, M.A. The Low Cost of Quality Improvements in the Electricity Distribution Sector of Brazil. Energy Policy 2016, 97, 485–493. [Google Scholar] [CrossRef]
- Tubelo, R.; Rodrigues, L.; Gillott, M.; Gonçalves Soares, J.C. Cost-Effective Envelope Optimisation for Social Housing in Brazil’s Moderate Climates Zones. Build. Environ. 2018, 133, 213–227. [Google Scholar] [CrossRef]
- Silva, H.C.N.; Dutra, J.C.C.; Costa, J.A.P.; Ochoa, A.A.V.; dos Santos, C.A.C.; Araújo, M.M.D. Modeling and Simulation of Cogeneration Systems for Buildings on a University Campus in Northeast Brazil—A Case Study. Energy Convers. Manag. 2019, 186, 334–348. [Google Scholar] [CrossRef]
- Ministério de Minas e Energia. Procel—Programa Nacional de Conservação de Energia Elétrica. Available online: https://www.gov.br/mme/pt-br/assuntos/secretarias/sntep/procel (accessed on 11 April 2024).
- da Silva, P.P.F.; Neto, A.H.; Sauer, I.L. Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil. Energies 2021, 14, 3791. [Google Scholar] [CrossRef]
- Pacheco, M.; Lamberts, R. Assessment of Technical and Economical Viability for Large-Scale Conversion of Single Family Residential Buildings into Zero Energy Buildings in Brazil: Climatic and Cultural Considerations. Energy Policy 2013, 63, 716–725. [Google Scholar] [CrossRef]
- Letschert, V.E.; Karali, N.; Park, Y.; Shah, N.; Jannuzzi, G.; Costa, F.; Lamberts, R.; Borges, K.; Carvalho Machado, S. The Manufacturer Economics and National Benefits of Cooling Efficiency for Air Conditioners in Brazil. ECEEE Summer Study Proc. 2019, 1563–1572. Available online: https://escholarship.org/uc/item/4c92s28m (accessed on 12 August 2024).
- Aynur, T.N. Variable Refrigerant Flow Systems: A Review. Energy Build. 2010, 42, 1106–1112. [Google Scholar] [CrossRef]
- da Silva Júnior, A.; Mendonça, K.C.; Vilain, R.; Pereira, M.L.; Mendes, N. On the Development of a Simplified Model for Thermal Comfort Control of Split Systems. Build. Environ. 2020, 179, 106931. [Google Scholar] [CrossRef]
- ABRAVA. Boletim Econômico ABRAVA; ABRAVA: São Paulo, Brazil, 2022. [Google Scholar]
- de Oliveira Silva Della Colletta, L.; Venturini, O.J.; Andrade, R.V.; Arrieta, A.R.A.; Barbosa, K.P.; Santiago, Y.C.; Sphaier, L.A. Oil Sludge Pyrolysis Kinetic Evaluation Based on TG-FTIR Coupled Techniques Aiming at Energy Recovery. J. Therm. Anal. Calorim. 2023, 148, 12795–12809. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2019; IRENA: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- e Silva Machado, R.M.; Geraldi, M.S.; Bavaresco, M.; Olinger, M.S.; Pereira de Souza, L.; Kamimura, A.M.; Gapski, N.H.; de Castro Quevedo, T.; Garlet, L.; Melo, A.P.; et al. Metamodel to Predict Annual Cooling Thermal Load for Commercial, Services and Public Buildings: A Country-Level Approach to Support Energy Efficiency Regulation. Energy Build. 2023, 301, 113690. [Google Scholar] [CrossRef]
- Fossati, M.; Scalco, V.A.; Linczuk, V.C.C.; Lamberts, R. Building Energy Efficiency: An Overview of the Brazilian Residential Labeling Scheme. Renew. Sustain. Energy Rev. 2016, 65, 1216–1231. [Google Scholar] [CrossRef]
- Brasil Ministério de Minas e Energia. Plano Nacional de Energia 2030: Eficiência Energética. Available online: https://www.gov.br/mme/pt-br/assuntos/secretarias/sntep/publicacoes/plano-nacional-de-energia/plano-nacional-de-energia-2030#:~:text=O%20Plano%20Nacional%20de%20Energia,desse%20segmento%20nas%20pr%C3%B3ximas%20d%C3%A9cadas (accessed on 24 March 2024).
