The Determination of Woody Biomass Resources and Their Energy Potential from Hazelnut Tree Cultivation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brodny, J.; Tutak, M. Analiza podobieństw między krajami Unii Europejskiej pod względem struktury i wolumenu produkcji energii ze źródeło dnawialnych. Energies 2020, 13, 913. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M.; Saki, S.A. Prognozowanie struktury produkcji energii ze źródeł odnawialnych i biopaliw w Polsce. Energies 2020, 13, 2539. [Google Scholar] [CrossRef]
- European Commission. European Commission (EC) CDA (31-12-2021): Amending Delegated Regulation (EU) 2021/2139 as Regards Economic Activities in Certain Energy Sectors and Delegated Regulation (EU) 2021/2178 as Regards Specific Public Disclosures for those Economic Activities (Text with EEA Relevance); European Commission: Brussels, Belgium, 2021.
- Bot, B.V.; Axaopoulos, P.J.; Sakellariou, E.I.; Sosso, O.T.; Tamba, J.G. Energetic and economic analysis of biomass briquettes production from agricultural residues. Appl. Energy 2022, 321, 119430. [Google Scholar] [CrossRef]
- Jouhara, H.; Khordehgah, N.; Almahmoud, S.; Delpech, B.; Chauhan, A.; Tassou, S.A. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 2018, 6, 268–289. [Google Scholar] [CrossRef]
- Kluts, I.N.; Brinkman, M.L.; de Jong, S.A.; Junginger, H.M. Biomass resources: Agriculture. In Biorefineries; Springer: Cham, Switzerland, 2017; pp. 13–26. [Google Scholar]
- Komisja Europejska. Available online: https://ec.europa.eu/regional_policy/en/newsroom/news/2020/01/14-01-2020-financing-the-green-transition-the-european-green-deal-investment-plan-and-just-transition-mechanism (accessed on 24 July 2024).
- Raport Podsumowujący COP25. Available online: https://ieta.b-cdn.net/wp-content/uploads/2022/12/IETA_Report_COP25SummaryReport_2019.pdf (accessed on 10 April 2024).
- Komisja Europejska. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 10 April 2020).
- Cavalaglio, G.; Fabbrizi, G.; Cardelli, F.; Lorenzi, L.; Angrisano, M.; Nicolini, A. Lignocellulosic Residues fromFruit Trees: Availability, Characterization, and Energetic Potential Valorization. Energies 2024, 17, 2611. [Google Scholar] [CrossRef]
- Pacchiarelli, A.; Lupo, M.; Ferrucci, A.; Giovanelli, F.; Priori, S.; Pica, A.L.; Silvestri, C.; Cristofori, V. Fenologia, plon i ocean cech orzechów dwunastu europejskich odmian orzechów laskowych uprawianych w środkowych Włoszech. Lasy 2024, 15, 833. [Google Scholar] [CrossRef]
- Ollani, S.; Peano, C.; Sottile, F. Najnowsze innowacje w zakresie ponownego wykorzystania produktów ubocznych migdałów i orzechów laskowych: Przegląd. Zrównoważony Rozwój 2024, 16, 2577. [Google Scholar] [CrossRef]
- Cristofori, V.; Silvestri, C.; Pacchiarelli, A.; Santilli, M.; Carpio, R.F.; Gasparri, A. Pruning practices in European hazelnut: From plant shape and planting layout to mechanical pruning and precision agriculture. Acta Hortic. 2023, 1379, 207–214. [Google Scholar] [CrossRef]
