Multiparametric Methods for Rapid Classification of Diesel Fuel Quality Used in Automotive Engine Systems
Abstract
:1. Introduction
1.1. Automotive Diesel Fuel Definitions
1.2. Automotive Diesel Fuel Components and Standards
- EU standard EN ISO 3405 [74] uses the range of temperatures for 65, 85, and 95 [% (v/v)] recovered limits.
- The EN 14214 standard of FAME contains 24 properties and refers to 32 standards of testing methods.
- The EN 590 standard of base fuel comprises 16 properties and refers to 20 standards of testing methods.
1.3. Diesel Fuel Quality Definitions and the Premise of the Work
1.4. Multiparametric Methods and Aim of the Work
2. Diesel Fuel Performance and Emission Evaluation
2.1. Head of a Measurement System Using Modern Engines
System 1 [126] | System 2 [127] | System 3 [128] | ||
---|---|---|---|---|
Engine parameters | number of cylinders | 4 | 4 | 4 |
cubic capacity [L] | 1.4 | 2.3 | 1.4 | |
bore × stroke [mm] | 75 × 79.5 | 88 × 94 | 73.0 × 81.5 | |
max power [kW] | 39 | 102 | 66 | |
compression ratio | 22 | 16.0 | 16.5 | |
engine control | Electric IDI | ECU | ECU | |
characteristic | mid-size car of India | Euro 6 | Euro 5 | |
Fuel tested | 2-D (D975) | B7(EN 590) | B7 (EN 590) | |
B20 | HVO | HVO (EN 15940) | ||
Test type | SOP | WLTC | SOP and NEDC | |
Measured parameters | torque | yes | yes | yes |
speed | yes | yes | yes | |
fuel consumption | yes | yes | ||
smoke and gas emissions | yes | yes | yes | |
additional | effectiveness of DOC | air intake pressure in-cylinder | ||
Selectable settings | speed | rail pressure, MIT 1 | MIT | |
loads | HP and LP EGR 2 | EGR |
2.2. Cetane Number as Multiparametric Ignition Quality Measurement Method
2.3. Combustion Research Unit and Derived Cetane Number (DCN)
2.4. Spray Formation as Multiparametric Fuel Quality Measurement Methods
2.5. Cetane Index
3. Fuel Fit for Current Use
3.1. Fuel-Fit-for-Current-Use Classifications Based on a Set of Direct Physical Parameters
System 13 [227] | System 14 [228] | System 15 [229] | ||
---|---|---|---|---|
Measurement chamber | technology | capillary | vessel | vessel |
volume [L] | 10−5 | 10−2 | 5 × 10−2 | |
Measurement principle | capillary action | mechanical resonance | electromagnetic resonance | |
Parameters estimated | viscosity, density, surface tension | density versus temperature | dielectric coefficients, loss tangents | |
Fuel tested | market diesel market biodiesel | market diesel | branded diesel, | |
out-of-date fuel | market biodiesel | non-branded diesel | ||
Measurement and control devices | 3× optoelectronic interface | frequency meter | vector network analyzer | |
3× LED light source | microcontroller | |||
6× optical fibers | ||||
micromechanical bed | ||||
data acquisition system | ||||
PC | ||||
Data pre-processing | demodulation and time-series recording | vibration excitation | frequency band of 8–12 GHz | |
characteristic point detection | rejection of external signals | dielectric coefficients and loss tangents measurement | ||
current data comparison with reference fuel parameters | slope estimation | |||
Fit for current use | ANN classification | threshold classification | resonant frequency assignment |
3.2. Fuel-Fit-for-Current-Use Classifications Based on Spectroscopic Measurement and Chemometric Methods
System 16 [238] | System 17 [239] | System 18 [240] | |
---|---|---|---|
Measurement chamber | cuvette | KBr liquid cell | ATR vessel with ZnSe crystal |
Measurement principle | NIR spectra | FTIR in MIR band | ATR-FTIR in MIR band |
Parameters estimated | density, viscosity, boiling point, cetane number, freezing temperature, | FAME/FAEE ratio (FT-IR), viscosity by the refractive index | carbon and oxygen in methyl carboxylate-(CO)-OCH3 concentrations |
Fuel tested | market diesel | market diesel | biodiesels made in-house 2 |
inferior diesel | biodiesels made in-house 1 | ||
Measurement and control | integrated spectrometer | integrated spectrometer | LabSolutions IR Data Collection program |
UV–VIS spectrometer | Spectragryph program | ||
refractive index (IR) meter | |||
Data processing | background subtracting and data pattern creation | integrated initial equipment calibration | background spectrum |
partial least squares regression | characteristic intensity peak wavelength and intensity detection | spectra analysis for different stages of transesterification | |
the direct orthogonal signal correction | correlation of the peak intensity with the FAME/FAEE ratio in petrodiesel | correlation analysis | |
least squares support vector machine classifications | |||
Output | fit for current use | fit for current use | transesterification progress |
3.3. Detection of Contaminations and Adulterations of Diesel Fuel
4. Fuel Stability
4.1. Diesel Fuel Oxidation Stability Measurements with Standardized Methods
4.2. Diesel Fuel Oxidation Stability Estimation with FTIR Spectroscopy Implementations
4.3. Diesel Fuel Internal Stability Estimation with Fluorescence Spectroscopy
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dincer, I.; Zamfirescu, C. Fossil Fuels and Alternatives. In Advanced Power Generation Systems; Dincer, I., Zamfirescu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 95–141. [Google Scholar]
- Kumar, N.; Sonthalia, A.; Pali, H.S. Alternative Fuels for Diesel Engines: New Frontiers. In Diesel and Gasoline Engines; Viskup, R., Ed.; IntechOpen: Rijeka, Croatia, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Yao, X.; Yasmeen, R.; Padda, I.U.H.; Shah, W.U.H.; Kamal, M.A. Inequalities by energy sources: An assessment of environmental quality. PLoS ONE 2020, 15, e0230503. [Google Scholar] [CrossRef] [PubMed]
- Hor, C.J.; Tan, Y.H.; Mubarak, N.M.; Tan, I.S.; Ibrahim, M.L.; Yek, P.N.; Karri, R.R.; Khalid, M. Techno-economic assessment of hydrotreated vegetable oil as a renewable fuel from waste sludge palm oil. Environ. Res. 2023, 220, 115169. [Google Scholar] [CrossRef] [PubMed]
- Searcy, E.; Flynn, P.C. Should straw/stover be turned into syndiesel or ethanol? Biomass Bioenergy 2010, 34, 1978–1981. [Google Scholar] [CrossRef]
- Hasnain, S.M.M.; Chatterjee, R.; Ranjan, P.; Kumar, G.; Sharma, S.; Kumar, A.; Salah, B.; Ullah, S.S. Performance, Emission, and Spectroscopic Analysis of Diesel Engine Fuelled with Ternary Biofuel Blends. Sustainability 2023, 15, 7415. [Google Scholar] [CrossRef]
- British Petroleum. Statistical Review of World Energy, 70th ed.; British Petroleum: London, UK, 2021; pp. 1–69. [Google Scholar]
- Cames, M.; Helmers, E. Critical evaluation of the European diesel car boom-global comparison, environmental effects, and various national strategies. Environ. Sci. Eur. 2013, 25, 15. [Google Scholar] [CrossRef]
- Zhang, W.; Luckert, M.; Qiu, F. Asymmetric price transmission and impulse responses from U.S. crude oil to jet fuel and diesel markets. Energy 2023, 283, 128425. [Google Scholar] [CrossRef]
- Mahmudul, H.M.; Hagos, F.Y.; Mamat, R.; Abdul Adam, A.; Ishak, W.F.W.; Alenezi, R. Production, characterization, and performance of biodiesel as an alternative fuel in diesel engines—A review. Renew. Sustain. Energy Rev. 2017, 72, 497–509. [Google Scholar] [CrossRef]
- Hossain, F.M.; Nabi, M.N.; Brown, R.J. Investigation of diesel engine performance and exhaust emissions of microalgae fuel components in a turbocharged diesel engine. Energy Convers. Manag. 2019, 186, 220–228. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, C.; Cai, P.; Jing, Z.; Wen, J.; Li, Y.; Wang, H.; An, L.; Zhang, J. The potential of coal-to-liquid as an alternative fuel for diesel engines: A review. J. Energy Inst. 2023, 109, 101306. [Google Scholar] [CrossRef]
- Faisal, F.; Rasul, M.G.; Chowdhury, A.A.; Schaller, D.; Jahirul, M.I. Uncovering the differences: A comparison of properties of crude plastic pyrolytic oil and distilled and hydrotreated plastic diesel produced from waste and virgin plastics as automobile fuels. Fuel 2023, 350, 128743. [Google Scholar] [CrossRef]
- Arya, S.; Sharma, A.; Rawat, M.; Agrawal, A. Tyre pyrolysis oil as an alternative fuel: A review. Mater. Today Proc. 2020, 28, 2481–2484. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lin, J.K.; Wang, W.C.; Chen, R.H.; Lin, K.M.; Saputro, H.; Cong, H.T.; Hong, T.D.; Tongroon, M. The production of the hydro-processed renewable diesel (HRD) and its performances from a turbo-charged diesel engine. Energy 2023, 270, 126924. [Google Scholar] [CrossRef]
- ASTM D975-21; ASTM Subcommittee: D02.E0. D975 Standard Specification for Diesel Fuel. ASTM International: West Conshohocken, PA, USA, 2020; Volume 5, pp. 1–28. [CrossRef]
- EN 590; European Committee for Standarization. Automotive Fuels—Diesel—Requirements and Test Methods. CEN Management Centre: Brussels, Belgium, 2009; pp. 1–12. Available online: https://www.envirochem.hu/www.envirochem.hu/documents/EN_590_2009_hhV05.pdf (accessed on 27 June 2024).
- Pottering, H.G.; Necas, P. Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009. Off. J. Eur. Union 2009, 5, 88–113. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0088:0113:EN:PDF (accessed on 15 April 2024).
- Pape, M. Decarbonising Maritime Transport: The EU Perspective; European Parliamentary Research Service: Brussels, Belgium, 2020; pp. 1–10. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/659296/EPRS_BRI(2020)659296_EN.pdf (accessed on 8 April 2024).