- De Oliveira, L.S.; Shayani, R.A.; De Oliveira, M.A.G. Proposed Business Plan for Energy Efficiency in Brazil. Energy Policy 2013, 61, 523–531. [Google Scholar] [CrossRef]
- Di Santo, K.G.; Kanashiro, E.; Di Santo, S.G.; Saidel, M.A. A Review on Smart Grids and Experiences in Brazil. Renew. Sustain. Energy Rev. 2015, 52, 1072–1082. [Google Scholar] [CrossRef]
- Castillo Santiago, Y.; Nunes, B.G.; Fontana, G.S.; Busanello, D.; Santos, A.F.; Santos, S.M.; Mello, E.N.; Sphaier, L.A. Desiccant Technologies for Improving Air Quality: An Overview of the Brazilian Scenario and Comparison of Available Design Software for Manufactured Desiccant Wheels. Processes 2023, 11, 2031. [Google Scholar] [CrossRef]
- Melo, A.P.; Versage, R.S.; Sawaya, G.; Lamberts, R. A Novel Surrogate Model to Support Building Energy Labelling System: A New Approach to Assess Cooling Energy Demand in Commercial Buildings. Energy Build. 2016, 131, 233–247. [Google Scholar] [CrossRef]
- ABNT NBR 15220-3:2005; Desempenho Térmico de Edificações Parte 3: Zoneamento Bioclimático Brasileiro e Diretrizes Construtivas Para Habitações Unifamiliares de Interesse Social. ABNT: São Paulo, Brazil, 2005.
- Cakyova, K.; Figueiredo, A.; Oliveira, R.; Rebelo, F.; Vicente, R.; Fokaides, P. Simulation of Passive Ventilation Strategies towards Indoor CO2 Concentration Reduction for Passive Houses. J. Build. Eng. 2021, 43, 103108. [Google Scholar] [CrossRef]
- Krelling, A.F.; Eli, L.G.; Olinger, M.S.; Machado, R.M.E.S.; Melo, A.P.; Lamberts, R. A Thermal Performance Standard for Residential Buildings in Warm Climates: Lessons Learned in Brazil. Energy Build. 2023, 281, 112770. [Google Scholar] [CrossRef]
- Chen, D.; Chen, H.W. Using the Köppen Classification to Quantify Climate Variation and Change: An Example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Bailey, R.G. Ecoclimatic Zones of the Earth BT. In Ecosystem Geography: From Ecoregions to Sites; Bailey, R.G., Ed.; Springer: New York, NY, USA, 2009; pp. 83–92. ISBN 978-0-387-89516-1. [Google Scholar]
- Domroes, M. Climatological Characteristics of the Tropics in China: Climate Classification Schemes between German Scientists and Huang Bingwei. J. Geogr. Sci. 2003, 13, 271–285. [Google Scholar] [CrossRef]
- Buonocore, C.; De Vecchi, R.; Scalco, V.; Lamberts, R. Thermal Preference and Comfort Assessment in Air-Conditioned and Naturally-Ventilated University Classrooms under Hot and Humid Conditions in Brazil. Energy Build. 2020, 211, 109783. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Meng, Q. Airflow Utilization in Buildings in Hot and Humid Areas of China. Build. Environ. 2015, 87, 207–214. [Google Scholar] [CrossRef]
- Huang, L.; Ouyang, Q.; Zhu, Y.; Jiang, L. A Study about the Demand for Air Movement in Warm Environment. Build. Environ. 2013, 61, 27–33. [Google Scholar] [CrossRef]
- Buonocore, C.; De Vecchi, R.; Scalco, V.; Lamberts, R. Influence of Relative Air Humidity and Movement on Human Thermal Perception in Classrooms in a Hot and Humid Climate. Build. Environ. 2018, 146, 98–106. [Google Scholar] [CrossRef]
- Cheung, T.C.T.; Schiavon, S.; Gall, E.T.; Jin, M.; Nazaroff, W.W. Longitudinal Assessment of Thermal and Perceived Air Quality Acceptability in Relation to Temperature, Humidity, and CO2 Exposure in Singapore. Build. Environ. 2017, 115, 80–90. [Google Scholar] [CrossRef]
- Damiati, S.A.; Zaki, S.A.; Rijal, H.B.; Wonorahardjo, S. Field Study on Adaptive Thermal Comfort in Office Buildings in Malaysia, Indonesia, Singapore, and Japan during Hot and Humid Season. Build. Environ. 2016, 109, 208–223. [Google Scholar] [CrossRef]
