Geochemistry in Geological CO2 Sequestration: A Comprehensive Review
Abstract
:1. Introduction
2. CO2 Phases for Geological Storage
- Liquid-like density: It maintains a density like a liquid, which allows for dissolving it in a wider variety of formations than gaseous CO2, and allows it to occupy less space.
- Gas-like viscosity: This phase exhibits a lower viscosity than its liquid phase (it is 15 times lower compared to pure water) [37] but a higher viscosity than its gas phase. This helps to improve its mass transfer properties and flow characteristics or enable its flow.
- Diffusivity: It exhibits higher diffusivity than liquid, which enhances the mixing and penetration of the formation. This means that CO2 molecules in a supercritical state will spread out faster in the storage medium compared to those in a liquid state.
3. CO2 Trapping Mechanisms for GCS
3.1. Enhancing CO2 Trapping in Saline Aquifers
3.1.1. Solubility Trapping
3.1.2. Enhancing Solubility Trapping
3.1.3. Mineral Trapping
3.1.4. Methods to Accelerate CO2 Mineral Trapping
- Increasing CO2 solubility
- Co-injection of carbonate anhydrase (CA)
- Microbes
- Enhancing the surface area of reactive minerals
- Selecting sedimentary reservoirs with reactive minerals
3.1.5. Residual/Capillary Trapping
3.1.6. Structural Trapping
4. CO2 Mineralization in GCS
- Gaseous CO2 is dissolved in an aqueous solution to form bicarbonate and carbonate ions. This step is further explained in the following equations.
- 2.
- Cations such as Ca2+, Mg2+, and Fe2+ are released into the solution due to mineral dissolution.
- 3.
- Stable carbonates are formed due to ionic reactions at higher pH.
5. CO2–Brine–Rock Interactions
6. Challenges in the Geological Storage of CO2
- Capacity: This is the pore volume available in the reservoir to store large amounts of CO2.
- Injectivity: This is the ability of the storage formation to accept and pass CO2. A formation with a high permeability and requiring lower wellhead pressures is the best option.
- Containment: This helps to ensure that the CO2 injected is not leaked into the groundwater or does not escape to the surface since the CO2 density is lower than the that of the formation brine. For this purpose, caprocks and sealing faults play an important role.
6.1. Caprock Failure
6.1.1. Tensile Fractures
6.1.2. Fault Reactivation
6.2. Well Integrity Loss
6.3. Induced Seismicity
6.4. On Sorption and Swelling
6.5. Leakage
6.6. Detecting Leakage
- Geological Characteristics: These include the permeability and integrity of the caprock, which has a critical role in containing the injected CO2 within the reservoir.
- In-situ Stress Variations: Variations in the magnitudes of stresses across different formations can impact the geomechanical response to CO2 injection and influence the potential for induced fractures and CO2 leakage.
- Mechanical Heterogeneity: Incorporating a three-dimensional distribution of the mechanical properties in the geochemical modeling can lead to a stochastic distribution of fractured zones and affect the CO2 distribution near the injection well, thus influencing the potential for CO2 leakage [168].
- Interventions: re-establishing the integrity of active or abandoned wells through intervention. This includes replacing the packer, repairing the wellhead, tubing, squeeze cementing, well killing, casing patching, swaging, and well plugging and abandonment, managing abandoned wells, and preventing CO2 blowouts.
- Fluid management mechanisms: This is carried out to counter the cause of leakage and/or to remove the leaking fluids. This could include hydraulic barriers, pressure relief in the storage formation, residual trapping and CO2 plume dissolution, and CO2 back-production.
- Emerging/breakthrough technologies: These provide mitigation opportunities to control the undesired migration of CO2. These include conventional Portland and geopolymer cement, foams and gels, nanoparticles, and biofilms.
- Remediation techniques are used to mediate the impacts potentially induced by such a migration.
6.7. CO2 Impurities
7. Opportunities and Prospects of Geological CO2 Storage
7.1. Wellbore Leakage Risk Management in Geological CO2 Storage
- Leakage risk identification: This step involves identifying the possible failure mechanisms of the wellbore that could lead to CO2 leakage risks. Methodologies such as the Features (physical components), Events (incidents), and Processes (FEP) method, fault tree analysis (which involves constructing a fault tree that represents various failure modes), and quantitative risk evaluation models are commonly used to outline risks associated with wellbore integrity.
- Leakage risk evaluation: The next step is to evaluate the magnitude of the CO2 leakage risks after identifying the potential risks. This can be achieved through quantitative risk evaluation models that assess the likelihood and impact of wellbore failures leading to CO2 leakage.
- Leakage risk monitoring: This involves various techniques to detect and assess the presence of CO2 leakages in CGUS. Some common types of leakage monitoring methods include the following:
- ○
- Atmospheric monitoring: This involves measuring the CO2 concentration in the atmosphere surrounding the storage site to detect any leaks that may occur. Techniques such as radiocarbon (in CO2) measurement and integrated sampling are used to identify increased levels of fossil-derived CO2, indicating potential leakage. The atmospheric monitoring method has the capacity to detect 1000 tons of CO2 leaks per year that can be 200–300 m away from the site in the daytime and greater than 600 m away during the night [178].
- ○
- Surface deformation monitoring: This is carried out to detect potential leakages by measuring the changes in the surface topography. It involves measuring the soil gas flux, conducting soil gas surveys, and using remote sensing technologies to detect CO2 emissions at the ground surface. These methods help in investigating gas movement, mapping fault zones, and monitoring the escaping CO2 along particular pathways.
- ○
- Time-lapse monitoring: Time-lapse monitoring involves comparing data collected at different time intervals to track changes in the CO2 distribution and migration within the storage reservoir. Techniques such as InSAR (Interferometric Synthetic Aperture Radar) and 4D seismic surveys are used to monitor the evolution of the CO2 dynamics and assess the integrity of storage sites.
- ○
- Subsurface monitoring: This involves tracking the behavior of CO2 within the storage site and assessing its integrity. It includes pressure sensors, cross-hole seismic monitoring, 4D seismic surveys, and advanced measurement techniques like CBL (Cement Bond Logs) and USIT (Ultra-Sonic Imaging Test) to assess the wellbore integrity and detect potential CO2 leakage within the subsurface reservoir. To prevent the possible leakage of CO2 into the USDW (underground source of drinking water), the chemical composition of the groundwater should be continuously monitored during the pre-injection, injection, and post-injection phases, and measurements should be taken. These measurements include measuring the pH, salinity, temperature, electrical conductivity, dissolved oxygen, and oxidation–reduction potential.
- Leakage handling: When CO2 leakage is detected or when there is a potential risk, it is mandatory to take appropriate actions to address the situation effectively. This may involve implementing corrective actions to mitigate leakage, such as repairing the wellbore cement or applying a sealing agent, cement slurry injection, packer maintenance, wellbore integrity assessments, and establishing operational protocols.
7.2. Using Sealant Materials as a Leakage Remediation Technology
7.3. Improving Seal Integrity to Prevent CO2 Leakage
7.4. Enhanced Oil Recovery (EOR)
7.5. Geochemical Monitoring for GCS
- Optimize monitoring approaches by efficiently processing large amounts of data and identifying patterns that can inform decision-making processes.
- Streamlining data processing tasks, such as filtering and assimilating monitoring data, leading to faster and more accurate decision-making in monitoring design.
- Baseline (pre-injection) monitoring, which includes the following:
- ○
- Borehole Geophysical Monitoring Techniques: These techniques are used for assessing geological CO2 trapping in subterranean reservoirs.
- ○
- Seismic Studies: These are conducted before CO2 injection to collect site-specific data for predicting geological and geochemical trends.
- Injection monitoring, which includes:
- ○
- Seismic Monitoring: This is carried out during actual CO2 injection to monitor the changes in the reservoir. Seismic monitoring includes four-dimensional (4D) monitoring, four-dimensional–three-component (4D-3C) seismic technology, cross-well seismic tomography, time-lapse well logging, and passive seismic monitoring.
- ○
- Borehole Geophysical Monitoring: This is carried out during injection to assess trapping mechanisms.