- Tombesi, S.; Rechichi, R.; Lorusso, R.; Grisafi, F. Relationship between shoot leaf area and nut set in hazelnut. ISHS Acta Hortic. 1379 X Int. Congr. Hazelnut. 2023, 1379, 297–302. [Google Scholar] [CrossRef]
- Pari, L.; Suardi, A.; Longo, L.; Carnevale, M.; Gallucci, F.; Jatropha Curcas, L. Pruning Residues for Energy: Characteristics of an Untapped By-Product. Energies 2018, 11, 1622. [Google Scholar] [CrossRef]
- Silvestri, C.; Santinelli, G.; Pica, A.P.; Cristofori, V. Mechaniczne cięcie orzecha laskowego: Wpływ na plon i jakość oraz potencjał wykorzystania jego produktu ubocznego. Eur. J. Hortic. Sci. 2021, 86, 189–196. [Google Scholar] [CrossRef]
- Colantoni, A.; Longo, L.; Gallucci, F.; Monarca, D. Pyro-gazyfikacja przycinania orzechów laskowych przy użyciu gazyfikatora o przepływie w dół w celu jednoczesnej produkcji gazu syntezowego i biowęgla. Contemp. Eng. Sci. 2016, 9, 1339–1348. [Google Scholar] [CrossRef]
- Vinci, A.; DiLena, B.; Portarena, S.; Farinelli, D. Trend analysis of different climate parameters and watering requirements for hazelnut in central Italy related to climate change. Horticulturae 2023, 9, 593. [Google Scholar] [CrossRef]
- DiLena, B.; Curci, G.; Vergni, L.; Farinelli, D. Climatic suitability of different areas in Abruzzo, Central Italy, for the Cultivation of Hazelnut. Horticulturae 2022, 8, 580. [Google Scholar] [CrossRef]
- Di Giacinto, S.; Longo, L.; Menghini, G.; Delfanti, L.M.; Egidi, G.; De Benedictis, L.; Riccioni, S.; Salvati, L. A model for estimating pruned biomass obtained from Corylus avellana L. Appl. Math. Sci. 2014, 8, 6555–6564. [Google Scholar] [CrossRef]
- EN-ISO 1928:2020; Coal and Coke—Determination of Gross Calorific Value. Available online: https://www.iso.org/standard/75883.html (accessed on 28 August 2024).
- EN-ISO 18122:2022; Solid Biofuels—Determination of Ash Content. 2022. Available online: https://www.iso.org/standard/83190.html (accessed on 28 August 2024).
- EN-ISO 18123:2016-01; Solid Fuels—Determination of Volatile Content by Gravimetric Method. 2016. Available online: https://www.iso.org/obp/ui/#iso:std:iso:18123:ed-2:v1:en (accessed on 28 August 2024).
- EN-ISO 18134-1:2022; Solid Biofuels—Determination of Moisture Content—Oven Dry Method Part 1: Reference Method. 2015. Available online: https://www.iso.org/standard/83191.html (accessed on 28 August 2024).
- Choudhury, N.D.; Saha, N.; Phukan, B.R.; Kataki, R. Characterization and Evaluation of Energy Properties of Pellets Produced from Coir Pith, Saw Dust and Ipomoea Carnea and Their Blends. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 45, 1–18. [Google Scholar] [CrossRef]
- EN-ISO 16948:2015-07; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. 2015. Available online: https://www.iso.org/standard/58004.html (accessed on 28 August 2024).
- Maj, G. Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector. Energies 2018, 11, 1516. [Google Scholar] [CrossRef]
- ISO 16994:2016; Solid Biofuels—Determination of Total Content of Sulphur and Chlorine. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/70097.html (accessed on 28 August 2024).