- De Vecchi, R.; Candido, C.; de Dear, R.; Lamberts, R. Thermal Comfort in Office Buildings: Findings from a Field Study in Mixed-Mode and Fully-Air Conditioning Environments under Humid Subtropical Conditions. Build. Environ. 2017, 123, 672–683. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global Risk of Deadly Heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; AghaKouchak, A.; Trenberth, K.E.; Foufoula-Georgiou, E. Global, Regional, and Megacity Trends in the Highest Temperature of the Year: Diagnostics and Evidence for Accelerating Trends. Earths Future 2018, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Mazdiyasni, O.; AghaKouchak, A.; Davis, S.J.; Madadgar, S.; Mehran, A.; Ragno, E.; Sadegh, M.; Sengupta, A.; Ghosh, S.; Dhanya, C.T.; et al. Increasing Probability of Mortality during Indian Heat Waves. Sci. Adv. 2017, 3, e1700066. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento Saldiva, P.H.; Lavigne, E.; Matus Correa, P.; et al. Projections of Temperature-Related Excess Mortality under Climate Change Scenarios. Lancet Planet. Health 2017, 1, e360–e367. [Google Scholar] [CrossRef]
- Wilson, A.; Reich, B.J.; Nolte, C.G.; Spero, T.L.; Hubbell, B.; Rappold, A.G. Climate Change Impacts on Projections of Excess Mortality at 2030 Using Spatially Varying Ozone–Temperature Risk Surfaces. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 118–124. [Google Scholar] [CrossRef]
- FORBES. Extreme Heat Killed over 70,000 in Europe Last Year, Study Finds. This Year Is on Track to Be Even Worse. Available online: https://www.forbes.com/sites/roberthart/2023/11/21/extreme-heat-killed-over-70000-in-europe-last-year-study-finds-this-year-is-on-track-to-be-even-worse/?sh=31301bc57929 (accessed on 27 March 2024).
- Monteiro dos Santos, D.; Libonati, R.; Garcia, B.N.; Geirinhas, J.L.; Salvi, B.B.; Lima e Silva, E.; Rodrigues, J.A.; Peres, L.F.; Russo, A.; Gracie, R.; et al. Twenty-First-Century Demographic and Social Inequalities of Heat-Related Deaths in Brazilian Urban Areas. PLoS ONE 2024, 19, e0295766. [Google Scholar] [CrossRef] [PubMed]
- Guyot, G.; Sherman, M.H.; Walker, I.S. Smart Ventilation Energy and Indoor Air Quality Performance in Residential Buildings: A Review. Energy Build. 2018, 165, 416–430. [Google Scholar] [CrossRef]
- Gładyszewska-Fiedoruk, K. Correlations of Air Humidity and Carbon Dioxide Concentration in the Kindergarten. Energy Build. 2013, 62, 45–50. [Google Scholar] [CrossRef]
- Asif, A.; Zeeshan, M.; Jahanzaib, M. Indoor Temperature, Relative Humidity and CO2 Levels Assessment in Academic Buildings with Different Heating, Ventilation and Air-Conditioning Systems. Build. Environ. 2018, 133, 83–90. [Google Scholar] [CrossRef]
- Derome, D.; Kubilay, A.; Defraeye, T.; Blocken, B.; Carmeliet, J. Ten Questions Concerning Modeling of Wind-Driven Rain in the Built Environment. Build. Environ. 2017, 114, 495–506. [Google Scholar] [CrossRef]
- Castillo Santiago, Y.; Pérez, J.F.; Sphaier, L.A. Reaction-Front and Char Characterization from a Palm Kernel Shell—Oil Sludge Mixture under Oxygen Lean Regimes in a Fixed-Bed Gasifier. Fuel 2023, 333, 126402. [Google Scholar] [CrossRef]
- Singh, P.; Yadav, D.; Pandian, E.S. Link between Air Pollution and Global Climate Change. In Global Climate Change; Singh, S., Singh, P., Rangabhashiyam, S., Srivastava, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 79–108. ISBN 978-0-12-822928-6. [Google Scholar]
- Harrison, R.M.; Allan, J.; Carruthers, D.; Heal, M.R.; Lewis, A.C.; Marner, B.; Murrells, T.; Williams, A. Non-Exhaust Vehicle Emissions of Particulate Matter and VOC from Road Traffic: A Review. Atmos. Environ. 2021, 262, 118592. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente RESOLUÇÃO No 491, DE 19 DE NOVEMBRO DE 2018. Brasil, 2018; pp. 155–155. Available online: https://www.in.gov.br/web/guest/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/51058895/do1-2018-11-21-resolucao-n-491-de-19-de-novembro-de-2018-51058603 (accessed on 12 August 2024).