- Post-injection monitoring, which includes:
- ○
- Atmospheric Monitoring Methods: These are valuable for monitoring CO2 released from subsurface sources to the atmosphere after injection.
- ○
- Lab-scale Experiments: These are used to examine the post-injection characteristics of CO2 trapping.
8. Conclusions
9. Recommendations for Future Work
- The limited availability of published studies on the geochemical effects of CO2 under in situ reservoir conditions, including the optimization of CO2 trapping, necessitates further research to gain a more comprehensive understanding of the geochemical processes that occur during CO2 storage in reservoir rocks.
- Since storage requires pure CO2 streams, future advancements need to be made to make GCS techniques more affordable to compete with other carbon-free energy options.
- Even though many studies have been conducted to comprehend the interactions between the rock water and CO2 during CO2 storage, there is a knowledge gap regarding mixed CO2 and H2S sequestration under typical oil and gas reservoir conditions. Thus, studies need to be conducted to explore the effects of CO2 impurities on GCS. It is also essential to carry out a sensitivity analysis to evaluate the effects of longer CO2-H2S aging periods on rock samples and reliability across a broader range of H2S concentrations. In addition, the collective effects of the rock properties, such as the porosity and permeability, on the trapping efficiency should be studied, and a clear correlation should be established.
- A thorough geomechanical analysis still needs to be conducted with excessive courtesy as it would help to assure the absence of leakage when CO2 approaches the seal because of buoyancy. This would help in examining whether the leakage (which could be due to the pressure of the CO2) is high enough to overcome the entry pressure of the seal and cause caprock fractures. Geomechanical analysis also helps in studying the caprock thermal stresses.
- Solubility and mineral trapping are the most promising long-term solutions for geological CO2 storage. Hence, accelerating mineral trapping and increasing the solubility of the CO2 in the reservoir fluid are significant for enhancing effective GCS through such trapping mechanisms. Thus, further studies should be conducted on accelerating mineral trapping and increasing solubility.
- Microbes could potentially impact effective GCS by enhancing solubility and mineral trapping. Therefore, conducting in-depth research to understand and apply microbes to enhance mineral trapping is essential.
- As leakages are the main challenge in the geological storage of CO2, it is essential to further study all the mechanisms and potential pathways for leakage, including faults, fractures, failure of injection or other wells in the storage sites, and abandoned wells, as well as to assess the potential for caprock breaches, CO2 migration, and groundwater contamination and its mechanisms.
Author Contributions
Funding
Conflicts of Interest
References
- ASHRAE Task Force for Building Decarbonization Carbon Sequestration. 2021. Available online: https://www.netl.doe.gov/sites/default/files/netl-file/co2_eor_primer.pdf (accessed on 24 February 2024).
- Hurlbert, M.; Osazuwa-Peters, M. Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology. Renew. Sustain. Energy Rev. 2023, 173, 113104. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Adoption of the Paris Agreement. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 14 July 2024).
- International Energy Agency. 20 Years of Carbon Capture and Storage-Accelerating Future Deployment. Available online: https://www.iea.org/reports/20-years-of-carbon-capture-and-storage (accessed on 10 April 2024).
- Vargas Guzmán, E.L.; Sant’Anna, L.G. Integrated assessment of global carbon capture, utilization, and storage projects. Int. J. Greenh. Gas Control 2024, 131, 104031. [Google Scholar] [CrossRef]
- Kammerer, S.; Borho, I.; Jung, J.; Schmidt, M.S. Review: CO2 capturing methods of the last two decades. Int. J. Environ. Sci. Technol. 2023, 20, 8087–8104. [Google Scholar] [CrossRef]
- Delerce, S.; Marieni, C.; Oelkers, E.H. Carbonate geochemistry and its role in geologic carbon storage. Surf. Process Transp. Storage 2023, 4, 423–477. [Google Scholar]
- Mathieu, P. CO2 Emissions Mitigation from Power Generation Using Capture Technologies. In Sustainable Energy Technologies: Options and Prospects; Springer: Dordrecht, The Netherlands, 2008; pp. 195–205. Available online: https://link.springer.com/chapter/10.1007/978-1-4020-6724-2_10 (accessed on 25 June 2024).
- IEA. The Role of CO2 Storage—Analysis. Available online: https://www.iea.org/reports/the-role-of-co2-storage (accessed on 1 October 2024).
- Liu, Y.; Ren, G.; Shen, H.; Liu, G.; Li, F. Technology of CO2 capture and storage. E3S Web Conf. 2019, 118, 01046. [Google Scholar] [CrossRef]
- Cozzi, P.G.; Gualandi, A.; Potenti, S.; Calogero, F.; Rodeghiero, G. Asymmetric Reactions Enabled by Cooperative Enantioselective Amino- and Lewis Acid Catalysis. In Asymmetric Organocatalysis Combined with Metal Catalysis; Topics in Current Chemistry Collections; Springer: Cham, Switzerland, 2020; pp. 29–65. [Google Scholar]
- Kelemen, P.; Benson, S.M.; Pilorgé, H.; Psarras, P.; Wilcox, J. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Front. Clim. 2019, 1, 482595. [Google Scholar] [CrossRef]
- Xu, S.; Baslaib, M.; Keebali, A.; Para, H.; BinAmro, A. Potential for Permanent CO2 Geological Storage, an Onshore Abu Dhabi Large Scale Assessment. In Proceedings of the Society of Petroleum Engineers-ADIPEC 2022, Abu Dhabi, United Arab Emirates, 31 October–3 November 2022. [Google Scholar]
- Albertz, M.; Stewart, S.A.; Goteti, R. Perspectives on geologic carbon storage. Front. Energy Res. 2022, 10, 1071735. [Google Scholar] [CrossRef]
- Pearce, J.; Raza, S.; Baublys, K.; Hayes, P.; Firouzi, M.; Rudolph, V. Unconventional CO2 Storage: CO2 Mineral Trapping Predicted in Characterized Shales, Sandstones, and Coal Seam Interburden. SPE J. 2022, 27, 3218–3239. [Google Scholar] [CrossRef]
- Lai, X.; Chen, X.; Wang, Y.; Dai, D.; Dong, J.; Liu, W. Feasibility Analyses and Prospects of CO2 Geological Storage by Using Abandoned Shale Gas Wells in the Sichuan Basin, China. Atmosphere 2022, 13, 1698. [Google Scholar] [CrossRef]
- Garcia, S.; Kaminska, A.; Maroto-Valer, M.M. Underground carbon dioxide storage in saline formations. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2010, 163, 77–88. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Chen, Y.; Liang, Q.; Zeng, F. A Review-Dissolution and Mineralization Storage of CO2 Geological Storage in Saline Aquifers. In Proceedings of the SPE Canadian Energy Technology Conference and Exhibition, Calgary, AL, Canada, 15–16 March 2023; pp. 15–16. Available online: http://onepetro.org/specet/proceedings-pdf/23CET/1-23CET/D012S008R001/3089094/spe-212790-ms.pdf/1 (accessed on 3 June 2024).