- Gotovusa, M.; Pucko, I.; Racar, M.; Faraguna, F. Biodiesel Produced from Propanol and Longer Chain Alcohols—Synthesis and Properties. Energies 2022, 15, 4996. [Google Scholar] [CrossRef]
- Vignesh, P.; Kumar, A.R.P.; Ganesh, N.S.; Jayaseelan, V.; Sudhakar, K. Biodiesel and green diesel generation: An overview. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 2021, 76, 6. [Google Scholar] [CrossRef]
- Leung, D.Y.; Wu, X.; Leung, M.K. A review on biodiesel production using catalyzed transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Zeman, P.; Honig, V.; Kotek, M.; Táborský, J.; Obergruber, M.; Marik, J.; Hartova, V.; Pechout, M. Hydrotreated Vegetable Oil as a Fuel from Waste Materials. Catalysts 2019, 9, 337. [Google Scholar] [CrossRef]
- Lucantonio, S.; Di Giuliano, A.; Rossi, L.; Gallucci, K. Green Diesel Production via Deoxygenation Process: A Review. Energies 2023, 16, 844. [Google Scholar] [CrossRef]
- Mikkonen, S. Second-generation renewable diesel offers advantages. Hydrocarb. Process. 2008, 87, 63–66. [Google Scholar]
- van Vliet, O.P.R.; Faaij, A.P.C.; Turkenburg, W.C. Fischer–Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis. Energy Convers. Manag. 2009, 50, 855–876. [Google Scholar] [CrossRef]
- Louhi, E.H.; Kasiri, N.; Khalili-Garakani, A.; Heydari-Fard, M.; Ivakpour, J. Design and optimization of distillation column sequencing for the GTL process. Chem. Eng. Res. Des. 2021, 173, 119–128. [Google Scholar] [CrossRef]
- Pitz, W.J.; Mueller, C.J. Recent progress in the development of diesel surrogate fuels. Prog. Energy Combust. Sci. 2011, 37, 330–350. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Das, L.M.; Babu, M.K.G.; Naik, S.N. Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel 2007, 86, 448–454. [Google Scholar] [CrossRef]
- Alsultan, A.G.; Asikin-Mijan, N.; Ibrahim, Z.; Yunus, R.; Razali, S.Z.; Mansir, N.; Islam, A.; Seenivasagam, S.; Taufiq-Yap, Y.H. A short review on catalyst, feedstock, modernised process, current state, and challenges on biodiesel production. Catalysts 2021, 11, 1261. [Google Scholar] [CrossRef]
- Filho, N.R.A.; Lanças, F.M. Identification of FAMEs using ECL values and a three-dimensional Kováts retention index system. J. High Resolut. Chromatogr. 1995, 18, 167–170. [Google Scholar] [CrossRef]
- Sugiyama, G.; Maeda, A.; Nagai, K. Oxidation Degradation and Acid Generation in Diesel Fuel Containing 5% FAME. SAE Tech. Pap. 2007, 1, 2027. [Google Scholar] [CrossRef]
- Dry, M.E. The Fischer–Tropsch process: 1950–2000. Catal. Today 2002, 71, 227–241. [Google Scholar] [CrossRef]
- Ram, V.; Salkuti, S.R. An Overview of Major Synthetic Fuels. Energies 2023, 16, 2834. [Google Scholar] [CrossRef]
- Aatola, H.; Larmi, M.; Sarjovaara, T.; Mikkonen, S. Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: Trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE Int. J. Engines 2009, 1, 1251–1262. [Google Scholar] [CrossRef]
- Zao, H.; Liu, J.; Chen, G.; Yan, B.; Yao, J.; Yi, W.; Liu, S.; Zhao, Y.; Liu, S. Enhanced conversion of syngas to high-quality diesel fuel over ZrO2 and acidized carbon nanotube bifunctional catalyst. Fuel Process. Technol. 2023, 250, 107920. [Google Scholar] [CrossRef]
- Knothe, G. Biodiesel and renewable diesel: A comparisonq. Prog. Energy Combust. Sci. 2010, 36, 364–373. [Google Scholar] [CrossRef]
- Mustika, S.; Purwanto, W.W. Multi-Objective Optimization of Blending Strategy of FAME, HVO, and Petroleum Diesel. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1143, 012046. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Singh, R.K.; Cho, H.; Lim, H. Practice of diesel fuel blends using alternative fuels: A review. Renew. Sustain. Energy Rev. 2016, 59, 1358–1368. [Google Scholar] [CrossRef]
- Das, K.; Bajia, S.C.; Sharma, J.C.; Singh, S.P.; Malhan, M.; Kumar, S.; Das, D.K. Improvement in cold flow properties of diesel fuel by changing its composition: A case study. Pet. Sci. Technol. 2023, 41, 665–676. [Google Scholar] [CrossRef]
- Krahl, J.; Munack, A.; Schaper, K.; Fey, B.; Schmidt, L.; Schroeder, O. Interactions among Fuel Components from Diesel Fuel and Biodiesel. SAE Tech. Pap. 2013, 1, 2594. [Google Scholar] [CrossRef]
- Tuli, D.; Kasture, S. Biodiesel and green diesel. In Advanced Biofuel Technologies; Tuli, D., Kasture, S., Kuila, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 119–133. [Google Scholar] [CrossRef]
- Bennett, J. Advanced fuel additives for modern internal combustion engines. In Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance; Folkson, R., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 165–194. [Google Scholar] [CrossRef]
- Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Rashed, M.M.; Rashedul, H.K.; Monirul, I.M.; Mosarof, M.H. A comprehensive review on the assessment of fuel additive effects on combustion behavior in CI engine fuelled with diesel biodiesel blends. RSC Adv. 2015, 83, 67541–67567. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Tabatabaei, M.; Aghbashlo, M.; Khanali, M.; Demirbas, A. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers. Manag. 2018, 174, 579–614. [Google Scholar] [CrossRef]
- Makinen, R.; Nylund, N.; Erkkila, K.; Amberla, A.; Saikonen, P. Bus fleet Operation on Renewable Paraffinic Diesel Fuel. In SAE Technical Paper; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Macioszek, L.; Sobczynski, D. Moisture Content Assessment of Commercially Available Diesel Fuel Using Impedance Spectroscopy. Energies 2024, 17, 1903. [Google Scholar] [CrossRef]
- Stamps, B.W.; Bojanowski, C.L.; Drake, C.A.; Nunn, H.S.; Lloyd, P.F.; Floyd, J.G.; Emmerich, K.A.; Neal, A.R.; Crookes-Goodson, W.J.; Stevenson, B.S. In situ Linkage of Fungal and Bacterial Proliferation to Microbiologically Influenced Corrosion in B20 Biodiesel Storage Tanks. Front. Microbiol. 2020, 11, 167. [Google Scholar] [CrossRef]
- EN 14214; European Committee for Standarization. Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications—Requirements and Test Methods. CEN Management Centre: Brussels, Belgium, 2012; pp. 1–32.
- EN 15940; European Committee for Standarization. Automotive Fuels—Paraffinic Diesel Fuel from Synthesis or Hydrotreatment—Requirements and Test Methods. CEN Management Centre: Brussels, Belgium, 2023; pp. 1–28.
- ASTM D613-24; ASTM Subcommittee: D02.01 Standard Test Method for Cetane Number of Diesel Fuel Oil. ASTM International: West Conshohocken, PA, USA, 2024; pp. 1–18. [CrossRef]
- EN 15195; European Committee for Standarization. Liquid Petroleum Products—Determination of Ignition Delay and Derived Cetane Number (DCN) of Middle Distillate Fuels by Combustion in a Constant Volume Chamber. CEN Management Centre: Brussels, Belgium, 2014; pp. 1–27. Available online: https://aimg8.dlssyht.cn/u/2065667/ueditor/file/1033/2065667/1612847441728887.pdf (accessed on 27 June 2024).
- ISO 5165; Petroleum Products—Determination of the Ignition Quality of Diesel Fuels—Cetane Engine Method. International Organization for Standardization: Geneva, Switzerland, 2020; Fifth edition. pp. 1–20.
- ISO 12185; Crude Petroleum, Petroleum Products and Related Products—Determination of Density—Laboratory Density Meter with an Oscillating U-Tube Sensor. International Organization for Standardization: Geneva, Switzerland, 2024; Second edition. pp. 1–11.
- ISO 3675; Crude Petroleum and Liquid Petroleum Products — Laboratory Determination of Density—Hydrometer Method. International Organization for Standardization: Geneva, Switzerland, 1998; Third edition. pp. 1–7.
- ASTM D1319-20a; ASTM Subcommittee: D02.04.0C. Standard Test Method for Hydrocarbon Types in Liquid Petroleum Products by Fluorescent Indicator Adsorption. ASTM International: West Conshohocken, PA, USA, 2020; Volume 5, pp. 1–11. [CrossRef]
- EN 12916; European Committee for Standarization. Petroleum Products—Determination of Aromatic Hydrocarbon Types in Middle Distillates—High Performance Liquid Chromatography Method with Refractive Index Detection. CEN Management Centre: Brussels, Belgium, 2016; pp. 1–20.
- ASTM D445-24; ASTM Subcommittee: D02.07. Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International: West Conshohocken, PA, USA, 2024; Volume 5, pp. 1–16. [CrossRef]
- ISO 3104; Petroleum Products—Transparent and Opaque Liquids—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity. International Organization for Standardization: Geneva, Switzerland, 2020; Third edition. pp. 1–24.
- EN 14105; European Committee for Standarization. Fat and Oil Derivatives—Fatty Acid Methyl Esters (FAME)—Determination of Free and Total Glycerol and Mono-, Di-, Triglyceride Contents. CEN Management Centre: Brussels, Belgium, 2020; pp. 1–27.
- EN 14078; European Committee for Standarization. Liquid Petroleum Products—Determination of Fatty Acid Methyl Ester (FAME) Content in Middle Distillates—Infrared Spectrometry Method. CEN Management Centre: Brussels, Belgium, 2014; pp. 1–18.
- EN 14103; European Committee for Standarization. Fat and Oil Derivatives—Fatty Acid Methyl Esters (FAME)—Determination of Ester and Linolenic Acid Methyl Ester Contents. CEN Management Centre: Brussels, Belgium, 2020; pp. 1–21.
- ASTM D5453-19a; ASTM Subcommittee: D02.03. Standard Test Method for Determination of Total Sulfur in Light Hydrocarbons, Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil by Ultraviolet Fluorescence. ASTM International: West Conshohocken, PA, USA, 2024; Volume 5, pp. 1–12. [CrossRef]
- ISO 20884; Petroleum Products—Determination of Sulfur Content of Automotive Fuels—Wavelength-Dispersive X-ray Fluorescence Spectrometry. International Organization for Standardization: Geneva, Switzerland, 2019; Third edition. pp. 1–9.
- ASTM D2709-22; ASTM Subcommittee: D02.14. Standard Test Method for Water and Sediment in Middle Distillate Fuels by Centrifuge. ASTM International: West Conshohocken, PA, USA, 2022; Volume 5, pp. 1–3. [CrossRef]
- ISO 12937; Petroleum Products—Determination of Water—Coulometric Karl Fischer Titration Method. International Organization for Standardization: Geneva, Switzerland, 2000; First edition. pp. 1–11.
- ISO 12205; Petroleum Products—Determination of the Oxidation Stability of Middle-Distillate Fuels. International Organization for Standardization: Geneva, Switzerland, 1995; First edition. pp. 1–8.
- EN 14112; European Committee for Standarization. Fat and Oil Derivatives. Fatty Acid Methyl Esters (FAME). Determination of Oxidation Stability (Accelerated Oxidation Test). CEN Management Centre: Brussels, Belgium, 2021; pp. 1–20.
- EN 12662; European Committee for Standarization. Liquid Petroleum Products—Determination of Total Contamination—Part 1: Middle Distillates and Diesel Fuels. CEN Management Centre: Brussels, Belgium, 2024; pp. 1–15.
- ASTM D2500-17a; ASTM Subcommittee: D02.07. Standard Test Method for Cloud Point of Petroleum Products and Liquid Fuels. ASTM International: West Conshohocken, PA, USA, 2023; Volume 5, pp. 1–6. [CrossRef]
- ISO 3015; Petroleum and Related Products from Natural or Synthetic Sources—Determination of Cloud Point. International Organization for Standardization: Geneva, Switzerland, 2019; Third edition. pp. 1–9.
- EN 15751; European Committee for Standarization. Automotive Fuels—Fatty Acid Methyl Ester (FAME) Fuel and Blends with Diesel Fuel—Determination of Oxidation Stability by Accelerated Oxidation Method. CEN Management Centre: Brussels, Belgium, 2014; pp. 1–19.
- ASTM D86-23a; ASTM Subcommittee: D02.08. Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure. ASTM International: West Conshohocken, PA, USA, 2024; Volume 5, pp. 1–31. [CrossRef]
- ISO 3405; Petroleum and Related Products from Natural or Synthetic Sources—Determination of Distillation Characteristics at Atmospheric Pressure. International Organization for Standardization: Geneva, Switzerland, 2019; Fifth edition. pp. 1–54.
