A Review of the Physical and Chemical Characteristics and Energy-Recovery Potential of Municipal Solid Waste in China
Abstract
:1. Introduction
2. Current Status of MSW Treatment and Data Collection in China
3. Physical and Chemical Properties of MSW in China
3.1. Physical Properties of MSW in China
3.1.1. Physical Composition of MSW in China
3.1.2. Moisture Content of MSW
3.2. Chemical Characterization of MSW in China
3.2.1. Elemental Composition of MSW
Chemical Composition of Domestic Waste in Different Regions
Ranges of Chemical Composition of MSW in China
3.2.2. Elemental Composition of Kitchen Waste
3.2.3. Elemental Composition of Sorted Waste
- eo: Elemental composition of the remaining waste after removal of kitchen waste, %;
- eo’: Corrected elemental composition of the remaining waste after removal of f kitchen waste, %;
- ew: Elemental composition of domestic waste wet base, %;
- ekd: Elemental composition of dry kitchen waste base, %;
- Mk: Moisture in kitchen waste, %;
- a: Percentage of kitchen waste, %;
- ec: Elemental composition of sorted waste (excluding kitchen waste, metals, glass and ash bricks, etc.), %;
- b: Percentage of noncombustible waste such as glass, metal, and ash bricks and blocks, %;
- Mc: Sorted waste moisture, %;
- Ac: Ash content of sorted waste, %.
4. Calculations of MSW Calorific Value, ERP, and PGP
4.1. Calculation of Physical-Composition Calorific Value
- Q: Calorific value, kJ/kg;
- Rud: Components of plastic–rubber MSW on a dry basis, %;
- K: Percentage of kitchen waste on a dry basis, %;
- Pad: Components of paper household waste on a dry basis, %;
- Wm: Moisture content of MSW, %;
4.2. Calculation of Calorific Value of Chemical-Element Composition
- QD, QS, and QSK are the calorific values, calculated by the above three equations, respectively, kJ/kg;
- C, H, O, and S are the percentage of elemental mass in MSW, %.
4.3. Analysis of ERP and PGP in Different Regions
4.3.1. Analysis of the ERP and PGP of Unclassified Waste
- ERPI: MSW incineration energy-recovery potential (kWh);
- QD: The calculation of the calorific value of MSW is determined in accordance with Section 3 using Equation (6) (kJ/kg);
- M: Annual clearing volume of MSW (kt); calculation of the mass in the required unit hours therefore requires division by the factors 365 and 24;
- PGPI: Net electricity-generation potential from incineration (kW); the conversion efficiency is 0.25 [106].
4.3.2. Analysis of Energy-Recovery Rate and Power-Generation Potential of Waste Separation
- ERPL: Energy-recovery potential of MSW fermentation for biogas production (kWh) [106];
- NCV: Net calorific value, MSW biomass process normally takes the value 0.218 (kW·m−3) [108];
- η: The gas production rate for 1 t of kitchen waste is usually taken as 115.73 (m3) [109];
- Pf: Percentage of kitchen waste in different regions (%);
- PGPL: Net power-generation potential from fermentation (kW); the conversion efficiency is 0.3 [106].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MSW | municipal solid waste |
MSWI | municipal solid waste incineration |
ERP | energy-recovery potential |
PGP | power-generation potential |
EC | East China |
NC | North China |
NEC | Northeast China |
CC | Central China |
SC | South China |
SWC | Southwest China |
NWC | Northwest China |
GHG | Greenhouse Gas |
LCA | Life-Cycle Assessment |
References
- Hu, Y.; Peng, L.; Li, X.; Yao, X.; Lin, H.; Chi, T. A novel evolution tree for analyzing the global energy consumption structure. Energy 2018, 147, 1177–1187. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.C.; Bhadatata, P.; Van Woerden, F. What a Waste 2.0; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Wang, Z.; Teng, Y.; Hui, X.; Chen, Z. A Sustainable Development Multi-energy System Planning Method Incorporating the Demand of Waste Disposal and Peak Shaving. Proc. CSEE 2021, 41, 16. [Google Scholar]
- Statistics, N.B.O. China Statistical Yearbook; National Bureau of Statistics: Beijing, China, 2022.