- De Silva, G.P.D.; Ranjith, P.G.; Perera, M.S.A. Geochemical aspects of CO2 sequestration in deep saline aquifers: A review. Fuel 2015, 155, 128–143. [Google Scholar] [CrossRef]
- Khandoozi, S.; Hazlett, R.; Fustic, M. A critical review of CO2 mineral trapping in sedimentary reservoirs–from theory to application: Pertinent parameters, acceleration methods and evaluation workflow. Earth-Sci. Rev. 2023, 244, 104515. [Google Scholar] [CrossRef]
- Jun, Y.S.; Giammar, D.E.; Werth, C.J. Impacts of geochemical reactions on geologic carbon sequestration. Environ. Sci. Technol. 2013, 47, 3–8. [Google Scholar] [CrossRef]
- Montegrossi, G.; Cantucci, B.; Piochi, M.; Fusi, L.; Misnan, M.S.; Rashidi, M.R.A.; Abu Bakar, Z.A.; Tuan Harith, Z.Z.; Bahri, N.H.S.; Hashim, N. CO2 Reaction-Diffusion Experiments in Shales and Carbonates. Minerals 2023, 13, 56. [Google Scholar] [CrossRef]
- Zaidin, M.F.; Razak, A.A.; Amin, S.M.; Mohsin, N.; Pin, Y.W.; Tewari, R.D. Geochemistry Study for the CO2-H2S Injection for Storage: Experimental and Modelling. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 16–18 October 2023; Society of Petroleum Engineers (SPE): Richardson, TX, USA, 2023. [Google Scholar]
- Lu, J.; Kharaka, Y.K.; Thordsen, J.J.; Horita, J.; Karamalidis, A.; Griffith, C.; Hakala, J.A.; Ambats, G.; Cole, D.R.; Phelps, T.J.; et al. CO2-rock-brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, U.S.A. Chem. Geol. 2012, 291, 269–277. [Google Scholar] [CrossRef]
- Kharaka, Y.K.; Cole, D.R.; Thordsen, J.J.; Gans, K.D.; Thomas, R.B. Geochemical Monitoring for Potential Environmental Impacts of Geologic Sequestration of CO2. Rev. Mineral. Geochem. 2013, 77, 399–430. [Google Scholar] [CrossRef]
- Khan, M.N.; Siddiqui, S.; Thakur, G.C. Recent Advances in Geochemical and Mineralogical Studies on CO2–Brine–Rock Interaction for CO2 Sequestration: Laboratory and Simulation Studies. Energies 2024, 17, 3346. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Wang, X.; Yang, S.; Wu, H.; Leung, C.; Tian, J. A multiphysical-geochemical coupling model for caprock sealing efficiency in CO2 geosequestration. Deep. Undergr. Sci. Eng. 2023, 2, 188–203. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Kou, Z.; Zhang, L. Recent research advances in enhanced CO2 mineralization and geologic CO2 storage. Adv. Geo-Energy Res. 2023, 10, 141–145. [Google Scholar] [CrossRef]
- Espinoza, D.N.; Santamarina, J.C. Water-CO2-mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage. Water Resour. Res. 2010, 46, 7537. [Google Scholar] [CrossRef]
- Hajiabadi, S.H.; Bedrikovetsky, P.; Borazjani, S.; Mahani, H. Well Injectivity during CO2 Geosequestration: A Review of Hydro-Physical, Chemical, and Geomechanical Effects. Energy Fuels 2021, 35, 9240–9267. [Google Scholar] [CrossRef]
- Ren, L.; Liu, Q.; Ni, Y.; Xia, Y.; Chen, J. Study on the Ways to Improve the CO2-H2O Displacement Efficiency in Heterogeneous Porous Media by Lattice Boltzmann Simulation. ACS Omega 2022, 7, 20833–20844. [Google Scholar] [CrossRef] [PubMed]
- Lacis, A.A.; Schmidt, G.A.; Rind, D.; Ruedy, R.A. Atmospheric CO2: Principal control knob governing earth’s temperature. Science 2010, 330, 356–359. [Google Scholar] [CrossRef]
- Gaurina-Međimurec, N. The Influence of CO2 on Well Cement. Available online: https://www.researchgate.net/publication/49600704 (accessed on 10 July 2024).
- CO2CRC—Building a Low Emissions Future. Available online: https://co2crc.com.au/ (accessed on 26 June 2024).
- Kharaka, Y.K.; Cole, D.R. Geochemistry of Geologic Sequestration of Carbon Dioxide. In Frontiers in Geochemistry: Contribution of Geochemistry to the Study of the Earth; John Wiley and Sons: Hoboken, NJ, USA, 2011; pp. 133–174. [Google Scholar]
- Depaolo, D.J.; Cole, D.R. Geochemistry of Geologic Carbon Sequestration: An Overview. Rev. Mineral. Geochem. 2013, 77, 1–14. [Google Scholar] [CrossRef]
- Bashir, A.; Ali, M.; Patil, S.; Aljawad, M.S.; Mahmoud, M.; Al-Shehri, D.; Hoteit, H.; Kamal, M.S. Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects. Earth-Sci. Rev. 2024, 249, 104672. [Google Scholar] [CrossRef]
- Chiquet, P.; Daridon, J.L.; Broseta, D.; Thibeau, S. CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage. Energy Convers. Manag. 2007, 48, 736–744. [Google Scholar] [CrossRef]
- Benson, S.M.; Cole, D.R. CO2 Sequestration in Deep Sedimentary Formations. Elements 2008, 4, 325–331. [Google Scholar] [CrossRef]
- Bachu, S. Sequestration of CO2 in geological media in response to climate change: Road map for site selection using the transform of the geological space into the CO2 phase space. Energy Convers. Manag. 2002, 43, 87–102. [Google Scholar] [CrossRef]
- Zhu, D.; Peng, S.; Zhao, S.; Wei, M.; Bai, B. Comprehensive Review of Sealant Materials for Leakage Remediation Technology in Geological CO2 Capture and Storage Process. Energy Fuels 2021, 35, 4711–4742. [Google Scholar] [CrossRef]
- Bachu, S. CO2 storage in geological media: Role, means, status and barriers to deployment. Prog. Energy Combust. Sci. 2008, 34, 254–273. [Google Scholar] [CrossRef]
- Celia, M.A.; Nordbotten, J.M. Practical Modeling Approaches for Geological Storage of Carbon Dioxide. Groundwater 2009, 47, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, A.; Majkut, M.; Rulik, S. Analysis of pipeline transportation systems for carbon dioxide sequestration. Arch. Thermodyn. 2014, 35, 117–140. [Google Scholar] [CrossRef]
- Juanes, R.; Spiteri, E.J.; Orr, F.M.; Blunt, M.J. Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 2006, 42, W12418. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. CO2 sequestration in subsurface geological formations: A review of trapping mechanisms and monitoring techniques. Earth-Sci. Rev. 2024, 253, 104793. [Google Scholar] [CrossRef]
- Altman, S.J.; Aminzadeh, B.; Balhoff, M.T.; Bennett, P.C.; Bryant, S.L.; Cardenas, M.B.; Chaudhary, K.; Cygan, R.T.; Deng, W.; Dewers, T.; et al. Chemical and hydrodynamic mechanisms for long-term geological carbon storage. J. Phys. Chem. C 2014, 118, 15103–15113. [Google Scholar] [CrossRef]
- MousaviMirkalaei, S.M.; Edmondson, M.D. Coupled Geochemistry CCS Modelling: How Much Simplification is Required? In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 27 February–1 March 2024.
- Emami-Meybodi, H.; Hassanzadeh, H.; Green, C.P.; Ennis-King, J. Convective dissolution of CO2 in saline aquifers: Progress in modeling and experiments. Int. J. Greenh. Gas Control. 2015, 40, 238–266. [Google Scholar] [CrossRef]
- Ajayi, T.; Gomes, J.S.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef]
- Cao, C.; Liu, H.; Hou, Z.; Mehmood, F.; Liao, J.; Feng, W. A review of CO2 storage in view of safety and cost-effectiveness. Energies 2020, 13, 600. [Google Scholar] [CrossRef]
- Yang, F.; Bai, B.; Tang, D.; Shari, D.N.; David, W. Characteristics of CO2 sequestration in saline aquifers. Pet. Sci. 2009, 7, 83–92. [Google Scholar] [CrossRef]
- Bickle, M.; Kampman, N.; Wigley, M. Natural Analogues. Rev. Mineral. Geochem. 2013, 77, 15–71. [Google Scholar] [CrossRef]
- Kampman, N.; Bickle, M.; Wigley, M.; Dubacq, B. Fluid flow and CO2-fluid-mineral interactions during CO2-storage in sedimentary basins. Chem. Geol. 2014, 369, 22–50. [Google Scholar] [CrossRef]
- Xu, T.; Apps, J.A.; Pruess, K. Analysis of Mineral Trapping for CO2 Disposal in Deep Aquifers. 2001. Available online: https://escholarship.org/uc/item/59c8k6gb (accessed on 24 June 2024).