- Hosseinifar, P.; Shahverdi, H. A predictive method for constructing the distillation curve of petroleum fluids using their physical bulk properties. J. Pet. Sci. Eng. 2021, 200, 108403. [Google Scholar] [CrossRef]
- Lois, E.; Keating, E.L.; Gupta, A.K. Fuels. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 275–314. [Google Scholar] [CrossRef]
- Giakoumis, E.G. Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renew. Energy 2018, 126, 403–419. [Google Scholar] [CrossRef]
- Ulberth-Buchgraber, M.; Charoud-Got, J.; Held, A. Certified reference materials for effective automotive diesel fuel testing. Fuel 2021, 286, 119367. [Google Scholar] [CrossRef]
- Yanowitz, J.; Ratcliff, M.A.; McCormick, R.L.; Taylor, J.D.; Murphy, M.J. Compendium of Experimental Cetane Numbers; National Renewable Energy Laboratory: Golden, CO, USA, 2017; pp. 1–69. Available online: https://www.nrel.gov/docs/fy17osti/67585.pdf (accessed on 23 April 2024). [CrossRef]
- Matijosius, J.; Sokolovskij, E. Research into the quality of biocomponents on the fuel quality. Transport 2009, 24, 212–217. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Bacha, J.; Freel, J.; Gibbs, A.; Gibbs, L.; Hemighaus, G.; Hoekman, K.; Horn, J.; Ingham, M.; Jossens, L.; Kohler, D.; et al. Diesel Fuels Technical Review; Chevron Corporation: San Ramon, CA, USA, 2007; pp. 3–25. [Google Scholar]
- Dixson-Decleve, S. Fuel Policies in the EU: Lessons Learned from the Past and Outlook for the Future. In Cars and Carbon; Zachariadis, T., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 97–126. [Google Scholar] [CrossRef]
- Tang, H.; Abunasser, N.; Wang, A.; Clark, B.R.; Wadumesthrige, K.; Zeng, S.; Kim, M.; Salley, S.O.; Hirschlieb, G.; Wilson, J.; et al. Quality survey of biodiesel blends sold at retail stations. Fuel 2008, 87, 2951–2955. [Google Scholar] [CrossRef]
- Balali, Y.; Stegen, S. Review of energy storage systems for vehicles based on technology, environmental impacts, and costs. Renew. Sustain. Energy Rev. 2021, 135, 110185. [Google Scholar] [CrossRef]
- Fayad, M.A.; Chaichan, M.T.; Dhahad, H.A.; Al-Amiery, A.A.; Wan Isahak, W.N.R. Reducing the effect of high sulphur content in diesel fuel on NO x emissions and PM characteristics using a PPCI mode engine and gasoline–diesel blends. ACS Omega 2022, 7, 37328–37339. [Google Scholar] [CrossRef] [PubMed]
- Yusop, A.F.; Mamat, R.; Yusaf, T.; Najafi, G.; Yasin, H.M.; Khathri, A.M. Analysis of Particulate Matter (PM) Emissions in Diesel Engines Using Palm Oil Biodiesel Blended with Diesel Fuel. Energies 2018, 11, 1039. [Google Scholar] [CrossRef]
- Kwao-Boateng, E.; Ankudey, E.G.; Darkwah, L.; Danquah, K.O. Assessment of diesel fuel quality. Heliyon 2024, 10, e24733. [Google Scholar] [CrossRef] [PubMed]
- Garrain, D.; Herrera, I.; Lechon, Y.; Lago, C. Well-to-Tank environmental analysis of a renewable diesel fuel from vegetable oil through co-processing in a hydrotreatment unit. Biomass Bioenergy 2014, 63, 239–249. [Google Scholar] [CrossRef]
- Freedman, B.; Bagby, M.O. Predicting cetane numbers of n-alcohols and methyl esters from their physical properties. J. Am. Oil Chem. Soc. 1990, 67, 565–571. [Google Scholar] [CrossRef]
- Sharafutdinov, I.; Dinkov, R.; Stratiev, D.; Shishkova, I.; Marinov, I.; Rudnev, N. Evaluation of available corrections for prediction of diesel fuel cetane number from physical properties. Oil Gas Eur. Mag. 2013, 39, 92–97. [Google Scholar]
- Vera-Rozo, J.R.; Saez-Bastante, J.; Carmona-Cabello, M.; Riesco-Avila, J.M.; Avellaneda, F.; Pinzi, S.; Dorado, M.P. Cetane index prediction based on biodiesel distillation curve. Fuel 2022, 321, 124063. [Google Scholar] [CrossRef]
- Harvey, D. Modern Analytical Chemistry; McGraw Hill: Boston, MA, USA, 2000; pp. 35–231. Available online: https://vyomaonline.com/studymaterial/uploads/pdf/2020/12/06_41062795d0ee9146d8f3635d0b34f288.pdf (accessed on 17 June 2024).
- Knothe, G. Analytical methods used in the production and fuel quality assessment of biodiesel. Trans. ASABE 2001, 44, 193–200. [Google Scholar] [CrossRef]
- Monteiro, M.R.; Ambrozina, A.R.P.; Lião, L.M.; Ferreira, A.G. Critical review on analytical methods for biodiesel characterization. Talanta 2008, 77, 593–605. [Google Scholar] [CrossRef]
- Brondz, I. Development of fatty acid analysis by high-performance liquid chromatography, gas chromatography, and related techniques. Anal. Chim. Acta 2002, 465, 1–37. [Google Scholar] [CrossRef]
- Segudovic, N.; Tomic, T.; Skrobonja, L.; Kontic, L. Local round robin test for determination of aromatics in diesel fuels by HPLC. J. Sep. Sci. 2004, 27, 65–70. [Google Scholar] [CrossRef]
- Sudol, P.E.; Pierce, K.M.; Prebihalo, S.E.; Skogerboe, K.J.; Wright, B.W.; Synovec, R.E. Development of gas chromatographic pattern recognition and classification tools for compliance and forensic analyses of fuels: A review. Anal. Chim. Acta 2020, 1132, 157–186. [Google Scholar] [CrossRef]
- Mogollon, N.G.S.; Ribeiro, F.A.d.L.; Lopez, M.M.; Hantao, L.W.; Poppi, R.J.; Augusto, F. Quantitative analysis of biodiesel in blends of biodiesel and conventional diesel by comprehensive two-dimensional gas chromatography and multivariate curve resolution. Anal. Chim. Acta 2013, 796, 130–136. [Google Scholar] [CrossRef]
- Rosset, M.; Perez-Lopez, O.W. FTIR spectroscopy analysis for monitoring biodiesel production by heterogeneous catalyst. Vib. Spectrosc. 2019, 105, 102990. [Google Scholar] [CrossRef]
- de Aguiar, L.M.; Galvan, D.; Bona, E.; Colnago, L.A.; Killner, M.H.M. Data fusion of middle-resolution NMR spectroscopy and low-field relaxometry using the Common Dimensions Analysis (ComDim) to monitor diesel fuel adulteration. Talanta 2022, 236, 122838. [Google Scholar] [CrossRef]
- Portela, N.A.; Oliveira, E.C.S.; Neto, A.C.; Rodrigues, R.R.T.; Silva, S.R.C.; Castro, E.V.R.; Filgueiras, P.R. Quantification of biodiesel in petroleum diesel by 1H NMR: Evaluation of univariate and multivariate approaches. Fuel 2016, 166, 12–18. [Google Scholar] [CrossRef]
- Killner, M.H.M.; Danieli, E.; Casanova, F.; Rohwedder, J.J.R.; Blümich, B. Mobile compact 1H NMR spectrometer promises fast quality control of diesel fuel. Fuel 2017, 203, 171–178. [Google Scholar] [CrossRef]
- Bayona, J.M.; Markides, K.E.; Lee, M.L. Characterization of polar polycyclic aromatic compounds in a heavy-duty diesel exhaust particulate by capillary column gas chromatography and high-resolution mass spectrometry. Environ. Sci. Technol. 1988, 22, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.D.; Jarman, K.H.; Moran, J.J.; Sorensen, C.M.; Wright, B.W. Characterization of diesel fuel by chemical separation combined with capillary gas chromatography (GC) isotope ratio mass spectrometry (IRMS). Talanta 2012, 99, 262–269. [Google Scholar] [CrossRef]
- Eberlin, L.S.; Abdelnur, P.V.; Passero, A.; de Sa, G.F.; Daroda, R.J.; de Souza, V.; Eberlin, M.N. Analysis of biodiesel and biodiesel—Petrodiesel blends by high performance thin layer chromatography combined with easy ambient sonic-spray ionization mass spectrometry. Analyst 2009, 134, 1652–1657. [Google Scholar] [CrossRef] [PubMed]
- de Juan, A.; Tauler, R. Multivariate Curve Resolution: 50 years addressing the mixture analysis problem—A review. Anal. Chim. Acta 2021, 1145, 59–78. [Google Scholar] [CrossRef]
- Ba, A.; Eckert, E.; Vanik, T. Procedures for the selection of real components to characterize petroleum mixtures. Chem. Pap. 2003, 57, 53–62. [Google Scholar]
- Albahri, T.A. Developing correlations for the properties of petroleum fuels and their fractions. Fluid Phase Equilibria 2012, 315, 113–125. [Google Scholar] [CrossRef]
- Adel, T.; Bilson, S.; Levene, M.; Thompson, A. Trustworthy Artificial Intelligence in the Context of Metrology. In Producing Artificial Intelligent Systems: The Roles of Benchmarking, Standardisation and Certification; Studies in Computational Intelligence; Springer: Berlin, Germany, 2024. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, V. Chemometrics in forensic science. TrAC Trends Anal. Chem. 2018, 105, 191–201. [Google Scholar] [CrossRef]
- Baptista, P.; Felizardo, P.; Menezes, J.C.; Neiva Correia, M.J. Multivariate near infrared spectroscopy models for predicting the methyl esters content in biodiesel. Anal. Chim. Acta 2008, 607, 153–159. [Google Scholar] [CrossRef]
- Mahammad, A.S. Using AI in Dimensional Metrology. In Handbook of Metrology and Applications; Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H., Eds.; Springer: Singapore, 2023; pp. 1025–1042. [Google Scholar] [CrossRef]
- Kassem, Y.; Çamur, H. Prediction of biodiesel density for extended ranges of temperature and pressure using adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF). Procedia Comput. Sci. 2017, 120, 311–316. [Google Scholar] [CrossRef]
- Chandrasekaran, J.; Feng, H.; Lei, Y.; Kacker, R.; Kuhn, D.R. Effectiveness of dataset reduction in testing machine learning algorithms. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence Testing (AITest), Oxford, UK, 3–6 August 2020; pp. 133–140. [Google Scholar] [CrossRef]
- Khanafer, M.; Shirmohammadi, S. Applied AI in instrumentation and measurement: The deep learning revolution. IEEE Instrum. Meas. Mag. 2020, 23, 10–17. [Google Scholar] [CrossRef]
- Sujesh, G.; Ramesh, S. Modeling, and control of diesel engines: A systematic review. Alex. Eng. J. 2018, 57, 4033–4048. [Google Scholar] [CrossRef]
- Sivaramakrishnan, K.; Ravikumar, P. Optimization of operational parameters on performance and emissions of a diesel engine using biodiesel. Int. J. Environ. Sci. Technol. 2014, 11, 949–958. [Google Scholar] [CrossRef]
- May, J.; Favre, C.; Bosteels, D. Emissions from Euro 3 to Euro 6 light-duty vehicles equipped with a range of emissions control technologies. In Internal Combustion Engines: Performance, Fuel Economy, and Emissions; IMechE, Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 55–65. [Google Scholar] [CrossRef]
- Degraeuwe, B.; Weiss, M. Does the New European Driving Cycle (NEDC) really fail to capture the NOX emissions of diesel cars in Europe? Environ. Pollut. 2017, 222, 234–241. [Google Scholar] [CrossRef]
- Sileghem, L.; Bosteels, D.; May, J.; Favre, C.; Verhelst, S. Analysis of vehicle emission measurements on the new WLTC, the NEDC and the CADC. Transp. Res. Part D Transp. Environ. 2014, 32, 70–85. [Google Scholar] [CrossRef]
- ASTM D6571-23A; ASTM Subcommittee: D02.E0. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2023; pp. 1–10. [CrossRef]
- Sahoo, P.K.; Das, L.M.; Babu, M.K.G.; Arora, P.; Singh, V.P.; Kumar, N.R.; Varyani, T.S. Comparative evaluation of performance and emission characteristics of jatropha, karanja and polanga based biodiesel as fuel in a tractor engine. Fuel 2009, 88, 1698–1707. [Google Scholar] [CrossRef]
- Dhar, A.; Agarwal, A.K. Performance, emissions, and combustion characteristics of Karanja biodiesel in a transportation engine. Fuel 2014, 119, 70–80. [Google Scholar] [CrossRef]
- d’Ambrosio, S.; Mancarella, A.; Marello, O. Characterization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Diesel Engine as a Drop-In Fuel and with a Dedicated Calibration. J. Phys. Conf. Ser. 2023, 2648, 012074. [Google Scholar] [CrossRef]
- Shukla, P.C.; Gupta, T.; Labhsetwar, N.K.; Agarwal, A.K. Physico-chemical speciation of particulates emanating from Karanja biodiesel fuelled automotive engine. Fuel 2015, 162, 84–90. [Google Scholar] [CrossRef]
- d’Ambrosio, S.; Mancarella, A.; Manelli, A. Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps. Energies 2022, 15, 7202. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Natsios, I.; Dimaratos, A.; Katsaounis, D.; Samaras, Z.; Bezergianni, S.; Lehto, K. Evaluation of a Hydrotreated Vegetable Oil (HVO) and Effects on Emissions of a Passenger Car Diesel Engine. Front. Mech. Eng. 2018, 4, 7. [Google Scholar] [CrossRef]
- Labecki, L.; Lindner, A.; Winklmayr, W.; Uitz, R.; Cracknell, R.; Ganippa, L. Effects of injection parameters and EGR on exhaust soot particle number-size distribution for diesel and RME fuels in HSDI engines. Fuel 2013, 112, 224–235. [Google Scholar] [CrossRef]
- Dhahad, H.A.; Fayad, M.A.; Chaichan, M.T.; Jaber, A.A.; Megaritis, T. Influence of fuel injection timing strategies on performance, combustion, emissions, and particulate matter characteristics fueled with rapeseed methyl ester in modern diesel engine. Fuel 2021, 306, 121589. [Google Scholar] [CrossRef]
- Valentino, G.; Corcione, F.E.; Iannuzzi, S.E.; Serra, S. Experimental study on performance and emissions of a high speed diesel engine fuelled with n-butanol diesel blends under premixed low temperature combustion. Fuel 2012, 92, 295–307. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals, 2nd ed.; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- CFR Engines Inc. F5 Cetane Ratng System with XCP® TECHNOLOGY, CFR Enginees Inc.: Pewaukee, WI, US, form C635, rev. B. Available online: https://cfrengines.com/wp-content/uploads/2024/04/CFR-F5_brochure_3-14-24_.pdf (accessed on 8 May 2024).