- Alves, J.L.F.; da Silva, J.C.G.; Mumbach, G.D.; Domenico, M.D.; da Silva Filho, V.F.; de Sena, R.F.; Machado, R.A.F.; Marangoni, C. Insights into the Bioenergy Potential of Jackfruit Wastes Considering Their Physicochemical Properties, Bioenergy Indicators, Combustion Behaviors, and Emission Characteristics. Renew. Energy 2020, 155, 1328–1338. [Google Scholar] [CrossRef]
- Kovacs, H.; Szemmelveisz, K.; Koós, T. Theoretical and Experimental Metals Flow Calculations during Biomass Combustion. Fuel 2016, 185, 524–531. [Google Scholar] [CrossRef]
- Paraschiv, L.S.; Serban, A.; Paraschiv, S. Calculation of Combustion Air Required for Burning Solid Fuels (Coal/Biomass/SolidWaste) and Analysis of Flue Gas Composition. Energy Rep. 2020, 6, 36–45. [Google Scholar] [CrossRef]
- Allegrini, A.; Salvaneschi, P.; Schirone, B.; Cianfaglione, K.; Di Michele, A. Multipurpose plant species and circular economy: Corylus avellana L. as a study case. Front. Biosci. (Landmark Ed.) 2022, 27, 11. [Google Scholar] [CrossRef] [PubMed]
- Acampora, A.; Civitarese, V.; Sperandio, G.; Rezaei, N. Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning. Energies 2021, 14, 4083. [Google Scholar] [CrossRef]
- Dyjakon, A.; den Boer, J.; Bukowski, P.; Adamczyk, F.; Frąckowiak, P. Potential of Woody Biomass from Apple Orchards in Poland. Wood Res. Pap. Rep. Announc. 2016, 59, 73–86. [Google Scholar]
- Cichy, W.; Witczak, M.; Walkowiak, M. Właściwości paliwowe biomasy drzewnej pochodzącej z zabiegów przycinania drzew w sadach owocowych. BioResources 2017, 12, 6458–6470. [Google Scholar]
- Stolarski, M.J.; Dudziec, P.; Krzyżaniak, M.; Olba-Zięty, E. Solid Biomass Energy Potential as a Development Opportunity for Rural Communities. Energies 2021, 14, 3398. [Google Scholar] [CrossRef]
- Zambon, I.; Colosimo, F.; Monarca, D.; Cecchini, M.; Gallucci, F.; Proto, A.R.; Lord, R.; Colantoni, A. Innovative Supply Chain for Agro-Forestry Residual Biomass: Physicochemical Characteristics of Biochar from Olive and Hazelnut Pellets. Energies 2016, 9, 526. [Google Scholar] [CrossRef]
- Mladenovic, M.; Vucicevic, B.; Marinkovic, A.; Buha-Markovic, J. Combustion of Waste Solids in aFluidized Bed to Generate Sustainable Energy. Hem. Ind. 2024, 61, 8. [Google Scholar] [CrossRef]
- Güleç, F.; Pekaslan, D.; Williams, O.; Lester, E. Predictability of Higher Heating Value of Biomass Feedstocks via Proximate and Ultimate Analyses—A Comprehensive Study of Artificial Neural Network Applications. Fuel 2022, 320, 123944. [Google Scholar] [CrossRef]