- Xu, T.; Apps, J.A.; Pruess, K. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations. J. Geophys. Res. Solid Earth 2003, 108, 2071. [Google Scholar] [CrossRef]
- Iglauer, S.; Al-Yaseri, A.Z.; Rezaee, R.; Lebedev, M. CO2 wettability of caprocks: Implications for structural storage capacity and containment security. Geophys. Res. Lett. 2015, 42, 9279–9284. [Google Scholar] [CrossRef]
- Arif, M.; Barifcani, A.; Lebedev, M.; Iglauer, S. Structural trapping capacity of oil-wet caprock as a function of pressure, temperature and salinity. Int. J. Greenh. Gas Control 2016, 50, 112–120. [Google Scholar] [CrossRef]
- Ali, M.; Aftab, A.; Arain, Z.U.A.; Al-Yaseri, A.; Roshan, H.; Saeedi, A.; Iglauer, S.; Sarmadivaleh, M. Influence of Organic Acid Concentration on Wettability Alteration of Cap-Rock: Implications for CO2 Trapping/Storage. ACS Appl. Mater. Interfaces 2020, 12, 39850–39858. [Google Scholar] [CrossRef]
- Ali, M.; Awan, F.U.R.; Ali, M.; Al-Yaseri, A.; Arif, M.; Sánchez-Román, M.; Keshavarz, A.; Iglauer, S. Effect of humic acid on CO2-wettability in sandstone formation. J. Colloid Interface Sci. 2021, 588, 315–325. [Google Scholar] [CrossRef]
- Iglauer, S. Dissolution Trapping of Carbon Dioxide in Reservoir Formation Brine—A Carbon Storage Mechanism. In Mass Transfer-Advanced Aspects; InTech: London, UK, 2011. [Google Scholar]
- Pentland, C.H.; El-Maghraby, R.; Georgiadis, A.; Iglauer, S.; Blunt, M.J. Immiscible displacements and capillary trapping in CO2 storage. Energy Procedia 2011, 4, 4969–4976. [Google Scholar] [CrossRef]
- Golding, S.D.; Uysal, I.T.; Boreham, C.J.; Kirste, D.; Baublys, K.A.; Esterle, J.S. Adsorption and mineral trapping dominate CO2 storage in coal systems. Energy Procedia 2011, 4, 3131–3138. [Google Scholar] [CrossRef]
- Bachu, S.; Adams, J.J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers. Manag. 2003, 44, 3151–3175. [Google Scholar] [CrossRef]
- Kim, K.; Kim, D.; Na, Y.; Song, Y.; Wang, J. A review of carbon mineralization mechanism during geological CO2 storage. Heliyon 2023, 9, e23135. [Google Scholar] [CrossRef] [PubMed]
- Wen, G.; Benson, S.M. CO2 plume migration and dissolution in layered reservoirs. Int. J. Greenh. Gas Control 2019, 87, 66–79. [Google Scholar] [CrossRef]
- Li, W.; Nan, Y.; Zhang, Z.; You, Q.; Jin, Z. Hydrophilicity/hydrophobicity driven CO2 solubility in kaolinite nanopores in relation to carbon sequestration. Chem. Eng. J. 2020, 398, 125449. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Lizaga, I. Sinkholes, collapse structures and large landslides in an active salt dome submerged by a reservoir: The unique case of the Ambal ridge in the Karun River, Zagros Mountains, Iran. Geomorphology 2016, 254, 88–103. [Google Scholar] [CrossRef]
- Chang, Y.B.; Coats, B.K.; Nolen, J.S. A Compositional Model for CO2 Floods Including CO2 Solubility in Water. In Proceedings of the Society of Petroleum Engineers-Permian Basin Oil and Gas Recovery Conference, Midland, TX, USA, 27–29 March 1996; pp. 189–201. [Google Scholar] [CrossRef]
- Bakhshian, S. Dynamics of dissolution trapping in geological carbon storage. Int. J. Greenh. Gas Control 2021, 112, 103520. [Google Scholar] [CrossRef]
- Taheri, A.; Chen, Y.; Chen, S.; Li, D.; Jiang, X.; Kong-Macao, G.H. Density-Driven Convection for CO2 Solubility Trapping in Saline Aquifers: Modeling and Influencing Factors. Geotechnics 2023, 3, 70–103. [Google Scholar] [CrossRef]
- MacMinn, C.W.; Szulczewski, M.L.; Juanes, R. CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 2010, 662, 329–351. [Google Scholar] [CrossRef]
- Eke, P.E.; Naylor, M.; Haszeldine, S.; Curtis, A. CO2 Leakage Prevention Technologies. In Proceedings of the Society of Petroleum Engineers-Offshore Europe Oil and Gas Conference and Exhibition, Aberdeen, UK, 6–8 September 2011; pp. 207–220. [Google Scholar] [CrossRef]
- Neufeld, J.A.; Hesse, M.A.; Riaz, A.; Hallworth, M.A.; Tchelepi, H.A.; Huppert, H.E. Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 2010, 37, L22404. [Google Scholar] [CrossRef]
- Sigfusson, B.; Gislason, S.R.; Matter, J.M.; Stute, M.; Gunnlaugsson, E.; Gunnarsson, I.; Aradottir, E.S.; Sigurdardottir, H.; Mesfin, K.; Alfredsson, H.A.; et al. Solving the carbon-dioxide buoyancy challenge: The design and field testing of a dissolved CO2 injection system. Int. J. Greenh. Gas Control 2015, 37, 213–219. [Google Scholar] [CrossRef]
- Addassi, M.; Omar, A.; Hoteit, H.; Afifi, A.M.; Arkadakskiy, S.; Ahmed, Z.T.; Kunnummal, N.; Gislason, S.R.; Oelkers, E.H. Assessing the potential of solubility trapping in unconfined aquifers for subsurface carbon storage. Sci. Rep. 2022, 12, 20452. [Google Scholar] [CrossRef]
- Soong, Y.; Fauth, D.L.; Howard, B.H.; Jones, J.R.; Harrison, D.K.; Goodman, A.; Gray, M.L.; Frommell, E.A. CO2 sequestration with brine solution and fly ashes. Energy Convers. Manag. 2006, 47, 1676–1685. [Google Scholar] [CrossRef]
- Ali, M.; Jha, N.K.; Pal, N.; Keshavarz, A.; Hoteit, H.; Sarmadivaleh, M. Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook. Earth-Sci. Rev. 2022, 225, 103895. [Google Scholar] [CrossRef]
- Pearce, J.K.; Dawson, G.K.W.; Sommacal, S.; Golding, S.D. Micro CT and experimental study of carbonate precipitation from CO2 and produced water co-injection into sandstone. Energies 2021, 14, 6998. [Google Scholar] [CrossRef]
- Steger, F.; Reich, J.; Fuchs, W.; Rittmann, S.K.M.; Gübitz, G.M.; Ribitsch, D.; Bochmann, G. Comparison of Carbonic Anhydrases for CO2 Sequestration. Int. J. Mol. Sci. 2022, 23, 957. [Google Scholar] [CrossRef]
- Power, I.M.; Harrison, A.L.; Dipple, G.M. Accelerating Mineral Carbonation Using Carbonic Anhydrase. Environ. Sci. Technol. 2016, 50, 2610–2618. [Google Scholar] [CrossRef]
- Zheng, T.; Qian, C. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase. Process Biochem. 2020, 91, 271–281. [Google Scholar] [CrossRef]
- Liu, B.; Mahmood, B.S.; Mohammadian, E.; Manshad, A.K.; Rosli, N.R.; Ostadhassan, M. Measurement of solubility of CO2 in NaCl, CaCl2, MgCl2 and MgCl2 + CaCl2 brines at temperatures from 298 to 373 K and pressures up to 20 MPa using the potentiometric titration method. Energies 2021, 14, 7222. [Google Scholar] [CrossRef]
- Cappuccio, J.A.; Pillar, V.D.; Xiao, C.; Yu, A.; Ajo-Franklin, C.M. Bacterially Acceleration of CaCO3 Mineralization. 2011. Available online: https://www.cell.com/biophysj/fulltext/S0006-3495(10)04360-2 (accessed on 9 June 2024).