- Haque, N.; Azad, A.K. Comparative Study of Hydrogen Production from Organic Fraction of Municipal Solid Waste and Its Challenges: A Review. Energies 2023, 16, 7853. [Google Scholar] [CrossRef]
- Arruda Ferraz de Campos, V.; Carmo-Calado, L.; Mota-Panizio, R.; Matos, V.; Silva, V.B.; Brito, P.S.; Eusébio, D.F.L.; Tuna, C.E.; Silveira, J.L. A Waste-to-Energy Technical Approach: Syngas–Biodiesel Blend for Power Generation. Energies 2023, 16, 7384. [Google Scholar] [CrossRef]
- Istrate, I.-R.; Galvez-Martos, J.-L.; Vázquez, D.; Guillén-Gosálbez, G.; Dufour, J. Prospective analysis of the optimal capacity, economics and carbon footprint of energy recovery from municipal solid waste incineration. Resour. Conserv. Recycl. 2023, 193, 106943. [Google Scholar] [CrossRef]
- Han, X.; Chang, H.; Wang, C.; Tai, J.; Karellas, S.; Yan, J.; Song, L.; Bi, Z. Tracking the life-cycle greenhouse gas emissions of municipal solid waste incineration power plant: A case study in Shanghai. J. Clean. Prod. 2023, 398, 136635. [Google Scholar] [CrossRef]
- Chen, Y.C. Evaluating greenhouse gas emissions and energy recovery from municipal and industrial solid waste using waste-to-energy technology. J. Clean. Prod. 2018, 192, 262–269. [Google Scholar] [CrossRef]
- Liu, B.; Han, Z.; Liang, X. Dioxin emissions from municipal solid waste incineration in the context of waste classification policy. Atmos. Pollut. Res. 2023, 14, 101842. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Chen, Q.; Tan, P.; Qiu, L.; Deng, Y.; Wang, F.; Jiang, N. Analysis of Composition of Municipal Solid Wastes in Xi’an and Anaerobic Fermentation Performance with Different Solid Concentrations. China Biogas 2019, 37, 37–43. [Google Scholar]
- Abedi, S.; Nozarpour, A.; Tavakoli, O. Evaluation of biogas production rate and leachate treatment in Landfill through a water-energy nexus framework for integrated waste management. Energy Nexus 2023, 11, 100218. [Google Scholar] [CrossRef]
- Knoop, C.; Dornack, C.; Raab, T. Nutrient and heavy metal accumulation in municipal organic waste from separate collection during anaerobic digestion in a two-stage laboratory biogas plant. Bioresour. Technol. 2017, 239, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Sun, X.; Wang, Q.; Ma, H.; Teng, Y. Lactic acid recovery from fermentation broth of kitchen garbage by esterification and hydrolysis method. Biomass Bioenergy 2009, 33, 21–25. [Google Scholar] [CrossRef]
- Huang, N. Application of dry anaerobic fermentation technology in municipal domestic waste treatment. Sichuan Archit. 2019, 39, 4. [Google Scholar]
- Liu, S.; Dai, S. Research on Driving Factors of Improving Urban Solid Waste Disposal Capacity: Based on the Empirical Analysis of 30 Provinces from 2004 to 2020. Chin. J. Environ. Manag. 2023, 15, 109–117. [Google Scholar] [CrossRef]
- Sun, H.; Xie, Z.; Liang, Y.; Zhang, J. The current situation and development of domestic domestic waste incineration power generation under the background of “dual-carbon”. In Proceedings of the Jilin Electrical Engineering Society 2022 Annual Academic Conference, Jilin, China; 2022; pp. 226–229. [Google Scholar]
- Sun, X. Research on the current situation and development trend of waste incineration power generation in China. Telecom World 2020, 27, 137–138. [Google Scholar]
- Li, W.; Ma, Z.; Yang, E.; Cai, Y.; Chen, Z.; Gao, R.; Yan, J.; Cao, X.; Pan, E. Characteristics of Electrostatic Precipitator Ash and Bag Filter Ash From a Circulating Fluidized Bed Municipal Solid Waste Incinerator. Proc. CSEE 2019, 39, 1397–1405. [Google Scholar] [CrossRef]
- Chen, C.; Jin, Y.; Chi, Y. Effects of moisture content and CaO on municipal solid waste pyrolysis in a fixed bed reactor. J. Anal. Appl. Pyrolysis 2014, 110, 108–112. [Google Scholar]