- Bilandzija, N. Potencjał energetyczny biomasy pochodzącej z przycinania drzew owocowych w Chorwacji. Span. J. Agric. Res. 2012, 10, 292–298. [Google Scholar]
- Borkowska, A.; Klimek, K.E.; Maj, G.; Kapłan, M. Analysis of the Energy–Carbon Potential of the Pericarp Cover of Selected Hazelnut Varieties. Energies 2024, 17, 3899. [Google Scholar] [CrossRef]
- Borkowska, A.; Klimek, K.; Maj, G.; Kapłan, M. Analysis of the Energy Potential of Hazelnut Husk Depending on the Variety. Energies 2024, 17, 3933. [Google Scholar] [CrossRef]
- Zardzewiały, M.; Bajcar, M.; Puchalski, C.; Gorzelany, J. The Possibility of Using Waste Biomass from Selected Plants Cultivated for Industrial Purposes to Produce a Renewable and Sustainable Source of Energy. Appl. Sci. 2023, 13, 3195. [Google Scholar] [CrossRef]
Parameter | Standard | |
---|---|---|
Proximate Analysis | Higher Heating Value (HHV; MJ·kg−1) | EN-ISO 1928:2022; Equipment LECO AC 600 [21] |
Lower Heating Value (LHV; MJ·kg−1) | ||
Ash (A; %) | EN-ISO 18122-01; Equipment LECO TGA 701 [22] | |
Volatile matter (V; %) | EN-ISO 18123-01; Equipment LECO TGA 701 [23] | |
Moisture (M; %) | EN-ISO 18134-3; Equipment LECO TGA 701 [24] | |
Fixed carbon (FC; %) | FC = 100-V-A-M [25] | |
Ultimate Analysis Emission factors calculated according to studies | Carbon (C;%) | EN-ISO 16948:2015-07, Equipment LECO CHNS 628 [26] |
Hydrogen (H;%) | ||
Nitrogen (N; %) | ||
Sulphur (S; %) | EN-ISO 16994:2016-10; Equipment LECO CHNS 628 [27] | |
Oxygen (O; %) | O = 100-A-H-C-S-N [28] | |
Emission Factors Exhaust gas composition was calculated according to [29] | Carbon monoxide Emission factor (Ec) of chemically pure coal (CO; kg·Mg−1) | , CO—carbon monoxide emission factor (kg·kg−1), —molar mass ratio of carbon monoxide and carbon, Ec—emission factor of chemically pure coal (kg∙kg−1), C/CO—part of the carbon emitted as CO (for biomass 0.06). |
Carbon dioxide emission factor (CO2; kg·Mg−1) | CO2—carbon dioxide emission factor (kg∙kg−1), - molar mass ratio of carbon dioxide and pure coal, - molar mass ratio of carbon dioxide and carbon monoxide, - molar mass ratio of carbon and methane, ECH4—methane emission factor, ENMVOC—emission index of non-methane VOCs (for biomass 0.009). | |
Sulphur dioxide emission factor (SO2; kg·Mg−1) | SO2–sulphur dioxide emission factor (kg∙kg−1), 2—molar mass ratio of SO2 and sulphur, S—sulphur content in fuel (%), r—coefficient determining the part of total sulphur retained in the ash. | |