- Secretaria de Estado de Meio Ambiente e Recursos Hídricos RESOLUÇÃO SEMA No 54, DE 22-12-2006. Brazil, 2006; pp. 1–87. Available online: https://venus.maringa.pr.gov.br/residuos/arquivo.php?id=112 (accessed on 12 August 2024).
- Krüger, E.L.; Minella, F.O.; Rasia, F. Impact of Urban Geometry on Outdoor Thermal Comfort and Air Quality from Field Measurements in Curitiba, Brazil. Build. Environ. 2011, 46, 621–634. [Google Scholar] [CrossRef]
- Guo, S.; Yan, D.; Hu, S.; Zhang, Y. Modelling Building Energy Consumption in China under Different Future Scenarios. Energy 2021, 214, 119063. [Google Scholar] [CrossRef]
- de Oliveira, C.C.; Rupp, R.F.; Ghisi, E. Influence of Environmental Variables on Thermal Comfort and Air Quality Perception in Office Buildings in the Humid Subtropical Climate Zone of Brazil. Energy Build. 2021, 243, 110982. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Hassan, M.Y.; Abdullah, M.P.; Rahman, H.A.; Hussin, F.; Abdullah, H.; Saidur, R. A Review on Applications of ANN and SVM for Building Electrical Energy Consumption Forecasting. Renew. Sustain. Energy Rev. 2014, 33, 102–109. [Google Scholar] [CrossRef]
- Lin, B.; Liu, H. CO2 Emissions of China’s Commercial and Residential Buildings: Evidence and Reduction Policy. Build. Environ. 2015, 92, 418–431. [Google Scholar] [CrossRef]
- Zender–Świercz, E. A Review of Heat Recovery in Ventilation. Energies 2021, 14, 1759. [Google Scholar] [CrossRef]
- Carlsson, M.; Touchie, M.; Richman, R. Investigating the Potential Impact of a Compartmentalization and Ventilation System Retrofit Strategy on Energy Use in High-Rise Residential Buildings. Energy Build. 2019, 199, 20–28. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [PubMed]
- Izadyar, N.; Miller, W.; Rismanchi, B.; Garcia-Hansen, V. Impacts of Façade Openings’ Geometry on Natural Ventilation and Occupants’ Perception: A Review. Build. Environ. 2020, 170, 106613. [Google Scholar] [CrossRef]
- Kavanaugh, S. Engineered Systems; Troy, MI, USA, 2020; p. 3. Available online: https://www.esmagazine.com/articles/100699-probing-the-effectiveness-of-ansi-asrae-ies-standard-901 (accessed on 29 March 2024).