- Armstrong, R.; Ajo-Franklin, J. Investigating biomineralization using synchrotron based X-ray computed microtomography. Geophys. Res. Lett. 2011, 38, L08406. [Google Scholar] [CrossRef]
- Hamm, L.M.; Bourg, I.C.; Wallace, A.F.; Rotenberg, B. Molecular Simulation of CO2-and CO3-Brine-Mineral Systems. Rev. Mineral. Geochem. 2013, 77, 189–228. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, W.; Zhang, F.; Lu, C.; Du, J.; Zhu, R.; Sun, L. Evaluation of CO2 solubility-trapping and mineral-trapping in microbial-mediated CO2–brine–sandstone interaction. Mar. Pollut. Bull. 2014, 85, 78–85. [Google Scholar] [CrossRef]
- Zhang, R.; Winterfeld, P.H.; Yin, X.; Xiong, Y.; Wu, Y.S. Sequentially coupled THMC model for CO2 geological sequestration into a 2D heterogeneous saline aquifer. J. Nat. Gas Sci. Eng. 2015, 27, 579–615. [Google Scholar] [CrossRef]
- Zhang, C.P.; Cheng, P.; Ma, Z.Y.; Ranjith, P.G.; Zhou, J.P. Comparison of fracturing unconventional gas reservoirs using CO2 and water: An experimental study. J. Pet. Sci. Eng. 2021, 203, 108598. [Google Scholar] [CrossRef]
- Gislason, S.R.; Wolff-Boenisch, D.; Stefansson, A.; Oelkers, E.H.; Gunnlaugsson, E.; Sigurdardottir, H.; Sigfusson, B.; Broecker, W.S.; Matter, J.M.; Stute, M.; et al. Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. Int. J. Greenh. Gas Control 2010, 4, 537–545. [Google Scholar] [CrossRef]
- Ali, M.; Arif, M.; Sahito, M.F.; Al-Anssari, S.; Keshavarz, A.; Barifcani, A.; Stalker, L.; Sarmadivaleh, M.; Iglauer, S. CO2-wettability of sandstones exposed to traces of organic acids: Implications for CO2 geo-storage. Int. J. Greenh. Gas Control 2019, 83, 61–68. [Google Scholar] [CrossRef]
- Iglauer, S.; Pentland, C.H.; Busch, A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resour. Res. 2015, 51, 729–774. [Google Scholar] [CrossRef]
- Ruprecht, C.; Pini, R.; Falta, R.; Benson, S.; Murdoch, L. Hysteretic trapping and relative permeability of CO2 in sandstone at reservoir conditions. Int. J. Greenh. Gas Control 2014, 27, 15–27. [Google Scholar] [CrossRef]
- Rahman, T.; Lebedev, M.; Barifcani, A.; Iglauer, S. Residual trapping of supercritical CO2 in oil-wet sandstone. J. Colloid Interface Sci. 2016, 469, 63–68. [Google Scholar] [CrossRef]
- Burnside, N.M.; Naylor, M. Review and implications of relative permeability of CO2/brine systems and residual trapping of CO2. Int. J. Greenh. Gas Control 2014, 23, 1–11. [Google Scholar] [CrossRef]
- Lamy, C.; Tech, P.; Iglauer, S.; Pentland, C.H.; Blunt, M.J.; Maitland, G. SPE 130720 Capillary Trapping in Carbonate Rocks. 2010. Available online: https://onepetro.org/SPEEURO/proceedings-abstract/10EURO/10EURO/SPE-130720-MS/106132 (accessed on 20 June 2024).
- Zhang, H.; Arif, M. Residual trapping capacity of subsurface systems for geological storage of CO2: Measurement techniques, meta-analysis of influencing factors, and future outlook. Earth-Sci. Rev. 2024, 252, 104764. [Google Scholar] [CrossRef]
- Rezk, M.G.; Foroozesh, J.; Zivar, D.; Mumtaz, M. CO2 storage potential during CO2 enhanced oil recovery in sandstone reservoirs. J. Nat. Gas Sci. Eng. 2019, 66, 233–243. [Google Scholar] [CrossRef]
- Ang, L.; Yongming, L.; Xi, C.; Zhongyi, Z.; Yu, P. Review of CO2 sequestration mechanism in saline aquifers. Nat. Gas Ind. B 2022, 9, 383–393. [Google Scholar]
- Zhang, D.; Song, J. Mechanisms for geological carbon sequestration. Procedia IUTAm 2014, 10, 319–327. [Google Scholar] [CrossRef]
- Vishal, V.; Singh, T.N. Geologic carbon sequestration: Understanding reservoir behavior. In Geologic Carbon Sequestration: Understanding Reservoir Behavior; Springer: Cham, Switzerland, 2016; pp. 1–338. [Google Scholar]
- Song, J.; Zhang, D. Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. Environ. Sci. Technol. 2013, 47, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Ampomah, W.; Balch, R.; Cather, M.; Rose-Coss, D.; Dai, Z.; Heath, J.; Dewers, T.; Mozley, P. Evaluation of CO2 Storage Mechanisms in CO2 Enhanced Oil Recovery Sites: Application to Morrow Sandstone Reservoir. Energy Fuels 2016, 30, 8545–8555. [Google Scholar] [CrossRef]
- Power, I.M.; Harrison, A.L.; Dipple, G.M.; Wilson, S.; Kelemen, P.B.; Hitch, M.; Southam, G. Carbon Mineralization: From Natural Analogues to Engineered Systems. Rev. Mineral. Geochem. 2013, 77, 305–360. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049. [Google Scholar] [CrossRef]
- Assima, G.P.; Larachi, F.; Molson, J.; Beaudoin, G. Impact of temperature and oxygen availability on the dynamics of ambient CO2 mineral sequestration by nickel mining residues. Chem. Eng. J. 2014, 240, 394–403. [Google Scholar] [CrossRef]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef]
- Li, W.; Nan, Y.; You, Q.; Jin, Z. CO2 solubility in brine in silica nanopores in relation to geological CO2 sequestration in tight formations: Effect of salinity and pH. Chem. Eng. J. 2021, 411, 127626. [Google Scholar] [CrossRef]
- Palandri, J.L.; Kharaka, Y.K. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling. Open-File Report. 2004. Available online: https://pubs.usgs.gov/of/2004/1068/pdf/OFR_2004_1068.pdf (accessed on 17 June 2024).
- Fitts, J.P.; Peters, C.A. Caprock Fracture Dissolution and CO2 Leakage. Rev. Mineral. Geochem. 2013, 77, 459–479. [Google Scholar] [CrossRef]
- Hesjevik, S.M.; Olsen, S.; Arkitekt, S.; Trondheim, E.V.; Seiersten, M. Corrosion at High CO2 Pressure. 10 N-7005. Available online: http://onepetro.org/NACECORR/proceedings-pdf/CORR03/All-CORR03/NACE-03345/1877132/nace-03345.pdf/1 (accessed on 31 May 2024).