Emission factor was calculated from (NOX; kg·Mg−1) | , NOx—NOx emission factor (kg∙kg−1),—molar mass ratio of nitrogen dioxide to nitrogen. The molar mass of nitrogen dioxide is considered due to the fact that nitrogen oxide in the air oxidises very soon to nitrogen dioxide, N/C—nitrogen-to-carbon ratio in biomass, NOx/N—part of nitrogen emitted as NOx (for biomass 0.122). | |
Exhaust gas composition [30,31] | Theoretical oxygen demand (VO2; Nm3·kg−1) | , C-biomass carbon content (%), H-biomass hydrogen content (%), S-biomass sulphur content (%), O-biomass oxygen content). |
The stoichiometric volume of dry air required to burn 1 kg of biomass (VOa; Nm3·kg−) | Since the oxygen content in the air is 21%, which participates in the combustion process in the boiler, the stoichiometric volume of dry air required to burn 1 kg of biomass | |
Carbon dioxide content of the combustion products (VCO2; Nm3·kg−1) | ||
Content of sulphur dioxide (VSO2; Nm3·kg−1) | , | |
Water vapour content of the exhaust gas (VH2O; Nm3·kg−1) | , is the component of water vapour volume from the hydrogen combustion process and the volume of moisture contained in the combustion air ; M-fuel moisture content (%), -air absolute humidity (kg H2O·kg−1 dry air). | |
The theoretical nitrogen content in the exhaust gas (; Nm3·kg−1) | , Considering that the nitrogen in the exhaust comes from the fuel composition and the combustion air, and the nitrogen content in the air is 79%. | |
The total stoichiometric volume of dry exhaust gas (Nm3·kg−1) | ||
The total volume of exhaust gases (; Nm3·kg−1) | Assuming that biomass combustion is carried out under stoichiometric conditions, i.e., using the minimum amount of air required for combustion (λ = 1), a minimum exhaust gas volume will be obtained. |
Parameter | Average Number of Shoots (pcs.) for 1 Bush | Average Shoot Diameter (mm) at 50 cm Height on 1 Bush | Average Shoot Weight (kg·bush−1) | |||
---|---|---|---|---|---|---|
Age of shoots | one | many | one | many | one | many |
‘Kataloński’ | 19.00 ± 7.94 A * | 10.67 ± 1.15 A | 12.91 ± 0.51 A | 22.70 ± 3.03 A | 1.78 ± 0.38 A | 4.88 ± 1.38 A |
‘Olbrzymi z Halle’ | 12.00 ± 1.73 A | 8.67 ± 1.53 A | 12.90 ± 1.68 A | 20.77 ± 1.86 A | 1.33 ± 0.66 A | 4.44 ± 2.03 A |
‘Olga’ | 10.33 ± 4.51 A | 11.67 ± 1.15 A | 12.20 ± 1.93 A | 22.63 ± 8.06 A | 1.33 ± 0.00 A | 6.44 ± 2.52 A |
‘Webba Cenny’ | 12.67 ± 0.57 A | 10.00 ± 3.00 A | 13.93 ± 2.98 A | 20.90 ± 0.88A | 1.78 ± 0.77 A | 4.66 ± 0.66 A |
p-value | 0.8512 | 0.5632 | 0.2489 | 0.3697 | 0.5789 | 0.6328 |
Parameter | Age of Shoots | Hazelnut Variety | p-Value | |||
---|---|---|---|---|---|---|
‘Kataloński’ | ‘Olbrzymi z Halle’ | ‘Olga’ | ‘Webba Cenny’ | |||