- Gu, B.; Jiang, S.; Wang, H.; Wang, Z.; Jia, R.; Yang, J.; He, S.; Cheng, R. Characterization, quantification and management of China’s municipal solid waste in spatiotemporal distributions: A review. Waste Manag. 2017, 61, 67–77. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Q.; Dong, L.; Xi, B.; Zhou, B. The current situation of solid waste management in China. J. Mater. Cycles Waste Manag. 2006, 8, 63–69. [Google Scholar] [CrossRef]
- Ji, L.D. The current municipal solid waste management situation in Tibet. Waste Manag. 2009, 29, 1186–1191. [Google Scholar]
- Li, X.; Bi, F.; Han, Z.; Qin, Y.; Wang, H.; Wu, W. Garbage source classification performance, impact factor, and management strategy in rural areas of China: A case study in Hangzhou. Waste Manag. 2019, 89, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Tai, J.; Zhang, W.; Che, Y.; Feng, D. Municipal solid waste source-separated collection in China: A comparative analysis. Waste Manag. 2011, 31, 1673–1682. [Google Scholar] [CrossRef]
- Wang, C.M. Municipal solid waste management in Beijing: Characteristics and challenges. Waste Manag. Res. 2013, 31, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Liao, W.; Wu, J.; Yang, X.; Shui, W.; Deng, S.; Zhang, Y.; Lin, L.; Xiao, Y.; et al. Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China. Waste Manag. 2018, 77, 252–267. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Ma, S.; Yu, X.; Chen, Z.; Yan, L. A comparison study of bottom-up and top-down methods for analyzing the physical composition of municipal solid waste. J. Ind. Ecol. 2021, 26, 240–251. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, A.H.; Long, Y.Q.; Li, Q.H.; Zhang, Y.G. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. ChemInform 2015, 46. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wu, S.-W.; Wang, Y.-L.; Wu, W.-X.; Chen, Y.-X. Source separation of household waste: A case study in China. Waste Manag. 2008, 28, 2022–2030. [Google Scholar] [CrossRef]
- Chen, G. The Prediction of the Status about the Municipal Solid Waste in Beijing and the Evaluation of the Effectiveness. Master’s Thesis, North China University of Technology, Beijing, China, 2009. [Google Scholar]
- Chen, R. Analysis of Municipal Solid Disposal Status and Process Scheme of Resource Utilization in a City of Northeast China. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2014. [Google Scholar]
- Chen, W. Comparative analysis of physical composition and characteristics of domestic waste in urban and rural areas of Beijing. Recycl. Resour. Circ. Econ. 2020, 13, 17–22. [Google Scholar]
- Dong, X.; Xia, S.; Li, X. Physical Component Characteristics of Domestic Waste in Songjiang District, Shanghai. Environ. Sanit. Eng. 2015, 23, 26–28. [Google Scholar]
- Dong, X.; Zhang, Y. Investigation and Analysis of Physicochemical Characteristics of Municipal Solid Waste in Shanghai. Environ. Sanit. Eng. 2016, 24, 18–21. [Google Scholar]
- Du, C. Survey and Analysis of Municipal Domestic Waste in Dujiangyan. Environ. Sanit. Eng. 2016, 24, 8–9. [Google Scholar]
- Du, W.; Gao, Q.; Zhang, E.; Miu, Q.; Wu, J. The Emission Status and Composition Analysis of Municipal Solid Waste in China. Res. Environ. Sci. 2006, 19, 85–90. [Google Scholar]
- Huang, C. The Statistical Analysis of Characteristics of Municipal Solid Waste for Shenzhen. Master’s Thesis, Huazhong University of Science & Technology, Wuhan, China, 2012. [Google Scholar]
- Huang, H. Characteristic Analysis of Domestic Waste in Yanshan Area. Environ. Sanit. Eng. 2003, 150–151. [Google Scholar]
- Jiang, J.; Xiao, B.; Yang, J.; Li, J.; Shi, X. Pyrolysis Gas Characteristics of Municipal Solid Waste. Environ. Sci. Technol. 2006, 79–81+120. [Google Scholar]
