A Lightweight Electric Meter Recognition Model for Power Inspection Robots
Abstract
:1. Introduction
2. Methods
2.1. YOLOv5 Method
2.2. Improvement of YOLOv5 Network Architecture Design
2.2.1. Improvement of the Backbone Network
2.2.2. Loss Function Improvement
2.2.3. Improvement of the Neck Network
3. Experimental Methodology
3.1. Experimental Setup and Implementation
3.2. Measurement Indicators
4. Results and Analysis
4.1. Experimental Results
4.2. Comparison Experiment
4.3. Comparative Analysis
4.4. Experimental Validation in the Power Inspection Robots
5. Discussion
6. Conclusions
- (1)
- The lightweight Ghost module was introduced into the YOLOv5 backbone network, which greatly reduced the number of model parameters while enhancing the recognition accuracy and speed;
- (2)
- The WIoU loss function was used for bounding box regression, which improved the stability and localization accuracy of the electric meter recognition model;
- (3)
- Introducing the GSConv module in the YOLOv5 neck network reduced the computational cost of the model and improved its detection speed;
- (4)
- Compared to related YOLOv5 methods, the proposed method exhibited better electric meter recognition performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katrasnik, J.; Pernus, F. A survey of mobile robots for distribution power line inspection. IEEE Trans. Power Deliv. 2009, 25, 485–493. [Google Scholar] [CrossRef]
- Caban, J.; Nieoczym, A.; Dudziak, A.; Krajka, T.; Stopková, M. The planning process of transport tasks for autonomous vans—Case study. Appl. Sci. 2022, 12, 2993. [Google Scholar] [CrossRef]
- Dong, L.; Chen, N.; Liang, J.; Li, T.; Yan, Z. A review of indoor-orbital electrical inspection robots in substations. Ind. Robot. Int. J. Robot. Res. Appl. 2022, 50, 337–352. [Google Scholar] [CrossRef]
- Alahakoon, D.; Yu, X. Smart electricity meter data intelligence for future energy systems: A survey. IEEE Trans. Ind. Inform. 2015, 12, 425–436. [Google Scholar] [CrossRef]
- Depuru, S.S.S.R.; Wang, L.; Devabhaktuni, V. Smart meters for power grid—Challenges, issues, advantages and status. In Proceedings of the 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011. [Google Scholar]
- Huang, C.J.; Kuo, P.H. Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting. IEEE Access 2019, 7, 74822–74834. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, W.; Gu, H.; Liu, C.; Hong, S.; Xu, W.; Gui, G. Convolutional neural network based models for improving super-resolution imaging. IEEE Access 2019, 7, 43042–43051. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sens. 2018, 10, 1119. [Google Scholar] [CrossRef]
- Wang, F.; Li, K.; Wang, X.; Jiang, L.; Ren, J.; Mi, Z.; Catalão, J.P. A distributed PV system capacity estimation approach based on support vector machine with customer net load curve features. Energies 2018, 11, 1750. [Google Scholar] [CrossRef]
- Yang, M.; Li, X.; Liu, Y. Sequence to point learning based on an attention neural network for nonintrusive load decomposition. Electronics 2021, 10, 1657. [Google Scholar] [CrossRef]
- Mutis, I.; Ambekar, A.; Joshi, V. Real-time space occupancy sensing and human motion analysis using deep learning for indoor air quality control. Autom. Constr. 2020, 116, 103237. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Q.; Lei, L. A YOLOv3-Based Industrial Instrument Classification and Reading Recognition Method. Mob. Inf. Syst. 2022, 2022, 7817309. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, L.; Wang, H.; Yue, Y. Inspection of pointer meters based on machine vision. Sci. Technol. Eng. 2021, 21, 14665–14672. [Google Scholar]
- Tang, P.; Liu, Y.; Wei, H.; Dong, X.; Yan, G.; Zhang, Y.; Yuan, Y.; Wang, Z.; Fan, Y.; Ma, P. Automatic recognition algorithm of digital instrument reading in offshore booster station based on Mask-RCNN. Infrared Laser Eng. 2021, 50, 156–163. [Google Scholar]
- Anis, A.; Khaliluzzaman, M.; Yakub, M.; Chakraborty, N.; Deb, K. Digital electric meter reading recognition based on horizontal and vertical binary pattern. In Proceedings of the 2017 3rd International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, 7 December 2017; pp. 1–6. [Google Scholar]
- Shuo, H.; Yu, X.; Lv, D.; Li, S.; Peng, Y. Digital recognition of electric meter with deep learning. In Proceedings of the 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Changsha, China, 1–3 November 2019; pp. 600–607. [Google Scholar]
- Zhang, Z.; Hua, Z.; Tang, Y.; Zhang, Y.; Lu, W.; Dai, C. Recognition method of digital meter readings in substation based on connected domain analysis algorithm. Actuators 2021, 10, 170. [Google Scholar] [CrossRef]