LHV (MJ·kg−1) | One | 15.43 ± 0.09 BCa * | 16.85 ± 0.09 Aa | 15.26 ± 0.05 Ca | 15.61 ± 0.04 Ba | <0.0001 |
Many | 15.97 ± 0.09 BCa | 17.44 ± 0.09 Aa | 15.79 ± 0.05 Ca | 16.16 ± 0.04 Ba | <0.0001 | |
p-value | 0.2589 | 0.1369 | 0.7532 | 0.1598 | ||
HHV (MJ·kg−1) | One | 16.79 ± 0.09 Ac | 18.08 ± 0.09 Aa | 16.64 ± 0.05 Ac | 17.00 ± 0.04 Ab | <0.0001 |
Many | 16.83 ± 0.5 Ac | 18.03 ± 0.04 Aa | 16.39 ± 0.03 Ac | 16.98 ± 0.06 Ab | <0.0004 | |
p-value | 0.4893 | 0.7369 | 0.8361 | 0.1774 | ||
M (%) | One | 16.76 ± 0.10 Ca | 13.5 ± 0.06 Aa | 18.04 ± 0.27 Da | 17.48 ± 0.07 Ba | <0.0001 |
Many | 17.35 ± 0.10 Ca | 13.97 ± 0.06 Aa | 18.67 ± 0.28 Da | 18.09 ± 0.07 Ba | <0.0001 | |
p-value | 0.3190 | 0.1687 | 0.9280 | 0.1969 | ||
V (%) | One | 64.99 ± 0.35 Ca | 68.22 ± 0.34 Aa | 64.93 ± 0.36 Ca | 66.13 ± 0.39 Ba | <0.0001 |
Many | 67.26 ± 0.36 Ca | 70.61 ± 0.35 Aa | 67.20 ± 0.37 Ca | 68.44 ± 0.40 Ba | <0.0001 | |
p-value | 0.2770 | 0.1465 | 0.8059 | 0.1710 | ||
A (%) | One | 2.40 ± 0.08 Aa | 1.49 ± 0.05 BCa | 1.77 ± 0.24 Ba | 1.26 ± 0.06 Ca | <0.0001 |
Many | 2.48 ± 0.08 Aa | 1.54 ± 0.051 BCa | 1.83 ± 0.25 Ba | 1.30 ± 0.06 Ca | <0.0001 | |
p-value | 0.3075 | 0.1626 | 0.8946 | 0.1898 | ||
FC (%) | One | 15.85 ± 0.41 Ba | 16.78 ± 0.25 Aa | 15.26 ± 0.41 Ba | 15.12 ± 0.29 Ba | 0.0014 |
Many | 16.40 ± 0.42 Ba | 17.37 ± 0.26 Aa | 15.79 ± 0.42 Ba | 15.65 ± 0.30 Ba | 0.0019 | |
p-value | 0.2718 | 0.1437 | 0.7909 | 0.1678 | ||
C (%) | One | 42.28 ± 0.5 Ba | 45.29 ± 0.03 Aa | 41.05 ± 0.22 Ca | 42.76 ± 0.23 Ba | <0.0001 |
Many | 43.76 ± 0.52 Ba | 46.88 ± 0.03 Aa | 42.48 ± 0.23 Ca | 44.26 ± 0.24 Ba | <0.0001 | |
p-value | 0.3017 | 0.1596 | 0.8779 | 0.1862 | ||
H (%) | One | 7.78 ± 0.15 Aa | 7.1 ± 0.35 ABa | 7.63 ± 0.22 ABa | 7.09 ± 0.28 Ba | <0.0001 |
Many | 8.05 ± 0.15 Aa | 7.35 ± 0.36 ABa | 7.89 ± 0.23ABa | 7.34 ± 0.29 Ba | <0.0001 | |
p-value | 0.2822 | 0.1492 | 0.8210 | 0.1742 | ||
N (%) | One | 0.95 ± 0.02 ABa | 0.96 ± 0.01 Aa | 0.87 ± 0.03 Ba | 0.72 ± 0.05 Ca | <0.0001 |
Many | 0.98 ± 0.02 ABa | 0.99 ± 0.01 Aa | 0.90 ± 0.03 Ba | 0.74 ± 0.05 Ca | <0.0001 | |
p-value | 0.3132 | 0.1656 | 0.9113 | 0.1933 | ||
S (%) | One | 0.05 ± 0 Aa | 0.04 ± 0.01 Aa | 0.05 ± 0 Aa | 0.05 ± 0.02 Aa | 0.5463 |
Many | 0.051 ± 0 Aa | 0.04 ± 0.01 Aa | 0.05 ± 0 Aa | 0.05 ± 0.02 Aa | 0.6874 | |
p-value | 0.2900 | 0.1533 | 0.8436 | 0.1790 | ||
O (%) | One | 46.54 ± 0.55 Ba | 45.12 ± 0.34 Ca | 48.62 ± 0.65 Aa | 48.12 ± 0.13 Aa | <0.0001 |
Many | 48.17 ± 0.57 Ba | 46.68 ± 0.35 Ca | 50.32 ± 0.67 Aa | 49.80 ± 0.13 Aa | <0.0001 | |