- Parsi, M.; Ladommatos, N.; McGrath, N. Assessment and Optimisation of the Instrumentation Used for Cetane Tests on Diesel Fuels; SAE Technical Paper, No. 922269; SAE International: Warrendale, PA, USA, 1992. [Google Scholar] [CrossRef]
- Szymkowicz, P.G.; Benajes, J. Single-cylinder engine evaluation of a multi-component diesel surrogate fuel at a part-load operating condition with conventional combustion. Fuel 2018, 226, 286–297. [Google Scholar] [CrossRef]
- Jesu Martin, M.L.; Geo, V.E.; Jeba Singh, D.K.; Nagalingam, B. A comparative analysis of different methods to improve the performance of cotton seed oil fueled diesel engine. Fuel 2012, 102, 372–378. [Google Scholar] [CrossRef]
- Sharma, A.; Murugan, S. Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel. Energy 2017, 127, 236–246. [Google Scholar] [CrossRef]
- AVL List GmbH. Single Cylinder Research Engines; AVL List GmbH: Graz, Austria, 2014; Available online: https://www.avl.com/documents/10138/885965/AVL+SCRE+ProductDescription+eng+2014.pdf (accessed on 6 May 2024).
- Cuisano, J.; Flores, F.; Chirinos, L.; Vaudrey, A. In-cylinder pressure statistical analysis and digital signal processing methods for studying the combustion of a natural gas/diesel heavy-duty engine at low load conditions. Energy Convers. Manag. 2022, 269, 116089. [Google Scholar] [CrossRef]
- Shehata, M.S. Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine. Energy 2010, 35, 4710–4725. [Google Scholar] [CrossRef]
- Kokjohn, S.L.; Musculus, M.P.B.; Reitz, R.D. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling. Combust. Flame 2015, 162, 2729–2742. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, H.; Yao, M. Simultaneous measurement of natural flame luminosity and emission spectra in a RCCI engine under different fuel stratification degrees. SAE Int. J. Engines 2017, 10, 1155–1162. [Google Scholar] [CrossRef]
- Hazar, H. Effects of biodiesel on a low heat loss diesel engine. Renew. Energy 2009, 34, 1533–1537. [Google Scholar] [CrossRef]
- Taymaz, I.; Cakir, K.; Gur, M.; Mimaroglu, A. Experimental investigation of heat losses in a ceramic coated diesel engine. Surf. Coat. Technol. 2003, 169–170, 168–170. [Google Scholar] [CrossRef]
- Murali-Krishna-M, V.S.; Seshagiri-Rao-V, V.R.; Reddy-T, K.K.; Murthy-P, V.K. Performance evaluation of medium grade low heat rejection diesel engine with carbureted methanol and crude jatropha oil. Renew. Sustain. Energy Rev. 2014, 34, 122–135. [Google Scholar] [CrossRef]
- Mikulski, M.; Hunicz, J.; Duda, K.; Kazimierski, P.; Suchocki, T.; Rybak, A. Tyre pyrolytic oil fuel blends in a modern compression ignition engine: A comprehensive combustion and emissions analysis. Fuel 2022, 320, 123869. [Google Scholar] [CrossRef]
- Alagumalai, A. Combustion characteristics of lemongrass (Cymbopogon flexuosus) oil in a partial premixed charge compression ignition engine. Alex. Eng. J. 2015, 54, 405–413. [Google Scholar] [CrossRef]
- Rajendra Prasath, B.; Tamilporai, P.; Shabir, M.F. Analysis of combustion, performance and emission characteristics of low heat rejection engine using biodiesel. Int. J. Therm. Sci. 2010, 49, 2483–2490. [Google Scholar] [CrossRef]
- McDonnell, K.P.; Ward, S.M.; Mcnulty, P.B.; Howard-Hildige, R. Results of engine and vehicle testing of semirefined rapeseed oil. Trans. ASAE 2000, 43, 1309–1316. [Google Scholar] [CrossRef]
- Bari, S.; Yu, C.W.; Lim, T.H. Performance deterioration and durability issues while running a diesel engine with crude palm oil. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2002, 216, 785–792. [Google Scholar] [CrossRef]
- Devan, P.K.; Mahalakshmi, N.V. Utilization of unattended methyl ester of paradise oil as fuel in diesel engine. Fuel 2009, 88, 1828–1833. [Google Scholar] [CrossRef]
- Gumus, M. A comprehensive experimental investigation of combustion and heat release characteristics of a biodiesel (hazelnut kernel oil methyl ester) fueled direct injection compression ignition engine. Fuel 2010, 89, 2802–2814. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, J.W.; Lee, C.S. Experiments and modeling on droplet motion and atomization of diesel and bio-diesel fuels in a cross-flowed air stream. Int. J. Heat Fluid Flow 2010, 31, 667–679. [Google Scholar] [CrossRef]
- Ryan, T.W. Correlation of physical and chemical ignition delay to cetane number. SAE Tech. Pap. Ser. 1985, 94, 687–699. [Google Scholar] [CrossRef]
- Kim, K.; Lee, W.; Wiersema, P.; Mayhew, E.; Temme, J.; Kweon, C.-B.M.; Lee, T. Effects of the cetane number on chemical ignition delay. Energy 2023, 264, 126263. [Google Scholar] [CrossRef]
- Dahmen, M.; Marquardt, W. A novel group contribution method for the prediction of the derived cetane number of oxygenated hydrocarbons. Energy Fuels 2015, 29, 5781–5801. [Google Scholar] [CrossRef]
- CFR Engines Inc. CFR Ignition Quality Tester (IQT™). IQT Information Brochure. 2000, pp. 1–4. Available online: https://iqt.cfrengines.com/wp-content/uploads/IQT%20Information%20Brochure%20(November%202019).pdf (accessed on 9 May 2024).
- Allard, L.; Webster, G.; Hole, N.; Ryan, T.; Ott, D.; Fairbridge, C.W. Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT); SAE Technical Paper No. 961182; SAE International: Warrendale, PA, USA, 1996. [Google Scholar] [CrossRef]
- ASTM D6890-21; ASTM Subcommittee: D02.01. Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber. ASTM International: West Conshohocken, PA, USA, 2021; pp. 1–19. [CrossRef]
- Yang, S.Y.; Naser, N.; Chung, S.H.; Cha, J. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel, n-Heptane, and iso-Octane Fuels under Low Temperature Conditions. SAE Int. J. Fuels Lubr. 2015, 8, 537–548. Available online: http://www.jstor.org/stable/26273353 (accessed on 9 May 2024). [CrossRef]
- Bogin, G.; Dean, A.M.; Ratcliff, M.A.; Luecke, J.; Zigler, B.T. Expanding the Experimental Capabilities of the Ignition Quality Tester for Autoigniting Fuels. SAE Int. J. Fuels Lubr. 2010, 3, 353–367. Available online: http://www.jstor.org/stable/26272662 (accessed on 9 May 2024). [CrossRef]
- Settles, G.S.; Hargather, M.J. A review of recent developments in schlieren and shadowgraph techniques. Meas. Sci. Technol. 2017, 28, 042001. [Google Scholar] [CrossRef]
- Payri, R.; García-Oliver, J.M.; Xuan, T.; Bardi, M. A study on diesel spray tip penetration and radial expansion under reacting conditions. Appl. Therm. Eng. 2015, 90, 619–629. [Google Scholar] [CrossRef]
- Benajes, J.; Payri, R.; Bardi, M.; Martí-Aldaraví, P. Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector. Appl. Therm. Eng. 2013, 58, 554–563. [Google Scholar] [CrossRef]
- Li, G.; Dai, J.; Liu, Z.; Lee, T.H.; Zhang, C. Optical study on spray, combustion, and flame characteristics of n-hexanol/diesel blends under various diesel engine-like conditions. Fuel 2022, 325, 124941. [Google Scholar] [CrossRef]
- Zhang, Q.; Xia, J.; Wang, J.; He, Z.; Zhao, W.; Qian, Y.; Zheng, L.; Liu, R.; Lu, X. Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures. Renew. Sustain. Energy Rev. 2022, 160, 112289. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Q.; Huang, Y.; Pachiannan, T.; Zhou, S.; Wang, Q.; Zhong, W. An optical study on spray and combustion characteristics of ethanol/hydrogenated catalytic biodiesel blends in a constant volume combustion chamber. Therm. Sci. Eng. Prog. 2024, 49, 102448. [Google Scholar] [CrossRef]
- Sun, Z.; Coolen, R.; Wang, Y.; Cuijpers, M.; Somers, B.; Maes, N. Combustion characteristics of oxymethylene dimethyl ether-diesel blends: An experimental investigation using a constant-volume combustion chamber. Fuel 2024, 360, 130587. [Google Scholar] [CrossRef]
- Hessel, R.; Yue, Z.; Reitz, R.; Musculus, M.; O’Connor, J. Guidelines for interpreting soot luminosity imaging. SAE Int. J. Engines 2017, 10, 1174–1192. [Google Scholar] [CrossRef]
- Wang, Y.; Maes, N.; Cuijpers, M.; Somers, B. Spray combustion of fast-pyrolysis bio-oils under engine-like conditions. Energy Convers. Manag. X 2023, 20, 100433. [Google Scholar] [CrossRef]
- Wang, Y.; Han, J.; Maes, N.; Cuijpers, M.; Somers, B. Ignition and combustion characteristics of n-Butanol and FPBO/n-Butanol blends with addition of ignition improver. Front. Energy Res. 2022, 10, 832509. [Google Scholar] [CrossRef]
- Geng, L.; Zhao, Y.; Shan, S.; Kang, B.; Gao, N.; Chen, H. Study on spray and combustion characteristics of Fischer-Tropsch diesel/biodiesel blends in a constant volume chamber. J. Energy Inst. 2023, 111, 101422. [Google Scholar] [CrossRef]
- Mehra, K.S.; Pal, J.; Goel, V. A comprehensive review on the atomization and spray characteristics of renewable biofuels. Sustain. Energy Technol. Assess. 2023, 56, 103106. [Google Scholar] [CrossRef]
- Bergeron, C.A.; Hallett, W.L.H. Ignition characteristics of liquid hydrocarbon fuels as single droplets. Can. J. Chem. Eng. 1989, 67, 142–149. [Google Scholar] [CrossRef]
- Aggarwal, S.K. Single droplet ignition: Theoretical analyses and experimental findings. Prog. Energy Combust. Sci. 2014, 45, 79–107. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, H.; Somers, B.; Maes, N. Evaluation of fuel spray ignition delay behavior using a two-stage Lagrangian model. Combust. Flame 2024, 265, 113449. [Google Scholar] [CrossRef]
- Ra, Y.; Reitz, R.D. A vaporization model for discrete multi-component fuel sprays. Int. J. Multiph. Flow 2009, 35, 101–117. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Q.; Huang, Z.; Ju, D.; Lu, X. Experimental study of injection characteristics under diesel’s sub/trans/supercritical conditions with various nozzle diameters and injection pressures. Energy Convers. Manag. 2020, 215, 112949. [Google Scholar] [CrossRef]
- Peraza, J.E.; Payri, R.; Gimeno, J.; Martí-Aldaraví, P. ECN Spray D visualization of the spray interaction with a transparent wall under engine-like conditions, Part II: Impinging spray combustion. Fuel 2022, 308, 121964. [Google Scholar] [CrossRef]
- Chaudhari, V.D.; Kulkarni, A.; Deshmukh, D. Spray characteristics of biofuels for advance combustion engines. Clean. Eng. Technol. 2021, 5, 100265. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Yang, S.; Qiu, S.; Sun, Z.; Hung, D.L.; Xu, M. A review on the recent advances of flash boiling atomization and combustion applications. Prog. Energy Combust. Sci. 2024, 100, 101119. [Google Scholar] [CrossRef]
- Ma, X.; Li, F.; Wang, S.; Zhang, H. Evolution of biodiesel flow spray inside and near field in pressure swirl nozzles: Flow rate, atomization angle, and droplet size. Energy 2024, 291, 130337. [Google Scholar] [CrossRef]
- Geca, M.; Borecki, M.; Kociubinski, A. Multiparametric capillary sensor: Stabilization of local heating. Proc. SPIE 2018, 10808, 108080Z. [Google Scholar] [CrossRef]
- Mohan, B.; Yang, W.; Tay, K.L.; Yu, W. Macroscopic spray characterization under high ambient density conditions. Exp. Therm. Fluid Sci. 2014, 59, 109–117. [Google Scholar] [CrossRef]
- Ulu, A.; Yildiz, G.; Özkol, Ü.; Rodriguez, A.D. Experimental investigation of spray characteristics of ethyl esters in a constant volume chamber. Biomass Convers. Biorefinery 2024, 14, 2643–2660. [Google Scholar] [CrossRef] [PubMed]
- Borecki, M.; Prus, P.; Korwin-Pawlowski, M.L. Capillary Sensor with Disposable Optrode for Diesel Fuel Quality Testing. Sensors 2019, 19, 1980. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- ImageJ Download. Available online: https://imagej.net/downloads (accessed on 16 May 2024).