- Dodoo, A.; Gustavsson, L.; Sathre, R. Primary Energy Implications of Ventilation Heat Recovery in Residential Buildings. Energy Build. 2011, 43, 1566–1572. [Google Scholar] [CrossRef]
- Mardiana-Idayu, A.; Riffat, S.B. Review on Heat Recovery Technologies for Building Applications. Renew. Sustain. Energy Rev. 2012, 16, 1241–1255. [Google Scholar] [CrossRef]
- Bai, H.Y.; Liu, P.; Justo Alonso, M.; Mathisen, H.M. A Review of Heat Recovery Technologies and Their Frost Control for Residential Building Ventilation in Cold Climate Regions. Renew. Sustain. Energy Rev. 2022, 162, 112417. [Google Scholar] [CrossRef]
- Rafati Nasr, M.; Kassai, M.; Ge, G.; Simonson, C.J. Evaluation of Defrosting Methods for Air-to-Air Heat/Energy Exchangers on Energy Consumption of Ventilation. Appl. Energy 2015, 151, 32–40. [Google Scholar] [CrossRef]
- Wang, L.; Curcija, D.; Breshears, J. The Energy Saving Potentials of Zone-Level Membrane-Based Enthalpy Recovery Ventilators for VAV Systems in Commercial Buildings. Energy Build. 2015, 109, 47–52. [Google Scholar] [CrossRef]
- Zhou, W.; Moncaster, A.; O’Neill, E.; Reiner, D.M.; Wang, X.; Guthrie, P. Modelling Future Trends of Annual Embodied Energy of Urban Residential Building Stock in China. Energy Policy 2022, 165, 112932. [Google Scholar] [CrossRef]
- Yang, P.; Li, L.; Wang, J.; Huang, G.; Peng, J. Testing for Energy Recovery Ventilators and Energy Saving Analysis with Air-Conditioning Systems. Procedia Eng. 2015, 121, 438–445. [Google Scholar] [CrossRef]
- Ilie, A.; Dumitrescu, R.; Girip, A.; Cublesan, V. Study on Technical and Economical Solutions for Improving Air-Conditioning Efficiency in Building Sector. Energy Procedia 2017, 112, 537–544. [Google Scholar] [CrossRef]
- Wehbi, Z.; Taher, R.; Faraj, J.; Ramadan, M.; Castelain, C.; Khaled, M. A Short Review of Recent Studies on Wastewater Heat Recovery Systems: Types and Applications. Energy Rep. 2022, 8, 896–907. [Google Scholar] [CrossRef]
- Frijns, J.; Hofman, J.; Nederlof, M. The Potential of (Waste)Water as Energy Carrier. Energy Convers. Manag. 2013, 65, 357–363. [Google Scholar] [CrossRef]
- Pomianowski, M.Z.; Johra, H.; Marszal-Pomianowska, A.; Zhang, C. Sustainable and Energy-Efficient Domestic Hot Water Systems: A Review. Renew. Sustain. Energy Rev. 2020, 128, 109900. [Google Scholar] [CrossRef]
- Murr, R.; Khaled, M.; Faraj, J.; Harika, E.; Abdulhay, B. Multi Drain Heat Recovery System—Thermal Modeling, Parametric Analysis, and Case Study. Energy Build. 2020, 228, 110447. [Google Scholar] [CrossRef]
- Wong, L.T.; Mui, K.W.; Guan, Y. Shower Water Heat Recovery in High-Rise Residential Buildings of Hong Kong. Appl. Energy 2010, 87, 703–709. [Google Scholar] [CrossRef]
- McNabola, A.; Shields, K. Efficient Drain Water Heat Recovery in Horizontal Domestic Shower Drains. Energy Build. 2013, 59, 44–49. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Z.; Yao, Y.; Jiang, Y.; Lei, B. Experimental Performance Evaluation of a Novel Heat Pump Water Heater Assisted with Shower Drain Water. Appl. Energy 2015, 154, 842–850. [Google Scholar] [CrossRef]
- Rismanchi, B.; Zambrano, J.M.; Saxby, B.; Tuck, R.; Stenning, M. Control Strategies in Multi-Zone Air Conditioning Systems. Energies 2019, 12, 347. [Google Scholar] [CrossRef]