- Xie, F.; Lin, B.; Liu, Y. Research on the coordinate attention mechanism fuse in a YOLOv5 deep learning detector for the SAR ship detection task. Sensors 2022, 22, 3370. [Google Scholar] [CrossRef]
- Hasan, M.M.; Chopin, J.P.; Laga, H.; Miklavcic, S.J. Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 2018, 14, 1–13. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Liu, M.; Li, Z.; Li, Y.; Liu, Y. A fast and accurate method of power line intelligent inspection based on edge computing. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Tang, J.; Liu, S.; Zhao, D.; Tang, L.; Zou, W.; Zheng, B. Pcb-yolo: An improved detection algorithm of pcb surface defects based on yolov5. Sustainability 2023, 15, 5963. [Google Scholar] [CrossRef]
- Tang, Y.; Han, K.; Guo, J.; Xu, C.; Xu, C.; Wang, Y. GhostNetv2: Enhance cheap operation with long-range attention. Adv. Neural Inf. Process. Syst. 2022, 35, 9969–9982. [Google Scholar]
- Li, Y.; Zhang, J.; Hu, Y.; Zhao, Y.; Cao, Y. Real-time Safety Helmet-wearing Detection Based on Improved YOLOv5. Comput. Syst. Sci. Eng 2022, 43, 1219–1230. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, R.; Lin, Y.; Li, C.; Chen, S.; Yuan, Z.; Zou, X. Plant disease recognition model based on improved YOLOv5. Agronomy 2022, 12, 365. [Google Scholar] [CrossRef]
- Zhou, Y.D.; Zhang, C.Y.; Qiao, Y.H.; Chen, Z.W. Improved Yolov8 for Lightweight Pen Face Keypoints Detection. J. Hangzhou Dianzi Univ. 2024, 44, 51–64. [Google Scholar]
- Saydirasulovich, S.N.; Mukhiddinov, M.; Djuraev, O.; Abdusalomov, A.; Cho, Y.I. An improved wildfire smoke detection based on YOLOv8 and UAV images. Sensors 2023, 23, 8374. [Google Scholar] [CrossRef]
- Zhao, R.; Ma, H.; Xiao, Q.; Shi, G. DIAFNet: A Dynamic Interactive Adaptive Fusion Network Based on Enhanced Differential Features. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. Yolov9: Learning what you want to learn using programmable gradient information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
Fold | Precision | Recall | F1 | [email protected] | FPR | TNR |
---|---|---|---|---|---|---|
1 | 0.989 | 0.99 | 0.989 | 0.991 | 0.006 | 0.994 |
2 | 0.995 | 0.993 | 0.994 | 0.994 | 0.006 | 0.994 |
3 | 0.991 | 0.989 | 0.99 | 0.993 | 0.006 | 0.994 |
4 | 0.99 | 0.987 | 0.988 | 0.99 | 0.007 | 0.993 |
5 | 0.994 | 0.995 | 0.994 | 0.995 | 0.006 | 0.994 |
Average | 0.992 | 0.991 | 0.991 | 0.993 | 0.006 | 0.994 |
Methods | GFlops | Precision | Recall | F1 | [email protected] | FPS |
---|---|---|---|---|---|---|
Faster R-CNN | 183 | 0.941 | 0.958 | 0.949 | 0. 953 | 38.46 |
YOLOv5s | 15.8 | 0.986 | 0.989 | 0.987 | 0.992 | 135.14 |
YOLOv7 | 103.3 | 0. 978 | 0.965 | 0.971 | 0.984 | 100 |
YOLOv9 | 239 | 0.982 | 0.978 | 0.979 | 0.985 | 56.5 |
Ours | 11.7 | 0.988 | 0.988 | 0.988 | 0.991 | 416.67 |
WIoU Versions | Precision | Recall | F1 | [email protected] | FPS |
---|---|---|---|---|---|
WIoUv2 (r = 2) | 0.984 | 0.98 | 0.982 | 0. 989 | 454.55 |
WIoUv3 (α = 2.5, δ = 2) | 0.984 | 0.981 | 0.982 | 0.988 | 400 |
WIoUv3 (α = 1.9, δ = 3) | 0. 982 | 0.984 | 0.983 | 0.989 | 344.82 |
WIoUv3 (α = 1.6, δ = 4) | 0.986 | 0.982 | 0.984 | 0.985 | 434.78 |
WIoUv3 (α = 1.4, δ = 5) | 0.988 | 0.988 | 0.988 | 0.991 | 416.67 |
Methods | GFlops | Precision | Recall | F1 | [email protected] | FPS | FPR | TNR |
---|---|---|---|---|---|---|---|---|
YOLOv5 | 15.8 | 0.986 | 0.989 | 0.987 | 0.992 | 135.14 | 0.009 | 0.991 |
YOLOv5_GhostNet | 12.3 | 0.987 | 0.982 | 0.984 | 0.991 | 128.21 | 0.009 | 0.991 |
YOLOv5_GhostNet_WIoU | 12.3 | 0.988 | 0.979 | 0.983 | 0.99 | 163.93 | 0.000 | 1.000 |
Yolov5-WIoU-GhostNet-GSConv (proposed method) | 11.7 | 0.988 | 0.988 | 0.988 | 0.991 | 416.67 | 0.009 | 0.991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Tian, H.; Zhao, F. A Lightweight Electric Meter Recognition Model for Power Inspection Robots. Energies 2024, 17, 4731. https://doi.org/10.3390/en17184731
Song S, Tian H, Zhao F. A Lightweight Electric Meter Recognition Model for Power Inspection Robots. Energies. 2024; 17(18):4731. https://doi.org/10.3390/en17184731
Chicago/Turabian StyleSong, Shuangshuang, Hongsai Tian, and Feng Zhao. 2024. "A Lightweight Electric Meter Recognition Model for Power Inspection Robots" Energies 17, no. 18: 4731. https://doi.org/10.3390/en17184731
APA StyleSong, S., Tian, H., & Zhao, F. (2024). A Lightweight Electric Meter Recognition Model for Power Inspection Robots. Energies, 17(18), 4731. https://doi.org/10.3390/en17184731