- Prus, P.; Borecki, M.; Korwin-Pawlowski, M.L.; Kociubiński, A.; Duk, M. Automatic detection of characteristic points and form of optical signals in multiparametric capillary sensors. Proc. SPIE 2014, 9290, 929009. [Google Scholar] [CrossRef]
- Mohan, B.; Yang, W.; Tay, K.L.; Yu, W. Experimental study of spray characteristics of biodiesel derived from waste cooking oil. Energy Convers. Manag. 2014, 88, 622–632. [Google Scholar] [CrossRef]
- Alptekin, E.; Sanli, H.; Canakci, M. Combustion and performance evaluation of a common rail DI diesel engine fueled with ethyl and methyl esters. Appl. Therm. Eng. 2019, 149, 180–191. [Google Scholar] [CrossRef]
- Borecki, M.; Prus, P.; Korwin-Pawlowski, M.L.; Doroz, P.; Szmidt, J. Automatic detection of outlier data received in multi-parametric capillary sensors of diesel fuels fit for use. Proc. SPIE 2018, 10808, 108080A. [Google Scholar] [CrossRef]
- Haq, M.U.; Jafry, A.T.; Abbasi, M.S.; Jawad, M.; Ahmad, S.; Cheema, T.A.; Abbas, N. Numerical and experimental spray analysis of castor and jatropha biodiesel under non-evaporating conditions. Energies 2022, 15, 7808. [Google Scholar] [CrossRef]
- Borecki, M.; Doroz, P.; Prus, P.; Pszczolkowski, P.; Szmidt, J.; Korwin-Pawlowski, M.L.; Frydrych, J.; Kociubinski, A.; Duk, M. Fiber optic capillary sensor with smart optrode for rapid testing of the quality of diesel and biodiesel fuel. Int. J. Adv. Syst. Meas. 2014, 7, 57–67. Available online: https://scholar.google.pl/scholar?oi=bibs&cluster=11479633249071461508&btnI=1&hl=pl (accessed on 22 May 2024).
- ASTM D976-06; ASTM Subcommittee: D02.E0. Standard Test Method for Calculated Cetane Index of Distillate Fuels (Reapproved 2016). ASTM International: West Conshohocken, PA, USA, 2023; Volume 5, pp. 1–4. [CrossRef]
- ASTM D4737-21; ASTM Subcommittee: D02.E0. Standard Test Method for Calculated Cetane Index by Four Variable Equation. ASTM International: West Conshohocken, PA, USA, 2021; Volume 5, pp. 1–5. [CrossRef]
- Lapuerta, M.; Rodríguez-Fernández, J.; Armas, O. Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed Biodiesel Cetane Index. Chem. Phys. Lipids 2010, 163, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Baghban, A.; Adelizadeh, M. On the determination of cetane number of hydrocarbons and oxygenates using Adaptive Neuro Fuzzy Inference System optimized with evolutionary algorithms. Fuel 2018, 230, 344–354. [Google Scholar] [CrossRef]
- Luning Prak, D.; Cooke, J.; Dickerson, T.; McDaniel, A.; Cowart, J. Cetane number, derived cetane number, and cetane index: When correlations fail to predict combustibility. Fuel 2021, 289, 119963. [Google Scholar] [CrossRef]
- Haq, M.U.; Jafry, A.T.; Ali, M.; Ajab, H.; Abbas, N.; Sajjad, U.; Hamid, K. Influence of nano additives on Diesel-Biodiesel fuel blends in diesel engine: A spray, performance, and emissions study. Energy Convers. Manag. X 2024, 23, 100574. [Google Scholar] [CrossRef]
- Coelho de Sousa Marques, M.A.; Guimarey, M.J.G.; Domínguez-Arca, V.; Amigo, A.; Fernández, J. Heat capacity, density, surface tension, and contact angle for polyalphaolefins and ester lubricants. Thermochim. Acta 2021, 703, 178994. [Google Scholar] [CrossRef]
- Petiteaux, M. Innovative Water Separation Technology and Electrostatic Discharge System Developed and Validated for the New Diesel Fuel Filtration Module of the Future Ford Diesel F-Series; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- Nwadike, I.; Yahaya, M.; O’Donnell, S.; Demshemino, I.; Okoro, L. Cold flow properties and kinematic viscosity of biodiesel. Univers. J. Chem. 2013, 1, 135–141. [Google Scholar] [CrossRef]
- Wedler, C.; Trusler, J.P.M. Review of density and viscosity data of pure fatty acid methyl ester, ethyl ester and butyl ester. Fuel 2023, 339, 127466. [Google Scholar] [CrossRef]
- Saxena, V.; Kumar, N.; Saxena, V.K. Methodologies for modification of characteristics of biodiesel for wider acceptability as diesel engine fuel. In Oxygenated Fuels for Sustainable Development Advancement; Kumar, N., Mathiyazhagan, K., Sreedharan, V.R., Kalam, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 139–160. [Google Scholar] [CrossRef]
- Maleki, B.; Talesh, S.S.A. Cold flow properties and CI engine parameters synchronic improvement of biodiesel/diesel/ C3 and C4 alcohol blends: Mixture design approach. Process Saf. Environ. Prot. 2022, 160, 310–326. [Google Scholar] [CrossRef]
- Hellier, P.; Talibi, M.; Eveleigh, A.; Ladommatos, N. An overview of the effects of fuel molecular structure on the combustion and emissions characteristics of compression ignition engines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 90–105. [Google Scholar] [CrossRef]
- Marmur, A.; Della Volpe, C.; Siboni, S.; Amirfazli, A.; Drelich, J.W. Contact angles and wettability: Towards common and accurate terminology. Surf. Innov. 2017, 5, 3–8. [Google Scholar] [CrossRef]
- Murphy, F.; McDonnell, K.; Butler, E.; Devlin, G. The evaluation of viscosity and density of blends of Cyn-diesel pyrolysis fuel with conventional diesel fuel in relation to compliance with fuel specifications EN 590:2009. Fuel 2012, 91, 112–118. [Google Scholar] [CrossRef]
- Fortin, T.J.; Laesecke, A.; Freund, M.; Outcalt, S.L. Advanced calibration, adjustment, and operation of a density and sound speed analyzer. J. Chem. Thermodyn. 2013, 57, 276–285. [Google Scholar] [CrossRef]
- Alptekin, E.; Canakci, M. Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renew. Energy 2008, 33, 2623–2630. [Google Scholar] [CrossRef]
- Seibold, A.; Nardin, M.; Schultz, J.; Walliser, A.; Oppliger, M. Effect of dynamic contact angle on capillary rise phenomena. Colloids Surf. A Physicochem. Eng. Asp. 2000, 161, 81–87. [Google Scholar] [CrossRef]
- Shiri, Y.; Seyed, S.; Seyed, M.J. Analytical, experimental, and numerical study of capillary rise dynamics from inertial to viscous flow. Phys. Fluids 2022, 34, 102105. [Google Scholar] [CrossRef]
- Wang, X.; Dai, C.; Huo, J.; Liu, J.; Peng, C.; Zhong, R.; Wang, J.; Fang, L. Design and evaluation of viscosity measurement device based on capacitance method. IEEE Sens. J. 2024, 24, 24560–24569. [Google Scholar] [CrossRef]
- Voglhuber-Brunnmaier, T.; Jakoby, B. Electromechanical resonators for sensing fluid density and viscosity—A Review. Meas. Sci. Technol. 2022, 33, 012001. [Google Scholar] [CrossRef]
- Langdon, R.M. Resonator sensors—A review. J. Phys. E Sci. Instrum. 1985, 18, 103–115. [Google Scholar] [CrossRef]
- Szpakowski, A.; Pustelny, T. Analyzing system of acoustic field. In Proceedings of the Acousto-Optics and Applications IV, Gdańsk-Jurata, Poland, 22–29 May 2001; SPIE: Bellingham, WA, USA, 2001; p. 447609. [Google Scholar] [CrossRef]
- Jakoby, B.; Vellekoop, M.J. Physical sensors for water-in-oil emulsions. Sens. Actuators A 2004, 110, 28–32. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Luo, H.; Huang, S.; Karaaslan, M.; Altintas, O.; Bakir, M.; Muhammadsharif, F.F.; Awl, H.N.; Sabah, C.; et al. Design and study of a metamaterial based sensor for the application of liquid chemicals detection. J. Mater. Res. Technol. 2020, 9, 10291–10304. [Google Scholar] [CrossRef]
- Kulkarni, S.; Joshi, M.S. Design and analysis of shielded vertically stacked ring resonator as complex permittivity sensor for petroleum oils. IEEE Trans. Microw. Theory Tech. 2015, 63, 2411–2417. [Google Scholar] [CrossRef]
- Alahnomi, R.A.; Zakaria, Z.; Yussof, Z.M.; Althuwayb, A.A.; Alhegazi, A.; Alsariera, H.; Rahman, N.A. Review of Recent Microwave Planar Resonator-Based Sensors: Techniques of Complex Permittivity Extraction, Applications, Open Challenges and Future Research Directions. Sensors 2021, 21, 2267. [Google Scholar] [CrossRef] [PubMed]
- Corach, J.; Sorichetti, P.A.; Romano, S.D. Electrical and ultrasonic properties of vegetable oils and biodiesel. Fuel 2015, 139, 466–471. [Google Scholar] [CrossRef]
- Corach, J.; Sorichetti, P.A.; Romano, S.D. Electrical properties and kinematic viscosity of biodiesel. Fuel 2021, 299, 120841. [Google Scholar] [CrossRef]
- Park, S.-J.; Seo, M.-K. Intermolecular Force. In Interface Science and Technology; Park, S.-J., Seo, M.-K., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 18, pp. 1–57. [Google Scholar] [CrossRef]
- Paraian, M.; Ghicioi, E.; Vatavu, N.; Gabor, D.; Mangu, S.I. The risk of static electricity at handling diesel Fuel. Proc. MATEC Web Conf. 2021, 343, 10013. [Google Scholar] [CrossRef]
- Borecki, M.; Korwin-Pawlowski, M.L.; Duk, M.; Kociubinski, A.; Frydrych, J.; Prus, P.; Szmidt, J. Dynamical Capillary Rise Photonic Sensor for Testing of Diesel and Biodiesel Fuel. Sens. Transducers 2015, 193, 11–22. Available online: https://www.sensorsportal.com/HTML/DIGEST/october_2015/Vol_193/P_2730.pdf (accessed on 3 May 2024).