- Rasouli, M.; Ge, G.; Simonson, C.J.; Besant, R.W. Uncertainties in Energy and Economic Performance of HVAC Systems and Energy Recovery Ventilators Due to Uncertainties in Building and HVAC Parameters. Appl. Therm. Eng. 2013, 50, 732–742. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, W. Development of an Optimal Start Control Strategy for a Variable Refrigerant Flow (VRF) System. Energies 2021, 14, 271. [Google Scholar] [CrossRef]
- Akbari, K.; Oman, R. Impacts of Heat Recovery Ventilators on Energy Savings and Indoor Radon Level. Manag. Environ. Qual. Int. J. 2013, 24, 682–694. [Google Scholar] [CrossRef]
- Sphaier, L.A.; Worek, W.M. Parametric Analysis of Heat and Mass Transfer Regenerators Using a Generalized Effectiveness-NTU Method. Int. J. Heat Mass Transf. 2009, 52, 2265–2272. [Google Scholar] [CrossRef]
- Sphaier, L.A.; Worek, W.M. Numerical Solution of Periodic Heat and Mass Transfer with Adsorption in Regenerators: Analysis and Optimization. Numer. Heat Transf. Part A Appl. 2008, 53, 1133–1155. [Google Scholar] [CrossRef]
- Hegana, V.P.; Kulkarni, P. Enthalpy Wheel Application for Heat Recovery in Heat Exchanger. Int. J. Adv. Res. Sci. Eng. IJARSE 2015, 8354, 43–53. [Google Scholar]
- Nóbrega, C.E.L.; Sphaier, L.A. Desiccant-Assisted Humidity Control for Air Refrigeration Cycles. Int. J. Refrig. 2013, 36, 1183–1190. [Google Scholar] [CrossRef]
- Nóbrega, C.E.L.; Sphaier, L.A. Modeling and Simulation of a Desiccant–Brayton Cascade Refrigeration Cycle. Energy Build. 2012, 55, 575–584. [Google Scholar] [CrossRef]
- Sphaier, L.A.; Nóbrega, C.E.L. Parametric Analysis of Components Effectiveness on Desiccant Cooling System Performance. Energy 2012, 38, 157–166. [Google Scholar] [CrossRef]
- Machado, J.V.P.; Pinheiro, I.F.; Sphaier, L.A.; Nóbrega, C.E.L.; Quintans, P.C.; Quintanilha, F.O. Desiccant-Assisted Multistage Air Compression Systems: Performance Improvement and Humidity Control. Appl. Therm. Eng. 2024, 243, 122572. [Google Scholar] [CrossRef]
- Valencia Ochoa, G.; Castillo Santiago, Y.; Duarte Forero, J.; Restrepo, J.B.; Albis Arrieta, A.R. A Comprehensive Comparative Analysis of Energetic and Exergetic Performance of Different Solar-Based Organic Rankine Cycles. Energies 2023, 16, 2724. [Google Scholar] [CrossRef]
- Aridi, R.; Faraj, J.; Ali, S.; Gad El-Rab, M.; Lemenand, T.; Khaled, M. Energy Recovery in Air Conditioning Systems: Comprehensive Review, Classifications, Critical Analysis, and Potential Recommendations. Energies 2021, 14, 5869. [Google Scholar] [CrossRef]
- Vakiloroaya, V.; Samali, B.; Fakhar, A.; Pishghadam, K. A Review of Different Strategies for HVAC Energy Saving. Energy Convers. Manag. 2014, 77, 738–754. [Google Scholar] [CrossRef]
- Yu, Y.; Miao, R.; Miller, L.; Yang, H.; Olson, G. Recent Development and Application of Geothermal Heat Pump Systems in Cold-Climate Regions of the US: A Further Investigation. Engineering 2017, 9, 625–648. [Google Scholar] [CrossRef]
- Clark, J.E.; Mills, A.F.; Buchberg, H. Design and Testing of Thin Adiabatic Desiccant Beds for Solar Air Conditioning Applications. J. Sol. Energy Eng. 1981, 103, 89–91. [Google Scholar] [CrossRef]
- Lavan, Z.; Gidaspow, D.; Onischak, M.; Chaturvedi, S.; Mathiprakasam, B.; Perkari, S. Development of a Solar Desiccant Dehumidifier; Solar Energy International Progress: Pergamon, Turkey, 1980; Volume 2, pp. 898–931. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9781483284378500648 (accessed on 12 August 2024).