- Jiang, Z.; Zhang, W.; Qi, W. Physical Properties and Change Regularity of Domestic Waste in Qingdao City. Environ. Sanit. Eng. 2011, 19, 36–37+41. [Google Scholar]
- Li, C.; Li, G.; Jiang, J.; Pan, L.; Xu, D. Contributions of Different Components of Domestic Waste for Compost Putrescibility. Environ. Sanit. Eng. 2009, 17, 1–4. [Google Scholar]
- Li, C. Beijing Urban Areas MSW Physical and Chemical Properties Investigation. Master’s Thesis, Beijing University of Technology, Beijing, China, 2015. [Google Scholar]
- Li, D. Inquiry and Characteristics Study on Biological Pretreatment of Municipal Solid Waste in Dalian. Master’s Thesis, Dalian University of Technology, Dalian, China, 2008. [Google Scholar]
- Li, M.; Zheng, Z. Property Change of Domestic Waste and Diversified Transition of Treatment Technologies in Jinan. Environ. Sanit. Eng. 2014, 22, 62–64. [Google Scholar]
- Li, X.; Lu, S.; Xu, X.; Yan, J.; Chi, Y. Analysis on caloric value of Chinese cities’ municipal solid waste. China Environ. Sci. 2001, 61–65. [Google Scholar]
- Li, Y. Study on Refuse Derived Fuel Product from Waste and Energy Utilization. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Liu, D.; Huang, M.; Ren, Y.; Ren, X. Basic Characteristics of Municipal Domestic Waste and Its Availability in Sichuan Province. In Proceedings of the Sichuan Society of Environmental Science 2011 Academic Annual Meeting, Chengdu, China, 14 December 2011; pp. 379–385. [Google Scholar]
- Lu, X.; Yang, D.; Yao, J. Study on Influencing Factors of Municipal Solid Waste Heating Value in Taiyuan. Environ. Sanit. Eng. 2018, 26, 29–32. [Google Scholar]
- Lv, Y. Analysis on Models to Evaluate the Lower Heating Value of Municipal Solid Waste in South China City. China Resour. Compr. Util. 2020, 38, 82–85. [Google Scholar]
- Qu, X. Study on Life Cycle Assessment of Urban Solid waste Processing Systems in Qingdao. Master’s Thesis, Qingdao University of Technology, Qingdao, China, 2011. [Google Scholar]
- Song, H.; Wang, T. Status and Countermeasures of Domestic Waste Treatment in Zhengzhou City. Environ. Sanit. Eng. 2012, 20, 28–29+32. [Google Scholar]
- Song, Q. Research on Hydrogen Production of Food Waste and Sewage Sludge by Anaerobic Fermentation. Master’s Thesis, Dalian University of Technology, Dalian, China, 2008. [Google Scholar]
- Tang, Y. Measurement of Heat Value for Municipal Domestic Waste in Tianjin. Environ. Sanit. Eng. 2013, 21, 26–27. [Google Scholar]
- Tao, X.; Huang, T.; Yang, H.; Tang, X. Survey and analysis of municipal domestic waste in the urban zone of Chengdu city. Guangdong Agric. Sci. 2009, 94–96. [Google Scholar]
- Wang, G.; Zhang, H.; Wang, D.; Zhang, L.; Sun, W. Physical Composition and Characteristics Analysis of the Municipal Solid Waste (MSW) in Beijing. Environ. Eng. 2018, 36, 132–136. [Google Scholar]
- Wang, Z.; Zhou, Y. The significance of domestic waste composition, physical and chemical properties for incineration for power generation. Clean. World 2020, 36, 51–53. [Google Scholar]
- Wei, X.; Wang, X.; Li, L.; Liu, C.; Stanisavljevic, N.; Peng, X. Temporal and spatial characteristics of municipal solid waste generation and treatment in China from 1979 to 2016. China Environ. Sci. 2018, 38, 3833–3843. [Google Scholar]
- Xiao, M.; Zhou, J. Investigation and Analysis on the Municipal Waste Situation of Jiujiang City. Jiangxi Energy 2008, 51–53. [Google Scholar]
- Xin, M.; Dong, Y.; Cai, Y.; Chen, L.; Xu, L.; Cheng, L. Study on thermolysis and burning of the main combustible components of city refuse. Cem. Eng. 2010, 66–71. [Google Scholar]
- Xu, Y.; Guo, D. Present status and Countermeasure of Domestic Waste in Jinan. Environ. Sanit. Eng. 2005, 46–48. [Google Scholar]
- Yang, G.; Ma, Z. Feasibility study of municipal solid waste incineration power generation in Jinhua. Energy Eng. 2005, 10–13. [Google Scholar]