- Sparks, D.; Smith, R.; Schneider, R.; Cripe, J.; Massoud-Ansari, S.; Chimbayo, A.; Najafi, N. A variable temperature, resonant density sensor made using an improved chip-level vacuum package. Sens. Actuators A 2003, 107, 119–124. [Google Scholar] [CrossRef]
- Tamer, A.; Karadağ, F.; Ünal, E.; Abdulkarim, Y.I.; Deng, L.; Altintas, O.; Bakır, M.; Karaaslan, M. Metamaterial based sensor integrating transmission line for detection of branded and unbranded diesel fuel. Chem. Phys. Lett. 2020, 742, 137169. [Google Scholar] [CrossRef]
- Zhang, W.-B. Review on analysis of biodiesel with infrared spectroscopy. Renew. Sustain. Energy Rev. 2012, 16, 6048–6058. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Wei, W.; Davidson, D.F.; Hanson, R.K. A new method of estimating derived cetane number for hydrocarbon fuels. Fuel 2019, 241, 319–326. [Google Scholar] [CrossRef]
- Zhan, X.; Lin, J.; Wang, Z.; Wu, Z. The Application of Chemometric Methods in Near Infrared Spectroscopy Analysis, 2nd ed.; IEEE Conference on Industrial Electronics and Applications: Harbin, China, 2007; pp. 1771–1774. [Google Scholar] [CrossRef]
- Giakoumis, E.G. A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renew. Energy 2013, 50, 858–878. [Google Scholar] [CrossRef]
- de Souza, D.C.M.; Cabrita, L.; Galinha, C.F.; Rato, T.J.; Reis, M.S. A Spectral AutoML approach for industrial soft sensor development: Validation in an oil refinery plant. Comput. Chem. Eng. 2021, 150, 107324. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, S.B.; Khan, L.U.; Farooq, A.; Akhtar, K.; Asiri, A.M. Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. In Handbook of Materials Characterization; Sharma, S., Ed.; Springer: Cham, Switzerland, 2018; pp. 317–344. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Yuan, Y.; Zhang, J.; Wang, J.; Kong, D. Simultaneous detection of different properties of diesel fuel by near infrared spectroscopy and chemometrics. Infrared Phys. Technol. 2020, 104, 103111. [Google Scholar] [CrossRef]
- Hradecká, I.; Vráblík, A.; Frątczak, J.; Sharkov, N.; Černý, R.; Hönig, V. Near-Infrared Spectroscopy as a Tool for Simultaneous Determination of Diesel Fuel Improvers. ACS Omega 2023, 8, 4038–4045. [Google Scholar] [CrossRef]
- Feng, F.; Wu, Q.; Zeng, L. Rapid analysis of diesel fuel properties by near infrared reflectance spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 149, 271–278. [Google Scholar] [CrossRef]
- Chuck, C.J.; Bannister, C.D.; Hawley, J.G.; Davidson, M.G. Spectroscopic sensor techniques applicable to real-time biodiesel determination. Fuel 2010, 89, 457–461. [Google Scholar] [CrossRef]
- Castellanos-Cuellar, I.C.; Avella-Moreno, E.; Vargas-Molina, P.M.; Bejarano, A.M. An Interference free absorption in the mid-infrared to follow the obtaining of biodiesel by transesterification of waste frying oils. Momento 2023, 67, 39–54. [Google Scholar] [CrossRef]
- Magalhães, K.F.; Caires, A.R.L.; Silva, M.S.; Alcantara, G.B.; Oliveira, S.L. Endogenous fluorescence of biodiesel and products thereof: Investigation of the molecules responsible for this effect. Fuel 2014, 119, 120–128. [Google Scholar] [CrossRef]
- Silva, M.A.A.; Correa, R.A.; de O. Tavares, M.G.; Filho, N.R.A. A new spectrophotometric method for determination of biodiesel content in biodiesel/diesel blends. Fuel 2015, 143, 16–20. [Google Scholar] [CrossRef]
- Prakash, J.; Mishra, A.K. Introduction of a novel fluorescence based method for the composition estimation of petroleum fuel–biofuel blends. Fuel 2013, 108, 351–355. [Google Scholar] [CrossRef]
- Wlodarski, M.; Bombalska, A.; Mularczyk-Oliwa, M.; Kaliszewski, M.; Kopczyński, K. Fluorimetric techniques in analysis and classification of fuels. Proc. SPIE 2012, 8703, 87030B. [Google Scholar] [CrossRef]
- Kumar, S.D.; Sivasubramonia-Pillai, T.V. Estimating fuel adulteration in automobiles using robust optical fiber sensors. Microprocess. Microsyst. 2020, 79, 103289. [Google Scholar] [CrossRef]
- Bharath, L.V.; Himanth, M. Review on the Detection of Fuel Adulteration through Sensor based Techniques. Int. J. Sci. Res. Publ. 2017, 7, 447–451. Available online: https://www.ijsrp.org/research-paper-0917/ijsrp-p6955.pdf (accessed on 20 June 2024).
- Felix, V.J.; Udaykiran, P.A.; Ganesan, K. Fuel adulteration detection system. Indian J. Sci. Technol. 2015, 8, 90–95. [Google Scholar] [CrossRef]
- Patil, S.; Shaligram, A.D. Refractometric fiber optic adulteration level detector for diesel. Int. J. Adv. Eng. Technol. 2011, 1, 195–203. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2e56f320c6761391ad472d4c629beb1a4fcaec79 (accessed on 20 June 2024).
- Kher, S.; Chaubey, S.; Kishore, J.; Oak, S.M. Detection of Fuel Adulteration with High Sensitivity Using Turnaround Point Long Period Fiber Gratings in B/Ge Doped Fibers. IEEE Sens. J. 2013, 13, 4482–4486. [Google Scholar] [CrossRef]
- Mishra, V.; Singh, N.; Poddar, G.C.; Kapur, P. Fuel adulteration detection using long period fiber grating sensor technology. Indian J. Pure Appl. Phys. 2008, 46, 106–110. [Google Scholar]
- Patra, D.; Mishra, A.K. Study of diesel fuel contamination by excitation emission matrix spectral subtraction fluorescence. Anal. Chim. Acta 2002, 454, 209–215. [Google Scholar] [CrossRef]
- Passman, F.J. Microbial contamination and its control in fuels and fuel systems since 1980—A review. Int. Biodeterior. Biodegrad. 2013, 81, 88–104. [Google Scholar] [CrossRef]
- Estevam, B.R.; dos Santos Vieira, F.F.; Gonçalves, H.L.; Moraes, Â.M.; Vasconcelos Fregolente, L. Cellulose hydrogels for water removal from diesel and biodiesel: Production, characterization, and efficacy testing. Fuel 2023, 347, 128449. [Google Scholar] [CrossRef]
- Hou, X.; Wang, Y.; Dai, L.; Yang, Y.; Du, J.; Wang, Y.; Wan, H. Study on the corrosion and wear behaviors of cylinder liner in marine diesel engine burning low sulfur fuel oil. Eng. Fail. Anal. 2023, 147, 107151. [Google Scholar] [CrossRef]
- Felizardo, P.; Baptista, P.; Menezes, J.C.; Neiva Correia, M.J. Multivariate near infrared spectroscopy models for predicting methanol and water content in biodiesel. Anal. Chim. Acta 2007, 595, 107–113. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, C.E.; Rodríguez-Cavallini, E.; Blanco, R. Bacterial contamination of automotive fuels in a tropical region: The case of costa rica. Rev. De Biol. Trop. 2008, 57, 489–504. [Google Scholar] [CrossRef]
- Lockridge, D. New fuels, new problems. Heavy Duty Truck. 2007, 86, 30–48. [Google Scholar]
- Melero, J.A.; Calleja, G.; Garcia, A.; Clavero, M.; Hernandez, E.A.; Miravalles, R.; Galindo, T. Storage stability and corrosion studies of renewable raw materials and petrol mixtures: A key issue for their co-processing in refinery units. Fuel 2010, 89, 554–562. [Google Scholar] [CrossRef]
- Funari, R.; Shen, A.Q. Detection and Characterization of Bacterial Biofilms and Biofilm-Based Sensors. ACS Sens. 2022, 7, 347–357. [Google Scholar] [CrossRef]
- Pavlyuk, O.M.; Ruiz, O.N. Peptide-Based Fluorescent Biosensing for Rapid Detection of Fuel Biocontamination. Energy Fuels 2017, 31, 3747–3758. [Google Scholar] [CrossRef]
- Lee, J.S.; Ray, R.I.; Little, B.J. An assessment of alternative diesel fuels: Microbiological contamination and corrosion under storage conditions. Biofouling 2010, 26, 623–635. [Google Scholar] [CrossRef]
- Ray, R.; Little, B. Environmental electron microscopy applied to biofilms. In Biofilms in Medicine, Industry and Environmental Biotechnology; Lens, P., Moran, A.P., Mahony, T., Stoodley, P., O’FLaherty, V., Eds.; IWA Publishing: London, UK, 2003; pp. 331–351. [Google Scholar]
- Jakeira, M.R.; Fazal, M.A.; Haseeb, A.S.M.A. Influence of different factors on the stability of biodiesel: A review. Renew. Sustain. Energy Rev. 2014, 30, 154–163. [Google Scholar] [CrossRef]
- Knothe, G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 2005, 86, 1059–1070. [Google Scholar] [CrossRef]
- Czarnocka, J.; Matuszewska, A.; Odziemkowska, M. Autooxidation of fuel during storage. In Storage Stability of Fuels; Biernat, K., Ed.; IntechOpen: Rijeka, Croatia, 2015; pp. 157–188. [Google Scholar] [CrossRef]
- Pullen, J.; Saeed, K. An overview of biodiesel oxidation stability. Renew. Sustain. Energy Rev. 2012, 16, 5924–5950. [Google Scholar] [CrossRef]
- ASTM D4625-21; ASTM Subcommittee: D02.14. Standard Test Method for Distillate Fuel Storage Stability at 43 °C (110 °F). ASTM International: West Conshohocken, PA, USA, 2012; pp. 1–6. [CrossRef]
- ASTM D6468-22; ASTM Subcommittee: D02.14. Standard Test Method for High Temperature Stability of Middle Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2022; pp. 1–6. [CrossRef]
- Saluja, R.K.; Kumar, V.; Sham, R. Stability of biodiesel—A review. Renew. Sustain. Energy Rev. 2016, 62, 866–888. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, M.P. Thermal stability of biodiesel and its blends: A review. Renew. Sustain. Energy Rev. 2011, 1, 438–448. [Google Scholar] [CrossRef]
- EN 14112; European Committee for Standarization. Fat and Oil Derivatives. Fatty Acid Methyl Esters (FAME). Determination of Oxidation Stability (Accelerated Oxidation Test). CEN Management Centre: Brussels, Belgium, 2020; pp. 1–22.
- Jain, S.; Sharma, M.P. Review of different test methods for the evaluation of stability of biodiesel. Renew. Sustain. Energy Rev. 2010, 14, 1937–1947. [Google Scholar] [CrossRef]
- EN 16091; European Committee for Standarization. Liquid Petroleum Products—Middle Distillates and Fatty Acid Methyl Ester (FAME) Fuels and Blends—Determination of Oxidation Stability by Rapid Small Scale Oxidation Test (RSSOT). CEN Management Centre: Brussels, Belgium, 2022; pp. 1–17.