- Gunderson, M.E.; Hwang, K.C.; Railing, S.M. Development of a Solar Desiccant Dehumidifier. Volume 1. Summary. Volume 2. Detailed Technical Information. Technical Progress Report; AiResearch Mfg. Co.: Los Angeles, CA, USA, 1978. [Google Scholar]
- Pesaran, A.A.; Mills, A.F. Moisture Transport in Silica Gel Packed Beds—I. Theoretical Study. Int. J. Heat Mass Transf. 1987, 30, 1037–1049. [Google Scholar] [CrossRef]
- Pesaran, A.A.; Mills, A.F. Moisture Transport in Silica Gel Packed Beds—II. Experimental Study. Int. J. Heat Mass Transf. 1987, 30, 1051–1060. [Google Scholar] [CrossRef]
- Biswas, P.; Kim, S.; Mills, A.F. A Compact Low-Pressure Drop Desiccant Bed for Solar Air Conditioning Applications: Analysis and Design. J. Sol. Energy Eng. 1984, 106, 153–158. [Google Scholar] [CrossRef]
- Air-Conditioning Engineers. 2020 ASHRAE Handbook: Heating, Ventilating, and Air-Conditioning Systems and Equipment; ASHRAE Handbook Committe, Ed.; ASHRAE: Atlanta, GA, USA, 2020; ISBN 9781947192539. [Google Scholar]
- Zhou, X.; Goldsworthy, M.; Sproul, A. Performance Investigation of an Internally Cooled Desiccant Wheel. Appl. Energy 2018, 224, 382–397. [Google Scholar] [CrossRef]
- Shamim, J.A.; Hsu, W.-L.; Paul, S.; Yu, L.; Daiguji, H. A Review of Solid Desiccant Dehumidifiers: Current Status and near-Term Development Goals in the Context of Net Zero Energy Buildings. Renew. Sustain. Energy Rev. 2021, 137, 110456. [Google Scholar] [CrossRef]
- Mohammed, R.H.; Ahmadi, M.; Ma, H.; Bigham, S. Desiccants Enabling Energy-Efficient Buildings: A Review. Renew. Sustain. Energy Rev. 2023, 183, 113418. [Google Scholar] [CrossRef]
- Sultan, M.; El-Sharkawy, I.I.; Miyazaki, T.; Saha, B.B.; Koyama, S. An Overview of Solid Desiccant Dehumidification and Air Conditioning Systems. Renew. Sustain. Energy Rev. 2015, 46, 16–29. [Google Scholar] [CrossRef]
- Radov, M. The Enthalpy Wheel. 2008. Available online: https://vsgc.odu.edu/wp-content/uploads/sites/3/2018/03/2009Environmental_thirdplace.pdf (accessed on 1 April 2024).
- de Antonellis, S.; Intini, M.; Joppolo, C.M.; Leone, C. Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems. Energies 2014, 7, 7348–7367. [Google Scholar] [CrossRef]
- Mandegari, M.A.; Farzad, S.; Angrisani, G.; Pahlavanzadeh, H. Study of Purge Angle Effects on the Desiccant Wheel Performance. Energy Convers. Manag. 2017, 137, 12–20. [Google Scholar] [CrossRef]
- La, D.; Dai, Y.J.; Li, Y.; Wang, R.Z.; Ge, T.S. Technical Development of Rotary Desiccant Dehumidification and Air Conditioning: A Review. Renew. Sustain. Energy Rev. 2010, 14, 130–147. [Google Scholar] [CrossRef]
- Lawrance, W.; Schreck, T. Rotary Heat Exchangers Save Energy and Prevent a Need for Recirculation Which Contributes to the Decrease the Risk of COVID-19 Transfer. REHVA J. 2020, 5, 65–68. [Google Scholar]
- Men, Y.; Liu, X.; Zhang, T. Experimental and Numerical Analysis on Heat and Moisture Recovery Performance of Enthalpy Wheel with Condensation. Energy Convers. Manag. 2021, 246, 114683. [Google Scholar] [CrossRef]
- Nasif, M.S. Air-to-Air Fixed Plate Energy Recovery Heat Exchangers for Building’s HVAC Systems; Springer: Singapore, 2019; ISBN 9789811329685. [Google Scholar]
- Camargo, J.R.; Ebinuma, C.D.; Silveira, J.L. Experimental Performance of a Direct Evaporative Cooler Operating during Summer in a Brazilian City. Int. J. Refrig. 2005, 28, 1124–1132. [Google Scholar] [CrossRef]
- Melo, F.J.A. Desenvolvimento de um Sistema de Climatização Híbrido: Dessecante e por Compressão de Vapor. Ph.D. Thesis, Universidade Federal da Paraíba, João Pessoa, Brazil, 2019. [Google Scholar]
- Singh, R.P.; Das, R.K. Progressive Development and Challenges Faced by Solar Rotary Desiccant-Based Air-Conditioning Systems: A Review. Processes 2021, 9, 1785. [Google Scholar] [CrossRef]
- BRITA Solar Heating and Cooling of Buildings Guidelines; BRITA: Palermo, Italy, 2007.