- Gaus, I.; Audigane, P.; André, L.; Lions, J.; Jacquemet, N.; Durst, P.; Czernichowski-Lauriol, I.; Azaroual, M. Geochemical and solute transport modelling for CO2 storage, what to expect from it? Int. J. Greenh. Gas Control 2008, 2, 605–625. [Google Scholar] [CrossRef]
- Luo, C.; Liu, H.Q.; Wang, Z.C.; Lyu, X.C.; Zhang, Y.Q.; Zhou, S. A comprehensive study on the effect of rock corrosion and CO2 on oil-water interfacial tension during CO2 injection in heavy oil reservoirs. Pet. Sci. Technol. 2023, 1–13. [Google Scholar] [CrossRef]
- Raza, A.; Gholami, R.; Sarmadivaleh, M.; Tarom, N.; Rezaee, R.; Bing, C.H.; Nagarajan, R.; Hamid, M.A.; Elochukwu, H. Integrity analysis of CO2 storage sites concerning geochemical-geomechanical interactions in saline aquifers. J. Nat. Gas Sci. Eng. 2016, 36, 224–240. [Google Scholar] [CrossRef]
- Liu, E.; Lu, X.; Wang, D. A Systematic Review of Carbon Capture, Utilization and Storage: Status, Progress and Challenges. Energies 2023, 16, 2865. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, J.; Liu, Y.; Jia, Y.; Lu, Y.; Sun, X.; Zhao, G.; Liu, Y. Pore alteration of Yanchang shale after CO2-brine-rock interaction: Influence on the integrity of caprock in CO2 geological sequestration. Fuel 2024, 363, 130952. [Google Scholar] [CrossRef]
- Rohmer, J.; Pluymakers, A.; Renard, F. Mechano-chemical interactions in sedimentary rocks in the context of CO2 storage: Weak acid, weak effects? Earth-Sci. Rev. 2016, 157, 86–110. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, K.; Zhou, L.; Jiang, Y.; Xian, X.; Zhang, C.; Tian, S.; Fan, M.; Lu, Z. Microstructure and mechanical properties alterations in shale treated via CO2/CO2-water exposure. J. Pet. Sci. Eng. 2021, 196, 108088. [Google Scholar] [CrossRef]
- Md Yusof, M.A.; Mohamed, M.A.; Md Akhir, N.A.; Ibrahim, M.A.; Saaid, I.M.; Idris, A.K.; Idress, M.; Awangku Matali, A.A.A. Influence of Brine–Rock Parameters on Rock Physical Changes During CO2 Sequestration in Saline Aquifer. Arab. J. Sci. Eng. 2022, 47, 11345–11359. [Google Scholar] [CrossRef]
- Adila, A.S.; Raza, A.; Zhang, Y.; Mahmoud, M.; Arif, M. Geochemical Interactions Among Rock/CO2/Brine Systems: Implications for CO2 Geo-Storage. In Proceedings of the Society of Petroleum Engineers-Gas and Oil Technology Showcase and Conference, GOTS 2023, Dubai, United Arab Emirates, 13–15 March 2023. [Google Scholar] [CrossRef]
- Li, Z.; Lv, Y.; Liu, B.; Fu, X. Reactive Transport Modeling of CO2-Brine–Rock Interaction on Long-Term CO2 Sequestration in Shihezi Formation. Energies 2023, 16, 670. [Google Scholar] [CrossRef]
- Soong, Y.; Howard, B.; Haljasmaa, I.; Crandall, D.; Dilmore, R.; Dalton, L.E.; Wu, Z.; Wang, P.; Gray, M.L.; Shi, F. CO2/Brine/Rock Interactions in the Cedar Keys-Lawson Formation. Univers. J. Carbon Res. 2023, 1, 48–62. [Google Scholar] [CrossRef]
- Qiu, R.; Zhang, G.; Anhai, Z.; Mingjing, L.; Feng, Y.; Zhou, D. Effects of Supercritical CO2-Brine/shale Interaction on Fracturing Behavior. In Proceedings of the 57th US Rock Mechanics/Geomechanics Symposium, Atlanta, GA, USA, 25–28 June 2023. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Xing, H.; Zou, Y. CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs. Energy 2022, 256, 124608. [Google Scholar] [CrossRef]
- Arous, S.J.A.; Tehrani, D.M.; Bazvand, M. Investigation of the effects of carbon dioxide injection on the rock and fluid intraction in high permeable sandstone reserviors. Pet. Sci. Technol. 2023, 41, 387–405. [Google Scholar] [CrossRef]
- Føyen, T.; Brattekås, B.; Fernø, M.A.; Barrabino, A.; Holt, T. Increased CO2 storage capacity using CO2-foam. Int. J. Greenh. Gas Control 2020, 96, 103016. [Google Scholar] [CrossRef]
- Sæle, A.M.; Graue, A.; Alcorn, Z.P. The Effect of Rock Type on CO2 Foam for CO2 EOR and CO2 Storage. In Proceedings of the International Petroleum Technology Conference, Bangkok, Thailand, 1–3 March 2023. [Google Scholar] [CrossRef]
- Rezaee, R.; Saeedi, A.; Iglauer, S.; Evans, B. Shale alteration after exposure to supercritical CO2. Int. J. Greenh. Gas Control 2017, 62, 91–99. [Google Scholar] [CrossRef]
- Qin, C.; Jiang, Y.; Luo, Y.; Xian, X.; Liu, H.; Li, Y. Effect of supercritical carbon dioxide treatment time, pressure, and temperature on shale water wettability. Energy Fuels 2017, 31, 493–503. [Google Scholar] [CrossRef]
- Lu, Y.; Gong, T.; Tang, J.; Cheng, Q.; Zhang, C.; Zhao, G.; Liu, B. Evolution of shale wetting properties under long-term CO2/brine/shale interaction: Implications for CO2 storage in shale reservoirs. Gas Sci. Eng. 2024, 126, 205334. [Google Scholar] [CrossRef]
- Liu, Q.; Mercedes Maroto-Valer, M. Parameters affecting mineral trapping of CO2 sequestration in brines. Greenh. Gases Sci. Technol. 2011, 1, 211–222. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, Y.; Rong, Y.; Bai, Z.; Bai, H.; Li, M.; Zhang, Q. Geochemical reaction of compressed CO2 energy storage using saline aquifer. Alex. Eng. J. 2023, 64, 679–689. [Google Scholar] [CrossRef]
- Vafaie, A.; Cama, J.; Soler, J.M.; Kivi, I.R.; Vilarrasa, V. Chemo-hydro-mechanical effects of CO2 injection on reservoir and seal rocks: A review on laboratory experiments. Renew. Sustain. Energy Rev. 2023, 178, 113270. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, D.; Jin, Z.; Tian, H.; Zhou, B.; Jiang, P.; Meng, Q.; Wu, X.; Xu, H.; Hu, T.; et al. Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs. Renew. Sustain. Energy Rev. 2023, 171, 113000. [Google Scholar] [CrossRef]
- Zaidin, M.F.; Amin, S.M.; Azuddin, F.J.; Razak, A.A.; Mohsin, N.; Pin, Y.W.; Tewari, R.D. Enhancing CO2-H2S Storage Predictions in High H2S Fields: Improving Model Accuracy and Kinetic Rate Information. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 12 February 2024. [Google Scholar]
- Hazarika, S.; Boruah, A.; Kumar, H. Study of pore structure of shale formation for CO2 storage. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Jha, N.K.; Ali, M.; Sarmadivaleh, M.; Iglauer, S.; Barifcani, A.; Lebedev, M.; Sangwai, J. Low Salinity Surfactant Nanofluids for Enhanced CO2 Storage Application At High Pressure and Temperature. In Proceedings of the The Netherlands Fifth CO2 Geological Storage Workshop, Utrecht, The Netherlands, 21–23 November 2018. [Google Scholar]
- Ali, M.; Sahito, M.F.; Jha, N.K.; Memon, S.; Keshavarz, A.; Iglauer, S.; Saeedi, A.; Sarmadivaleh, M. Effect of nanofluid on CO2-wettability reversal of sandstone formation; implications for CO2 geo-storage. J. Colloid Interface Sci. 2020, 559, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xu, T.; Wang, F.; Tian, H. Experimental study of CO2–brine–rock interaction during CO2 sequestration in deep coal seams. Int. J. Coal Geol. 2016, 154–155, 265–274. [Google Scholar] [CrossRef]
- Mohamed, I.M.; Nasr-El-Din, H.A. Fluid/rock interactions during CO2 sequestration in deep saline carbonate aquifers: Laboratory and modeling studies. SPE J. 2013, 18, 468–485. [Google Scholar] [CrossRef]
- Palencia, C.; Araujo De Itriago, Y.; Singletary, P. Potential Damage Complications in Supercritical CO2 Storage. 2023. Available online: http://onepetro.org/urtecla/proceedings-pdf/23JLAU/1-23JLAU/D011S001R003/3383030/urtec-2023-3969779-ms.pdf (accessed on 8 July 2024).