p-value | 0.3219 | 0.1702 | 0.9364 | 0.1987 | ||
H/C | One | 1.84 ± 0.04 Aa | 1.57 ± 0.08 Ba | 1.86 ± 0.04 Aa | 1.66 ± 0.07 Ba | 0.0009 |
Many | 1.90 ± 0.04 Aa | 1.62 ± 0.08 Ba | 1.92 ± 0.0414 Aa | 1.71 ± 0.07 Ba | 0.0007 | |
p-value | 0.2977 | 0.1574 | 0.8662 | 0.1838 | ||
N/C | One | 0.02 ± 0.001 Aa | 0.02 ± 0.00 Aa | 0.02 ± 0.001 Aa | 0.02 ± 0.001 Ba | <0.0001 |
Many | 0.02 ± 0.001 Aa | 0.021 ± 0.00 Aa | 0.02 ± 0.001 Aa | 0.02 ± 0.001 Ba | <0.0001 | |
p-value | 0.3305 | 0.1748 | 0.9615 | 0.2040 | ||
O/C | One | 0.83 ± 0.02 Ba | 0.75 ± 0.01 Ca | 0.88 ± 0.02 Aa | 0.84 ± 0.01 Ba | <0.0001 |
Many | 0.85 ± 0.02 Ba | 0.77 ± 0.01 Ca | 0.92 ± 0.02 Aa | 0.87 ± 0.01 Ba | <0.0001 | |
p-value | 0.2680 | 0.1417 | 0.7796 | 0.1654 |
Parameter | Age of Shoots | Hazelnut Variety | p-Value | |||
---|---|---|---|---|---|---|
‘Kataloński’ | ‘Olbrzymi z Halle’ | ‘Olga’ | ‘Webba Cenny’ | |||
CO (kg·Mg−1) | One | 52.09 ± 0.62 Ba * | 55.79 ± 0.04 Aa | 50.57 ± 0.27 Ca | 52.67 ± 0.29 Ba | <0.0001 |
Many | 53.91 ± 0.64 Ba | 57.74 ± 0.04 Aa | 52.34 ± 0.28 Ca | 54.51 ± 0.30 Ba | <0.0001 | |
p-value | 0.3359 | 0.4598 | 0.3315 | 0.4897 | ||
CO2 (kg·Mg−1) | One | 1275.51 ± 15.15 Ba | 1366.23 ± 0.97 Aa | 1238.46 ± 6.55 Ca | 1289.89 ± 7.08 Ba | <0.0001 |
Many | 1320.15 ± 15.68 Ba | 1414.05 ± 1.00 Aa | 1281.81 ± 6.78 Ca | 1335.04 ± 7.33 Ba | <0.0001 | |
p-value | 0.3859 | 0.5282 | 0.3808 | 0.5626 | ||
Nox (kg·Mg−1) | One | 3.37 ± 0.06 ABa | 3.4 ± 0.05 Aa | 3.08 ± 0.1 Ba | 2.54 ± 0.19 Ca | <0.0001 |
Many | 3.49 ± 0.06 ABa | 3.52 ± 0.05 Aa | 3.19 ± 0.10 Ba | 2.63 ± 0.19 Ca | <0.0001 | |
p-value | 0.4139 | 0.5665 | 0.4084 | 0.6034 | ||
SO2 (kg·Mg−1) | One | 0.09 ± 0.01 Aa | 0.08 ± 0.01 Aa | 0.11 ± 0.01 Aa | 0.11 ± 0.04 Aa | 0.5463 |
Many | 0.09 ± 0.01 Aa | 0.09 ± 0.01 Aa | 0.11 ± 0.01 Aa | 0.11 ± 0.04 Aa | 0.5578 | |
p-value | 0.3728 | 0.5104 | 0.3680 | 0.5436 | ||
Dust (kg·Mg−1) | One | 3.03 ± 0.1 Aa | 1.88 ± 0.07 BCa | 2.24 ± 0.3 Ba | 1.6 ± 0.08 Ca | <0.0001 |
Many | 3.14 ± 0.10 Aa | 1.95 ± 0.07 BCa | 2.32 ± 0.31 Ba | 1.66 ± 0.08 Ca | <0.0001 | |
p-value | 0.3477 | 0.4759 | 0.3431 | 0.5068 |
Parameter | Age of Shoots | Hazelnut Variety | p-Value | |||
---|---|---|---|---|---|---|
‘Kataloński’ | ‘Olbrzymi z Halle’ | ‘Olga’ | ‘Webba Cenny’ | |||
VoO2 (Nm3·kg−1) | One | 0.89 ± 0.02 Aba * | 0.93 ± 0.02 Aa | 0.85 ± 0.02 Ba | 0.86 ± 0.01 Ba | 0.0033 |
Many | 0.93 ± 0.02 ABa | 0.96 ± 0.02 Aa | 0.88 ± 0.02 Ba | 0.89 ± 0.01 Ba | 0.0029 | |
p-value | 0.5239 | 0.5189 | 0.4996 | 0.6123 | ||
Voa (Nm3·kg−1) | One | 4.28 ± 0.07 ABa | 4.42 ± 0.10 Aa | 4.07 ± 0.09 Ba | 4.09 ± 0.06 Ba | 0.0033 |