- Murphy, P. IEA Solar Heating & Cooling Programme 2004; Morse Associates, Inc.: Washington, DC, USA, 2005. [Google Scholar]
- Ge, T.S.; Dai, Y.J.; Wang, R.Z.; Li, Y. Experimental Investigation on a One-Rotor Two-Stage Rotary Desiccant Cooling System. Energy 2008, 33, 1807–1815. [Google Scholar] [CrossRef]
- Niemann, P.; Schmitz, G. Air Conditioning System with Enthalpy Recovery for Space Heating and Air Humidification: An Experimental and Numerical Investigation. Energy 2020, 213, 118789. [Google Scholar] [CrossRef]
- EPA. Laboratories for the 21st Century: An Introduction to Low-Energy Design; EPA: Washington DC, USA, 2008. [Google Scholar]
- Masson, S.V.; Qu, M.; Archer, D.H. Performance Modeling of a Solar Thermal System for Cooling and Heating in Carnegie Mellon University’s Intelligent Workplace. Energy Sustain. 2007, 47977, 671–680. [Google Scholar]
- ABNT NBR 16401-3/2008; Parte 3: Qualidade Do Ar Interior. ABNT: Rio de Janeiro, Brazil, 2008.
Major Group | Sub-Types |
---|---|
A: Humid climate | AF: Tropical rainforest AM: Tropical jungle AW: Tropical humid and dry grassland (AS is utilized if the dry season occurs during higher sunlight and days more long) |
B: Dry Climate | BWh, BWk: Desert BSh, BSk: Savanna |
C: Mild temperate | CSC, CSD, CSE: Mediterranean sea CFA, CWA: Humid subtropical CFB, CFE, CWC, CWE: Ocean |
D: Snow ambient | DFE, DWA, DFF, DWB, DSE, DSF: Humid DFG, DWC, DFH, DWD, DSG, DSG: Sub-arctic |
E: Polar ambient | ET: Tundra EI: Icecap |
Environment | Amount of People | Airflow Rate (m3/h) | Heat per Person (kcal/h/Person) | |
---|---|---|---|---|
Sensible | Latent | |||
Medical Room | 3 | 81 | 70 | 45 |
Office | 36 | 1054 | 75 | 55 |
Hotel Room | 2 | 54 | 70 | 45 |
Restaurant | 124 | 2655 | 70 | 45 |
Theater | 108 | 1836 | 70 | 45 |
Classroom | 37 | 1048 | 70 | 45 |
Equipment | Energy Saving | Localization | Ref. |
---|---|---|---|
Heat-recovery unit using a multi-drain | 410.9 kWh/month | Lebanon | [85] |
Horizontal heat exchanger | 406 MWh/year | Hong Kong | [86] |
Drain water heat-recovery system | 808 GWh/year | Irland complete | [87] |
Preheating heat-recovery stove | 3.3 MWh/month | Saskatoon, Canada | [77] |
ERV | 181.3 kWh/month | Minneapolis, US | [78] |
Enthalpy wheel | 82 MWh/year | Belen, Brazil | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo Santiago, Y.; Busanello, D.; Santos, A.F.; Venturini, O.J.; Sphaier, L.A. The Impact of Air Renewal with Heat-Recovery Technologies on Energy Consumption for Different Types of Environments in Brazilian Buildings. Energies 2024, 17, 4065. https://doi.org/10.3390/en17164065
Castillo Santiago Y, Busanello D, Santos AF, Venturini OJ, Sphaier LA. The Impact of Air Renewal with Heat-Recovery Technologies on Energy Consumption for Different Types of Environments in Brazilian Buildings. Energies. 2024; 17(16):4065. https://doi.org/10.3390/en17164065
Chicago/Turabian StyleCastillo Santiago, York, Daiane Busanello, Alexandre F. Santos, Osvaldo J. Venturini, and Leandro A. Sphaier. 2024. "The Impact of Air Renewal with Heat-Recovery Technologies on Energy Consumption for Different Types of Environments in Brazilian Buildings" Energies 17, no. 16: 4065. https://doi.org/10.3390/en17164065
APA StyleCastillo Santiago, Y., Busanello, D., Santos, A. F., Venturini, O. J., & Sphaier, L. A. (2024). The Impact of Air Renewal with Heat-Recovery Technologies on Energy Consumption for Different Types of Environments in Brazilian Buildings. Energies, 17(16), 4065. https://doi.org/10.3390/en17164065