- Shukla, R.; Ranjith, P.; Haque, A.; Choi, X. A review of studies on CO2 sequestration and caprock integrity. Fuel 2010, 89, 2651–2664. [Google Scholar] [CrossRef]
- Lu, J.; Partin, J.W.; Hovorka, S.D.; Wong, C. Potential risks to freshwater resources as a result of leakage from CO2 geological storage: A batch-reaction experiment. Environ. Earth Sci. 2010, 60, 335–348. [Google Scholar] [CrossRef]
- Little, M.G.; Jackson, R.B. Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers. Environ. Sci. Technol. 2010, 44, 9225–9232. [Google Scholar] [CrossRef]
- Espinoza, D.N.; Santamarina, J.C. CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage. Int. J. Greenh. Gas Control 2017, 66, 218–229. [Google Scholar] [CrossRef]
- Kaldi, J.; Daniel, R.; Tenthorey, E.; Michael, K.; Schacht, U.; Nicol, A.; Underschultz, J.; Backe, G. Containment of CO2 in CCS: Role of Caprocks and Faults. Energy Procedia 2013, 37, 5403–5410. [Google Scholar] [CrossRef]
- Song, Y.; Jun, S.; Na, Y.; Kim, K.; Jang, Y.; Wang, J. Geomechanical challenges during geological CO2 storage: A review. Chem. Eng. J. 2023, 456, 140968. [Google Scholar] [CrossRef]
- Gillioz, A.; Verga, F.; Deangeli, C. Critical Parameters for Caprock Tensile Failure Induced by CO2 Injection into Aquifers. In Proceedings of the SPE Europe Energy Conference and Exhibition, Turin, Italy, 26–28 June 2024; pp. 26–28. [Google Scholar] [CrossRef]
- de Kok, J. Monitoring Injectivity for CO2 Injection in Depleted Gas Reservoirs. In Proceedings of the SPE Europe Energy Conference and Exhibition, Turin, Italy, 26–28 June 2024. [Google Scholar] [CrossRef]
- Khan, S.; Khulief, Y.; Al-Shuhail, A.; Bashmal, S.; Iqbal, N. The Geomechanical and Fault Activation Modeling during CO2 Injection into Deep Minjur Reservoir, Eastern Saudi Arabia. Sustainability 2020, 12, 9800. [Google Scholar] [CrossRef]
- Celia, M.A.; Nordbotten, J.M.; Court, B.; Dobossy, M.; Bachu, S. Field-scale application of a semi-analytical model for estimation of CO2 and brine leakage along old wells. Int. J. Greenh. Gas Control 2011, 5, 257–269. [Google Scholar] [CrossRef]
- Birkholzer, J.T.; Nicot, J.P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K. Brine flow up a well caused by pressure perturbation from geologic carbon sequestration: Static and dynamic evaluations. Int. J. Greenh. Gas Control 2011, 5, 850–861. [Google Scholar] [CrossRef]
- Gholami, R.; Raza, A.; Iglauer, S. Leakage risk assessment of a CO2 storage site: A review. Earth-Sci. Rev. 2021, 223, 103849. [Google Scholar] [CrossRef]
- Carey, J.W. Geochemistry of Wellbore Integrity in CO2 Sequestration: Portland Cement-Steel-Brine-CO2 Interactions. Rev. Mineral. Geochem. 2013, 77, 505–539. [Google Scholar] [CrossRef]
- Nordboiten, J.M.; Kavetski, D.; Celia, M.A.; Bachu, S. Model for CO2 leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 2009, 43, 743–749. [Google Scholar] [CrossRef]
- Viswanathan, H.S.; Pawar, R.J.; Stauffer, P.H.; Kaszuba, J.P.; Carey, J.W.; Olsen, S.C.; Keating, G.N.; Kavetski, D.; Guthrie, G.D. Development of a hybrid process and system model for the assessment of wellbore leakage at a geologic CO2 sequestration site. Environ. Sci. Technol. 2008, 42, 7280–7286. [Google Scholar] [CrossRef]
- Feng, Y.; Yan, W.; Zhang, L.; Wang, Y. Corrosion in CO2 Geological Utilization and Storage. In Corrosion in CO2 Capture, Transportation, Geological Utilization and Storage; Engineering Materials; Springer: Singapore, 2023; Part F680; pp. 47–79. Available online: https://link.springer.com/chapter/10.1007/978-981-99-2392-2_4 (accessed on 7 August 2024).
- Su, X.; Liu, S.; Zhang, L.; Liu, G.; Wang, Y.; Gan, M.; Li, X. Wellbore leakage risk management in CO2 geological utilization and storage: A review. Energy Rev. 2023, 2, 100049. [Google Scholar] [CrossRef]
- Raza, A.; Gholami, R.; Rabiei, M.; Rasouli, V.; Rezaee, R.; Fakhari, N. Impact of geochemical and geomechanical changes on CO2 sequestration potential in sandstone and limestone aquifers. Greenh. Gases Sci. Technol. 2019, 9, 905–923. [Google Scholar] [CrossRef]
- Emberley, S.; Hutcheon, I.; Shevalier, M.; Durocher, K.; Gunter, W.D.; Perkins, E.H. Geochemical monitoring of fluid-rock interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada. Energy 2004, 29, 1393–1401. [Google Scholar] [CrossRef]
- Busch, A.; Bertier, P.; Gensterblum, Y.; Rother, G.; Spiers, C.J.; Zhang, M.; Wentinck, H.M. On sorption and swelling of CO2 in clays. Geomech. Geophys. Geo-Energy Geo-Resour. 2016, 2, 111–130. [Google Scholar] [CrossRef]
- Rutqvist, J. The geomechanics of CO2 storage in deep sedimentary formations. Geotech. Geol. Eng. 2012, 30, 525–551. [Google Scholar] [CrossRef]
- Shaffer, G. Long-term effectiveness and consequences of carbon dioxide sequestration. Nat. Geosci. 2010, 3, 464–467. [Google Scholar] [CrossRef]
- Harvey, O.R.; Qafoku, N.P.; Cantrell, K.J.; Lee, G.; Amonette, J.E.; Brown, C.F. Geochemical Implications of Gas Leakage associated with Geologic CO2 Storage—A Qualitative Review. Environ. Sci. Technol. 2012, 47, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Deel, D.; Mahajan, K.; Mahoney, C.R.; Mcilvried, H.G.; Srivastava, R.D. Risk Assessment and Management for Long-Term Storage of CO2 in Geologic Formations-United States Department of Energy R&D. Syst. Cybern. Inform. 2007, 5, 79–84. [Google Scholar]
- Raziperchikolaee, S.; Pasumarti, A. The impact of the depth-dependence of in-situ stresses on the effectiveness of stacked caprock reservoir systems for CO2 storage. J. Nat. Gas Sci. Eng. 2020, 79, 103361. [Google Scholar] [CrossRef]
- Carroll, S.; Hao, Y.; Aines, R. Geochemical detection of carbon dioxide in dilute aquifers. Geochem. Trans. 2009, 10, 4. [Google Scholar] [CrossRef]
- Li, D.; Ren, S.; Rui, H. CO2 Leakage Behaviors in Typical Caprock-Aquifer System during Geological Storage Process. ACS Omega 2019, 4, 17874–17879. [Google Scholar] [CrossRef]
- Vialle, S.; Ajo-Franklin, J.; Carey, J.W. Geological Carbon Storage: Subsurface Seals and Caprock Integrity; Geophysical Monograph; Wiley: Hoboken, NJ, USA, 2019; Volume 238. [Google Scholar]
- Manceau, J.C.; Hatzignatiou, D.G.; de Lary, L.; Jensen, N.B.; Réveillère, A. Mitigation and remediation technologies and practices in case of undesired migration of CO2 from a geological storage unit—Current status. Int. J. Greenh. Gas Control 2014, 22, 272–290. [Google Scholar] [CrossRef]
- Wilke, F.D.H.; Vásquez, M.; Wiersberg, T.; Naumann, R.; Erzinger, J. On the interaction of pure and impure supercritical CO2 with rock forming minerals in saline aquifers: An experimental geochemical approach. Appl. Geochem. 2012, 27, 1615–1622. [Google Scholar] [CrossRef]
- Ahmad, A.A.; MSaaid, I.; Muhammad, M.A.; Husein, N.; Zaidin, M.F.; Mohamad Sabil, K. Physical and chemical effect of impurities in carbon capture, utilisation and storage. J. Pet. Explor. Prod. Technol. 2023, 13, 1235–1246. [Google Scholar]
- Zaidin, M.F. Thermophysical Properties of CO2 Aqueous Solutions and the Impact of H2S on CO2 Storage. 2020. Available online: https://www.ros.hw.ac.uk/handle/10399/4465 (accessed on 19 July 2024).