- ASTM D7545-14; ASTM Subcommittee: D02.14. Standard Test Method for Oxidation Stability of Middle Distillate Fuels—Rapid Small Scale Oxidation Test (RSSOT). ASTM International: West Conshohocken, PA, USA, 2019; Volume 5, pp. 1–7. [CrossRef]
- Machado, Y.L.; Aragao, M.C.; Luna, F.M.T.; Rios, M.A.S.; Cavalcante, C. Accelerated oxidation of fresh and stored biodiesel samples obtained from castor and soybean oils using the petrooxy method. Biofuels 2021, 12, 543–547. [Google Scholar] [CrossRef]
- Moser, R.M. Comparative Oxidative Stability of Fatty Acid Alkyl Esters by Accelerated Methods. J. Am. Oil Chem. Soc. 2009, 86, 699–706. [Google Scholar] [CrossRef]
- Albuquerque, A.d.R.; Maul, J.; dos Santos, J.P.; dos Santos, I.M.G.; de Souza, A.G. Estimation of the oxidation temperature of biodiesels from a limited number of chemical parameters. Fuel 2012, 102, 585–591. [Google Scholar] [CrossRef]
- Sarin, A.; Arora, R.; Singh, N.; Sharma, M.; Malhotra, R. Malhotra. Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy 2009, 34, 1271–1275. [Google Scholar] [CrossRef]
- Zhou, J.; Xiong, Y.; Xu, S. Evaluation of the oxidation stability of biodiesel stabilized with antioxidants using the PetroOXY method. Fuel 2016, 184, 808–814. [Google Scholar] [CrossRef]
- Shiotani, H.; Goto, S. Studies of Fuel Properties on Oxidation Stability of Biodiesel Fuel. SAE Trans. 2007, 116, 70–75. [Google Scholar]
- Xin, J.; Imahara, H.; Saka, S. Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel 2009, 88, 282–286. [Google Scholar] [CrossRef]
- Murta-Valle, M.L.; Leonardo, R.S.; Dweck, J. Comparative study of biodiesel oxidation stability using Rancimat, PetroOXY, and low P-DSC. J. Therm. Anal. Calorim. 2014, 116, 113–118. [Google Scholar] [CrossRef]
- Kuronen, A.K.; Hartikka, T.; Kiiski, U. Diesel Fuel Oxidation Study: A Comparative Study Part II. SAE Int. J. Fuels Lubr. 2014, 7, 737–741. [Google Scholar] [CrossRef]
- Freire, L.M.S.; Filho, J.R.C.; Moura, C.V.R.; Soledade, L.E.B.; Stragevitch, L.; Cordeiro, A.M.T.M.; Santos, I.M.G.; Souza, A.G. Evaluation of the oxidative stability and flow properties of quaternary mixtures of vegetable oils for biodiesel production. Fuel 2012, 95, 126–130. [Google Scholar] [CrossRef]
- Canha, N.; Felizardo, P.; Menezes, J.C.; Neiva Correia, M.J. Multivariate near infrared spectroscopy models for predicting the oxidative stability of biodiesel: Effect of antioxidants addition. Fuel 2012, 97, 352–357. [Google Scholar] [CrossRef]
- de Lira, L.F.B.; de Albuquerque, M.S.; Pacheco, J.G.A.; Fonseca, T.M.; de Siqueira Cavalcanti, E.H.; Stragevitch, L.; Pimentel, M.F. Infrared spectroscopy and multivariate calibration to monitor stability quality parameters of biodiesel. Microchem. J. 2010, 96, 126–131. [Google Scholar] [CrossRef]
- Varghese, G.; Saeed, K.; Rutt, K.J. Determination of the oxidative stability of biodiesel fuels by near-infrared spectroscopy. Fuel 2021, 290, 120015. [Google Scholar] [CrossRef]
- Mirnaghi, F.S.; Soucy, N.; Hollebone, B.P.; Brown, C.E. Rapid fingerprinting of spilled petroleum products using fluorescence spectroscopy coupled with parallel factor and principal component analysis. Chemosphere 2018, 208, 185–195. [Google Scholar] [CrossRef]
- Conceição, F.R.; Michels, F.S.; Falcão, E.A.; Nicolodelli, G.; Oliveira, S.L.; Caires, A.R.L. A fluorescence-based multivariate method for biodiesel quantification in undiluted diesel-biodiesel blends without sample preparation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 308, 123773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-R.; Wu, H.-L.; Chen, Y.; Zhang, X.-H.; Wang, J.-Y.; Li, Y.; Yu, R.-Q. An investigation on hydrogen bonding between 3-methylindole and ethanol using trilinear decomposition of fluorescence excitation–emission matrices. Chemom. Intell. Lab. Syst. 2013, 121, 9–14. [Google Scholar] [CrossRef]
- Meira, M.; Quintella, C.M.; Tanajura, A.d.S.; da Silva, H.R.G.; Fernando, J.D.S.; Neto, P.R.d.C.; Pepe, I.M.; Santos, M.A.; Nascimento, L.L. Determination of the oxidation stability of biodiesel and oils by spectrofluorimetry and multivariate calibration. Talanta 2011, 85, 430–434. [Google Scholar] [CrossRef]
- Michels, F.S.; Trindade, M.A.G.; Falcão, E.A.; Guimarães, R.C.A.; Oliveira, S.L.; Caires, A.R.L. The effect of the excitation light intensity during on-line monitoring of biodiesel by fluorescence spectroscopy. Fuel 2017, 193, 395–400. [Google Scholar] [CrossRef]
- Borecki, M.; Geca, M.; Korwin-Pawlowski, M.L. Automotive diesel fuel internal stability testing with the use of UV and temperature as degradation factors. Materials 2022, 15, 8548. [Google Scholar] [CrossRef]
- Adaileh, W.M.; AlQdah, K.S. Performance of Diesel Engine Fuelled by a Biodiesel Extracted from A Waste Cocking Oil. Energy Procedia 2012, 18, 1317–1334. [Google Scholar] [CrossRef]
- Min, K.; Valco, D.J.; Oldani, A.; Kim, K.; Temme, J.; Kweon, C.B.M.; Lee, T. Autoignition of varied cetane number fuels at low temperatures. Proc. Combust. Inst. 2019, 37, 5003–5011. [Google Scholar] [CrossRef]
- Shahrabadi, S.; Adão, T.; Peres, E.; Morais, R.; Magalhães, L.G.; Alves, V. Automatic Optimization of Deep Learning Training through Feature-Aware-Based Dataset Splitting. Algorithms 2024, 17, 106. [Google Scholar] [CrossRef]
- Peraza, J.E.; Salvador, F.J.; Gimeno, J.; Ruiz, S. ECN Spray D visualization of the spray interaction with a transparent wall under engine-like conditions. Part I: Non-reactive impinging spray. Fuel 2022, 307, 121699. [Google Scholar] [CrossRef]
- Wang, D.; Shi, Z.; Yang, Z.; Chen, H.; Li, Y. Numerical study on the wall-impinging diesel spray mixture formation, ignition, and combustion characteristics in the cylinder under cold-start conditions of a diesel engine. Fuel 2022, 317, 123518. [Google Scholar] [CrossRef]
- Molea, A.; Visuian, P.; Barabas, I.; Suciu, R.C.; Burnete, N.V. Key fuel properties and engine performances of diesel-ethanol blends, using tetrahydrofuran as surfactant additive. IOP Conf. Ser. Mater. Sci. Eng. 2017, 252, 012077. [Google Scholar] [CrossRef]
- Chuma, E.L.; Iano, Y.; Fontgalland, G.; Roger, L.L.B.; Loschi, H. PCB-integrated non-destructive microwave sensor for liquid dielectric spectroscopy based on planar metamaterial resonator. Sens. Actuators A Phys. 2020, 3121, 112112. [Google Scholar] [CrossRef]
- Marshman, S.J.; David, P. Storage Stability of Distillate Diesel Fuels: Changes in Phenalene and Phenalenone Concentrations During Long Term Ambient Storage. Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. 1990, 35, 1108–1116. [Google Scholar]
- Rajamohan, S.; Gopal, A.H.; Muralidharan, K.R.; Huang, Z.; Paramasivam, B.; Ayyasamy, T.; Nguyen, X.P.; Le, A.T.; Hoang, A.T. Evaluation of oxidation stability and engine behaviors operated by Prosopis juliflora biodiesel/diesel fuel blends with presence of synthetic antioxidant. Sustain. Energy Technol. Assess. 2022, 52, 102086. [Google Scholar] [CrossRef]
- Lapuerta, M.; Rodríguez-Fernández, J.; Ramos, Á.; Álvarez, B. Effect of the test temperature and anti-oxidant addition on the oxidation stability of commercial biodiesel fuels. Fuel 2012, 93, 391–396. [Google Scholar] [CrossRef]
- Fathurrahman, N.A.; Ginanjar, K.; Devitasari, R.D.; Maslahat, M.; Anggarani, R.; Aisyah, L.; Soemanto, A.; Solikhah, M.D.; Thahar, A.; Wibowo, E. Long-term storage stability of incorporated hydrotreated vegetable oil (HVO) in biodiesel-diesel blends at highland and coastal areas. Fuel Commun. 2024, 18, 100107. [Google Scholar] [CrossRef]
- Workman, J., Jr.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 23–61. [Google Scholar]
- Insausti, M.; Romano, C.; Pistonesi, M.F.; Fernández-Band, B.S. Simultaneous determination of quality parameters in biodiesel/diesel blends using synchronous fluorescence and multivariate analysis. Microchem. J. 2013, 108, 32–37. [Google Scholar] [CrossRef]
- Hakkel, K.D.; van Elst, D.M.; Petruzzella, M.; Ebermann, M.; Pagliano, F.; van Klinken, A.; Fiore, A. High-performance integrated mid-infrared filter arrays. Electron. Lett. 2022, 58, 884–886. [Google Scholar] [CrossRef]
- He, X.; Beckett, P.; Cai, Z.; Unnithan, R.R.; Sun, D.; Hao, X.; Yang, G.; Liu, X. Multispectral filters for MIR spectral imaging applications. In Proceedings of the Asia Communications and Photonics Conference, Shenzhen, China, 5–8 November 2022; pp. 2090–2092. [Google Scholar] [CrossRef]
Abbreviation | Full Name or Definition | First Mention in Section |
---|---|---|
US | United States | Section 1.1 |
ASTM | American Society for Testing and Materials | Section 1.1 |
HSD | high-speed diesel | Section 1.1 |
LDO | light diesel oil | Section 1.1 |
EU | European Union | Section 1.1 |
B7 | EU standard for automotive fuel including 7% of biodiesel and 93% of petrodiesel | Section 1.1 |
2-D | US standard of automotive fuel | Section 1.1 |
petrodiesel | petroleum diesel | Section 1.2 |
D100 | petrodiesel | Section 1.2 |
biodiesel | fuel obtained from vegetable oil or animal fats with a transesterification process | Section 1.2 |
B100 | biodiesel | Section 1.2 |
FAAE | fatty acid alkyl esters | Section 1.2 |
FAME | fatty acid methyl esters | Section 1.2 |
FAEE | fatty acid ethyl esters | Section 1.2 |
HVO | green diesel, hydrotreated vegetable oil, or synthetic diesel | Section 1.2 |
syndiesel | HVO | Section 1.2 |
B5, B20 | contains, respectively, 5% or 20% of biodiesel, US popular fuel blend | Section 1.2 |
PAH | polycyclic aromatic hydrocarbons | Section 1.2 |
2-EHN | 2-ethylhexyl nitrate | Section 1.2 |
GC | Gas Chromatography | Section 1.3 |
HPLC | High-Performance Liquid Chromatography | Section 1.3 |
NMR | Nuclear Magnetic Resonance | Section 1.3 |
MS | Mass Spectroscopy | Section 1.3 |
FTIR | Fourier Transform Infrared | Section 1.3 |
PCA | principal component analysis | Section 1.4 |
PLS | partial least squares | Section 1.4 |
HCA | hierarchical cluster analysis | Section 1.4 |
AI | artificial intelligence | Section 1.4 |
SOP | stable operating point | Section 2 |
WLTP | Worldwide Harmonized Light Vehicles Test Procedure | Section 2 |
NEDC | New European Driving Cycle | Section 2 |
WLTC | Worldwide Harmonized Light-duty Test Cycle | Section 2 |
EGR | exhaust gas recirculation unit | Section 2.1 |
ECU | engine control unit | Section 2.1 |
CN | cetane number | Section 2.2 |
IDT | ignition delay time | Section 2.2 |
LHR | low heat rejection | Section 2.2 |
TPO | tire pyrolytic oil | Section 2.2 |
LGO | lemongrass oil | Section 2.2 |
B100(JSO) | biodiesel made from jatropha seed oil | Section 2.2 |
DCN | derived cetane number | Section 2.3 |
CVCC | constant volume combustion chamber | Section 2.3 |
OME | oxymethylene dimethyl ether | Section 2.3 |