Many | 4.43 ± 0.08 ABa | 4.57 ± 0.11 Aa | 4.21 ± 0.10 Ba | 4.23 ± 0.06 Ba | 0.0029 | |
p-value | 0.5606 | 0.5552 | 0.5346 | 0.6552 | ||
VCO2 (Nm3·kg−1) | One | 0.79 ± 0.01 Ba | 0.85 ± 0.00 Aa | 0.77 ± 0.00 Ca | 0.79 ± 0.00 Ba | <0.0001 |
Many | 0.82 ± 0.01 Ba | 0.87 ± 0.00 Aa | 0.79 ± 0.00 Ca | 0.83 ± 0.00 Ba | <0.0001 | |
p-value | 0.5815 | 0.5760 | 0.5546 | 0.6797 | ||
VSO2 (Nm3·kg−1) | One | 0.0003 ± 0.00 Aa | 0.0003 ± 0.00 Aa | 0.0004 ± 0.00 Aa | 0.0004 ± 0.00 Aa | 0.5463 |
Many | 0.0003 ± 0.00 Aa | 0.0003 ± 0.00 Aa | 0.0004 ± 0.00Aa | 0.0004 ± 0.00 Aa | 0.5498 | |
p-value | 0.6503 | 0.6163 | 0.5934 | 0.7272 | ||
VH2O (Nm3·kg−1) | One | 1.08 ± 0.02 Aa | 0.96 ± 0.04 Ba | 1.08 ± 0.02 Aa | 1.01 ± 0.03 ABa | 0.0024 |
Many | 1.12 ± 0.01 Aa | 0.99 ± 0.04 Ba | 1.12 ± 0.03 Aa | 1.05 ± 0.03 ABa | 0.0029 | |
p-value | 0.6455 | 0.6393 | 0.6156 | 0.7544 | ||
VN2 (Nm3·kg−1) | One | 4.15 ± 0.05 Aa | 4.26 ± 0.08 Aa | 3.91 ± 0.09 Ba | 3.81 ± 0.04 Ba | <0.0001 |
Many | 4.29 ± 0.05 Aa | 4.41 ± 0.08 Aa | 4.05 ± 0.09 Ba | 3.94 ± 0.04 Ba | <0.0001 | |
p-value | 0.8523 | 0.8111 | 0.7398 | 0.6379 | ||
Vgu (Nm3·kg−1) | One | 4.94 ± 0.06 Aa | 5.11 ± 0.08 Aa | 4.68 ± 0.09 Ba | 4.61 ± 0.03 Ba | <0.0001 |
Many | 5.10 ± 0.06 Aa | 5.29 ± 0.08 Aa | 4.84 ± 0.09 Ba | 4.77 ± 0.04 Ba | <0.0001 | |
p-value | 0.6077 | 0.6019 | 0.5795 | 0.7103 | ||
Vga (Nm3·kg−1) | One | 6.71 ± 0.08 Aa | 6.78 ± 0.13 Aa | 6.41 ± 0.13 Ba | 6.28 ± 0.07 Ba | 0.0013 |
Many | 6.94 ± 0.08 Aa | 7.02 ± 0.14 Aa | 6.64 ± 0.14 Ba | 6.45 ± 0.07 Ba | 0.0019 | |
p-value | 0.7050 | 0.6681 | 0.6433 | 0.7884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkowska, A.; Maj, G.; Klimek, K.E.; Kapłan, M. The Determination of Woody Biomass Resources and Their Energy Potential from Hazelnut Tree Cultivation. Energies 2024, 17, 4536. https://doi.org/10.3390/en17184536
Borkowska A, Maj G, Klimek KE, Kapłan M. The Determination of Woody Biomass Resources and Their Energy Potential from Hazelnut Tree Cultivation. Energies. 2024; 17(18):4536. https://doi.org/10.3390/en17184536
Chicago/Turabian StyleBorkowska, Anna, Grzegorz Maj, Kamila E. Klimek, and Magdalena Kapłan. 2024. "The Determination of Woody Biomass Resources and Their Energy Potential from Hazelnut Tree Cultivation" Energies 17, no. 18: 4536. https://doi.org/10.3390/en17184536
APA StyleBorkowska, A., Maj, G., Klimek, K. E., & Kapłan, M. (2024). The Determination of Woody Biomass Resources and Their Energy Potential from Hazelnut Tree Cultivation. Energies, 17(18), 4536. https://doi.org/10.3390/en17184536