- Labus, K.; Suchodolska, K. Predicting the Interactions of H2S-CO2 Mixtures with Aquifer Rock, based on Experiments and Geochemical Modeling. Procedia Earth Planet. Sci. 2017, 17, 288–291. [Google Scholar] [CrossRef]
- Clark, D.E.; Oelkers, E.H.; Gunnarsson, I.; Sigfússon, B.; Snæbjörnsdóttir, S.Ó.; Aradottir, E.S.; Gíslason, S.R. CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C. Geochim. Cosmochim. Acta 2020, 279, 45–66. [Google Scholar] [CrossRef]
- Amin, S.M.; Zaidin, M.F.; Azuddin, F.J.; Razak, A.A.; Mohsin, N.; Pin, Y.W.; Tewari, R.D. Laboratory and Modelling Study on Comparison of Geochemical Reactivity in Carbonate Reservoir Due to CO2 Injection with/without the Presence of H2S at High Temperature and Pressure. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 27 February–1 March 2024. [Google Scholar]
- Turnbull, J.C.; Keller, E.D.; Norris, M.W.; Wiltshire, R.M. Atmospheric monitoring of carbon capture and storage leakage using radiocarbon. Int. J. Greenh. Gas Control 2017, 56, 93–101. [Google Scholar] [CrossRef]
- Bilardo, U.; Panvini, F. Carbon Sequestration: Key Features and Issues. Available online: http://onepetro.org/OMCONF/proceedings-pdf/OMC07/All-OMC07/1832810/omc-2007-036.pdf (accessed on 21 May 2024).
- Fang, Z.; Khaksar, A.; Gibbons, K.; Hughes, B. Geomechanical Risk Assessments for CO2 Sequestration in Depleted Hydrocarbon Sandstone Reservoirs. 2012. Available online: http://onepetro.org/DC/article-pdf/27/03/367/2091406/spe-133994-pa.pdf/1 (accessed on 21 May 2024).
- Ning, Y.; Tura, A. Wellbore Integrity Impact on Carbon Leakage to Ensure Safe Geological Sequestration. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–5 October 2022. [Google Scholar] [CrossRef]
- Moghanloo, R.G.; Yan, X.; Law, G.; Roshani, S.; Babb, G.; Herron, W. Challenges Associated with CO2 Sequestration and Hydrocarbon Recovery. In Recent Advances in Carbon Capture and Storage; InTech: London, UK, 2017. [Google Scholar]
- Li, D.; Zhang, L.; Ren, B.; Ren, S. Experimental Study of CO2-Sensitive Chemicals for Enhanced Sealing of Leakage Pathways in CO2 Geological Storage Process. Energy Procedia 2014, 63, 4646–4657. [Google Scholar] [CrossRef]
- Fatah, A.; Norrman, K.; Al-Yaseri, A. Surface Chemistry and Chemical Structure of Shale Caprocks Exposed to CO2: Implication for Sealing Integrity. Energy Fuels 2024, 38, 4390–4400. [Google Scholar] [CrossRef]
- Martin, F.D.; Taber, J.J.; Mexico, N. Because of the Minimum Pressure Requirement Carbon Dioxide Flooding. 1992. Available online: http://onepetro.org/JPT/article-pdf/44/04/396/2223032/spe-23564-pa.pdf/1 (accessed on 4 June 2024).
- Hameli, A.; Dhuhoori, A.; Gomes, P.; Al Hameli, F.; Belhaj, H.; Al Dhuhoori, M. CO2 Sequestration Overview in Geological Formations: Trapping Mechanisms Matrix Assessment. Energies 2022, 15, 7805. [Google Scholar] [CrossRef]
- Chen, B.; Harp, D.R.; Lin, Y.; Keating, E.H.; Pawar, R.J. Geologic CO2 sequestration monitoring design: A machine learning and uncertainty quantification based approach. Appl. Energy 2018, 225, 332–345. [Google Scholar] [CrossRef]
- Shi, Z.; Driba, D.L.; Rivera, N.L.; Kariminasab, M.; Beckingham, L.E. A Review of Coupled Geochemical–Geomechanical Impacts in Subsurface CO2, H2, and Air Storage Systems. Energies 2024, 17, 2928. [Google Scholar] [CrossRef]
Geomechanical Aspects | Geochemistry/Geochemical Aspects |
---|---|
|
|
|
|
|
|
| |
|
|
Trapping Mechanisms | Description | Advantages | Challenges |
---|---|---|---|
Structural (stratigraphic) (in pore space) |
|
|
|
Residual/capillary trapping (in flushed zone) |
|
|
|
Solubility trapping (in host brine) |
|
|
|
Mineral trapping |
|
|
|
Author | Objectives | Key Findings |
---|---|---|
[132] | To review parameters influencing mineral trapping of CO2 sequestration in brine. |
|
[133] | To investigate the effect of CO2 solubility on the rates of geochemical reactions. |
|
[134] | To investigate the effect of injecting CO2 on the properties of the rock. |
|
[117] | To comprehensively analyze the pore structure of Yanchang shale by looking at the changes in the shale pore structure and mineral composition before and after the interaction. |
|
[119] | To explore the effects of sub-/supercritical CO2–water mixture on shale’s microstructural and mechanical properties. |
|
[135] | To ensure the maximum capture amount and long-term safety of CO2 storage by numerically simulating artificial CO2 injection for 30 years in a depleted oil reservoir (a case study). |
|
[115] | To evaluate the changes in the variation in sandstone’s geomechanical properties when exposed to ScCO2 for a shorter duration. |
|
[24] | To measure the critical geochemical reaction parameters between injected CO2–H2S, reservoir rocks, and brine and their impact on the fluid and rock properties. |
|
[136] | To determine the kinetic rates of mineral dissolution, specifically for CO2 injection in the presence of H2S into carbonate formations. |
|
[137] | To examine the essential factors for using shale formations in CO2 gas storage. |
|
[138] | To study the caprock’s effect on the migration of CO2 in carbonate clay. To assess the changes in the permeability of CO2 after a breakthrough. |
|
[139] | To examine the effects of organic acids on the rock wettability in CO2 storage in sandstone. To assess the effect of nanofluids in enhancing CO2 storage. |
|
[79] | To assess how organic acids influence the CO2 geo-storage efficiency in carbonate and sandstone. To study the capacities of nanoparticles to enhance the storage capacity. |
|
[140] | To investigate the interaction between caprock, CO2, and brine in Qinshui Basin coalbed. Also, to validate the results from a geochemical simulation with experimental results for enhancing geological CO2 geo-storage predictions. |
|
[141] | To assess how CO2 injection impacts carbonate rock permeability. |
|
[142] | To measure the effect of CO2 injection on the reduction in the well injectivity in terms of the decrease in the core permeability. |
|
Geological CO2 Leakage Issues | Engineering CO2 Leakage Issues |
---|---|
Leakages, natural fractures, and faults | Leakage due to wellbore integrity failure |
Leakages across caprocks | Leakage through injection-induced fractures |
Leakage through unconfined lateral migration | Leakage due to storage site overfill |
Leakage due to volcanic and tectonic activities | Leakage due to post-storage disturbance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fentaw, J.W.; Emadi, H.; Hussain, A.; Fernandez, D.M.; Thiyagarajan, S.R. Geochemistry in Geological CO2 Sequestration: A Comprehensive Review. Energies 2024, 17, 5000. https://doi.org/10.3390/en17195000
Fentaw JW, Emadi H, Hussain A, Fernandez DM, Thiyagarajan SR. Geochemistry in Geological CO2 Sequestration: A Comprehensive Review. Energies. 2024; 17(19):5000. https://doi.org/10.3390/en17195000
Chicago/Turabian StyleFentaw, Jemal Worku, Hossein Emadi, Athar Hussain, Diana Maury Fernandez, and Sugan Raj Thiyagarajan. 2024. "Geochemistry in Geological CO2 Sequestration: A Comprehensive Review" Energies 17, no. 19: 5000. https://doi.org/10.3390/en17195000
APA StyleFentaw, J. W., Emadi, H., Hussain, A., Fernandez, D. M., & Thiyagarajan, S. R. (2024). Geochemistry in Geological CO2 Sequestration: A Comprehensive Review. Energies, 17(19), 5000. https://doi.org/10.3390/en17195000