SBx | syndiesel–biodiesel blends with a blend ratio of x% | Section 2.3 |
CVSC | constant volume spray chamber | Section 2.4 |
CVCO | constant volume capillary optrode | Section 2.4 |
ANN | artificial neural network | Section 2.4 |
CI | cetane index | Section 2.5 |
UV | ultraviolet | Section 3 |
VIS | visible | Section 3 |
IR | infrared | Section 3 |
NIR | near-infrared | Section 3 |
MIR | middle-infrared | Section 3 |
FIR | far-infrared | Section 3 |
LED | light-emitting diode | Section 3.1 |
PC | personal computer | Section 3.1 |
SVM | support vector machine classifications | Section 3.2 |
SCARS | stability competitive adaptive reweighted sampling | Section 3.2 |
ATR | attenuated total reflectance | Section 3.2 |
EEM | excitation–emission matrix | Section 3.2 |
PD | photodetector | Section 3.3 |
LPFG | long-period fiber grating | Section 3.3 |
IP | induction period | Section 4.1 |
OSI | oxidative stability index | Section 4.1 |
PetroOXY | method for measuring the oxidation stability of middle distillates, FAME fuels, and blends, also known as the rapid small-scale oxidation test | Section 4.1 |
RSSOT | PetroOXY | Section 4.1 |
PDSC | method for testing fuel stability based on a modification of ASTM D5483 | Section 4.1 |
OIT | oxidation induction time | Section 4.1 |
OT | oxidation temperature | Section 4.1 |
MRL | multiple linear regression | Section 4.2 |
PCR | principal component regression | Section 4.2 |
Parameter/Fuel | 2-D (D975) [16] | B7 (EN 590) [17] | FAME (EN 14214) [49] | HVO (EN 15940) [50] |
---|---|---|---|---|
Cetane number—minimum | 40 | 51 | 51 | 70 |
Test method 1 | D613 [51] | EN 15195 [52] | EN ISO 5165 [53] | EN 15195 |
Density at 15 °C [kg/m3] | 820–845 | 860–900 | 765–800 | |
Test method 1 | EN ISO 12185 [54] | EN ISO 3675 [55] | EN ISO 3675 | |
Aromaticity—maximum Test method | 35 [% (v/v)] 4 | 11 [% (m/m)] | 1 [% (m/m)] | |
D1319 [56] | EN 12916 [57] 2 | EN 12916 | ||
Viscosity at 40 °C [mm2/s] Test method 1 | 1.9–4.1 | 2.0–4.5 | 3.5–5.0 | 2.0–4.5 |
D445 [58] | EN ISO 3104 [59] | EN 14105 [60] | EN ISO 3104 | |
FAME— Test method 1 | Max. 7 [% (v/v)] 4 | Min. 96.5 [% (m/m)] 5 | 0 [%(v/v)] | |
EN 14078 [61] | EN 14103 [62] | EN 14078 | ||
Sulfur—maximum [mg/kg] Test method 1 | 15 | 10 | 10 | 5 |
D5453 [63] | EN ISO 20884 [64] | EN ISO 20884 | EN ISO 20884 | |
Water—maximum Test method 1 | 0.05 [% (v/v)] | 200 [mg/kg] | 500 [mg/kg] | |
D2709 [65] | EN ISO 12937 [66] | EN ISO 12937 | EN ISO 12937 | |
Oxidation stability Test method | 25 [g/m3] 3 | 8 [h] | 5 [g/m3] | |
EN ISO 12205 [67] | EN 14112 [68] | EN ISO 12205 | ||
Total contamination [mg/kg] Test method | Max. 24 | Max. 24 | Max. 24 | |
EN ISO 12662 [69] | EN 12662 | EN 12662 | ||
Cloud point—maximum [°C] | report 6 | −10 to −34 7 | 5 to −3 8 | −10 to −34 7 |
Test method | D2500 [70] | EN ISO 3015 [71] | EN 23015 | EN 23015 |
System 4 [146] | System 5 [147] | System 6 [148] | ||
---|---|---|---|---|
Engine parameters | number of cylinders | 1 | 1 | 1 |
capacity [L] | 0.510 | 0.662 | 0.662 | |
bore × stroke [mm] | 85 × 90 | 87.5 × 110 | 87.5 × 110 | |
max power [kW] | 4.4 | 4.4 | ||
compression ratio | 17.0 | 17.5 | 17.5 | |
engine control | AVL-RPEMS, | constant speed | constant speed | |
modifications | ETK7-Bosch HP-EGR | dual-fuel system | LHR dual-fuel system | |
Fuel tested | standard fuel | 2-D and 4-D (D975) | B7 (EN 590) | 2-D (D975) |
substandard fuel | TPO 1 | LGO 2 | B100 (JSO) 3 | |
Measured parameters | pressure in-cylinder | yes | yes | yes |
crank angle | yes | yes | yes | |
fuel consumption | yes | yes | ||
smoke and gas emissions | yes | yes | yes | |
torque | no | yes | yes | |
Set parameters | speed | speed | speed | |
load | intake air temperature | load | ||
quantity of premixed fuel |
System 7 [166] | System 8 [167] | System 9 [168] | ||
---|---|---|---|---|
Constant volume combustion chamber (CVCC) parameters | volume [L] | 43 | 12 | 0.3 |
diameter [mm] | 300 | 85 | ||
chamber heater | internal heating wire | internal heating wire | external heating | |
max. pressure [MPa] | 6 | 6 | 7.5 | |
max. temperature [K] | 900 | 1000 | 863 | |
additional | EGR simulation | |||
Injector | number of orifices | 1 | 1 | 7 |
orifice diameter [mm] | 0.1 | 0.12 | 0.16 | |
Fuel tested | standard | B100 | diesel | B7 |
substandard blends | butanol | ethanol | dimethyl ether 1 | |
Measurement devices | pressure in CVCC | yes | yes | yes |
temperature in CVCC | yes | yes | yes | |
high-speed camera | yes | yes | yes | |
temperature of fuel | yes | yes | yes | |
pressure of injection | yes | yes | yes | |
additional | ECU Schlieren imaging | ECU Schlieren imaging chemical fluorescence | ||
Selectable settings | fuel temperature at injection [K] | 303 | ||
pressure of injection [MPa] | 80, 100, 120, 140, 160 | 100 | 100 | |
additional | nitrogen pre-heating 22 kW |
System 10 [184] | System 11 [185] | System 12 [186] | ||
---|---|---|---|---|
Spray chamber (SC) | technology | CVSC | CVSC | CVCO |
volume [L] | 6 | 10−5 | ||
diameter | 700 [µm] | |||
heater | chamber | under capillary | ||
working gas | nitrogen | nitrogen | air | |
working pressure [MPa] | 6 | 0.5–1.5 | variable | |
working temperature [K] | 293 | 298 | 293–623 | |
Injector | number of orifices | 7 | 1 | 1 |
orifice diameter [µm] | 175 | 120 | 0.800 | |
Fuel tested | standard | market diesel 1 | market diesel 7 | premium and standard market diesels |
substandard blends | biofuel 8 | B7, out of date | ||
Measurement and control devices | pressure in SC | yes | yes | no |
temperature in SC | no | yes | optional 10 | |
high-speed camera | yes | yes | yes | |
light source | HMI lamp 2 | 150 W halogen lamp fiber coupled | LED fibbed coupled | |
pressure of injection | yes | yes | no | |
control | automated injection | data acquisition system 9 | data acquisition system 9 | |
imaging | backscattered light | Schlieren | natural light or IR temperature map | |
Data processing | background subtracting 3 | background subtracting 3 | demodulation and time series recording | |
threshold detecting 4 | threshold detecting 4 | characteristic point detection 11 | ||
edge detecting 5 | edge detecting | data pattern creation | ||
spray parameters estimating 6 | spray parameters estimating 6 | fuel classification using ANN 12 |
System 19 [277] | System 20 [278] | System 21 [279] | |
---|---|---|---|
Method name | Rancimat | PetroOxy | PDSC |
Fuel type | diesel, biodiesel | diesel, biodiesel | diesel, biodiesel |
Sample size | 3 g | 5 mL | 2 µL |
Gas and pressure | O2, 700 kPa | O2, 700 kPa | air, 1400 kPa |
Temperature | 110 °C | 140 °C | 50–350 °C |
Measured parameters | time, conductivity | time, pressure | heat flow, temperature |
Method answer | oxidation stability | oxidation stability | oxidation stability |
System 22 [285] | System 23 [286] | System 24 [287] | |
---|---|---|---|
Measurement chamber | dedicated probe from SOLVIAS | ATR probe | Petri dish |
Measurement principle | FTIR | FTIR | FTIR |
Fuel tested | marked biodiesels | biodiesel from different origins | marked biodiesels |
in-house-made biodiesels | biodiesel with antioxidants 1 | in-house-made biodiesels | |
Measurement and control | BOMEM MB160 integrated FTIR spectrometer, ABB Inc., Nanjing, China | Spectrum GX integrated FTIR spectrometer, PerkinElmer Inc., Shelton, CT, USA | Spectrum 100 N FTIR spectrometer, PerkinElmer Inc., Shelton, CT, USA |
679 Rancimat, Metrohm Inc., Herisau, Switzerland | 743 Rancimat, Metrohm Inc., Herisau, Switzerland | Rancimat—by EN 14112, Metrohm Inc., Herisau, Switzerland | |
Data processing software and methods | Matlab 7 PLS Toolbox 4.0 | Unscrambler 9.7 | Quant + |
PCA 2, PLS 3 | PLS 3, MRL 4 | PLS 3, PCR 5, | |
third-order polynomial fit | cross-validation | cross-validation | |
orthogonal signal correction | successive projection algorithm | ||
Output | oxidation stability | oxidation stability | oxidation stability |
System 25 [291] | System 26 [292] | System 27 [293] | |
---|---|---|---|
Measurement chamber | quartz cells with an optical path of 1 cm | quartz cuvette with a 1 cm pathlength | capillary to ensure no contact between the fuel and the atmosphere |
Measurement principle | the sequence of measurement and degradation | Y-type optical fiber to drive the excitation light and collect emission | fluorescence as a function of dedicated time–thermal cycles |
Parameters measured | 3D excitation–emission matrix | light intensity at the sample surface vs. time | light intensity inside sample volume vs. time |
Degradation | samples were submitted to accelerated oxidation at 110 °C, with an airflow of 10 L/h, and examined at specific time points | temperature 110 °C | temperature and UV combined cycles |
Control of degradation | Metrohm 873 Rancimat | Metrohm 893 Rancimat | EN 15751 |
Fuel tested | soy oil | in-house-made biodiesel | different market diesels; B7 |
in-house-made soy biodiesel | fuels stored for 5 and 4 years, ½ of a year, and fresh | ||
Measurement | LS55 spectrofluorometer equipped with a 150 W Xenon lamp, PerkinElmer Inc., Shelton, CT, USA | Fluorimeter, MMOptic Inc., São Carlos, Spain | HR2000+ spectrometer, Ocean Optics Inc., Orlando, FL, USA |
Excitation | 200–775 nm | diode laser at 405 nm | high-power LED at 365 nm |
Emission | 230–800 nm | 430–800 nm range | 370–700 nm |
Control | averaging results | UV source power | UV source power |
Data processing | 3D excitation–emission matrix | correlation | HCA, |
PLS regression, PCA | correlation | ||
Output | prediction of the oxidation stability | acid number estimation | permissible storage time in a dark container at room temperature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borecki, M.; Geca, M.; Zan, L.; Prus, P.; Korwin-Pawlowski, M.L. Multiparametric Methods for Rapid Classification of Diesel Fuel Quality Used in Automotive Engine Systems. Energies 2024, 17, 4189. https://doi.org/10.3390/en17164189
Borecki M, Geca M, Zan L, Prus P, Korwin-Pawlowski ML. Multiparametric Methods for Rapid Classification of Diesel Fuel Quality Used in Automotive Engine Systems. Energies. 2024; 17(16):4189. https://doi.org/10.3390/en17164189
Chicago/Turabian StyleBorecki, Michal, Mateusz Geca, Li Zan, Przemysław Prus, and Michael L. Korwin-Pawlowski. 2024. "Multiparametric Methods for Rapid Classification of Diesel Fuel Quality Used in Automotive Engine Systems" Energies 17, no. 16: 4189. https://doi.org/10.3390/en17164189
APA StyleBorecki, M., Geca, M., Zan, L., Prus, P., & Korwin-Pawlowski, M. L. (2024). Multiparametric Methods for Rapid Classification of Diesel Fuel Quality Used in Automotive Engine Systems. Energies, 17(16), 4189. https://doi.org/10.3390/en17164189