- Yang, N.; Shao, L.; He, P. Study on the moisture content and its features for municipal solid waste fractions in China. China Environ. Sci. 2018, 38, 1033–1038. [Google Scholar]
- Zhang, B. Study on Prediction Model of Municipal Solid Waste Transportation Amount and Composition. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2008. [Google Scholar]
- Zhao, W. Study on Pyrolytic Combustion Characteristics of MSW and Incineration Experiment with Co-Current Shaft Furnace. Ph.D. Thesis, Northeastern University, Boston, MA, USA, 2012. [Google Scholar]
- Wang, X.Y.; Shen, G.X.; Wang, l.; Qi, Z.F.; Dong, X.D. Physical and Chemical Characteristics of Domestic Waste in Shanghai and Production Analysis; Shanghai Environmental Sanitation Engineering Design Institute: Shanghai, China, 2005; Available online: https://kns.cnki.net/kcms2/article/abstract?v=0qMDjMp0v1mm0s_kT87l6ev9179YuIhHI8RM3O6ZhBFdYlqcU1le9xfJsWFN_uxF6Q8DuzreaVvWZ-SzkuE54ss9VnRZWSLN5G4zIbjk44J63R2-yDeQeZTxF8N33cNAzk7KMVDbJX0sJ_wjbCtORfkXw_5HX9_3&uniplatform=NZKPT&language=CHS (accessed on 5 December 2023).
- CJT313-2009; Sampling and Analytical Methods for Domestic Waste. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2009.
- Jia-Wei, L.; Sukun, Z.; Jing, H.; Ming, L. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions. Waste Manag. 2017, 69, 170–186. [Google Scholar]
- Liu, X.; Wang, W.; Gao, X.; Zhou, Y.; Shen, R. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manag. 2012, 32, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Yan, J.; Li, X.; Jiang, X.; Yang, J.; Ma, Z.; Ni, M.; Cen, K. Characteristics of typical municipal solid waste and heterogeneous circulating fluidized bed incineration technology. Proc. Munic. Waste Inciner. 2005. [Google Scholar]
- Li, D.; Gu, H. Investigation and Analysis of Municipal Solid Waste Status Quo in Chongqing. Chongqing Environ. Sci. 2001, 23, 3. [Google Scholar]
- Wang, Y.; Yuan, H.; Lu, T.; Xiong, Z. Municipal solid waste heat value analysis and prediction based on level of economic development. Eng. J. Wuhan Univ. 2012, 45, 3. [Google Scholar]
- Wang, Z. An analysis of the correlation between physical classification, elemental analysis and calorific value of domestic waste. In Proceedings of the 2017 East China Area Academic Exchange Conference of the China Coal Society, Fuzhou, China, 18 October 2017. [Google Scholar]
- Xi, Y.; Li, H.; Fan, W. Analysis of dynamic characteristics of physical and chemical properties of municipal domestic waste. Shanghai Environ. Sci. 2002, 21, 4. [Google Scholar]
- Xiong, C. Research on the Pyrolysis Characteristic of MSW in Nanchuan and Cold Flow Field Analysis in Circulating Fluidized Bed. Master’s Thesis, Chongqing University, Chongqing, China, 2005. [Google Scholar]
- Xiong, Q. Calculation and Comparison of Calorific Value of Domestic Waste in Selected Municipalities. Theor. Res. Urban Constr. 2018, 191. [Google Scholar]
- Zhang, X. Determination and Evaluation on Calculation Model of Calorific Value of Municipal Solid Waste in Beijing. In Proceedings of the Environmental Engineering 2018 National Academic Conference, Beijing, China, 20 August 2018. [Google Scholar]
- Huang, B.; Li, X.; Wang, L.; Cui, Z. Analysis of Physicochemical Property and Discussion of Disposal of MSW in the Urban Zone of Chongqing City. J. Chongqing Univ. 2003, 26, 5. [Google Scholar]
- Huang, M.; Liu, D. Characteristic and Composition of Municipal Solid Waste in Sichuan Province. Environ. Monit. China 2012, 28, 3. [Google Scholar]
- De Clercq, D.; Wen, Z.; Fan, F.; Caicedo, L. Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing. Renew. Sustain. Energy Rev. 2016, 59, 1676–1685. [Google Scholar]
- Hongcai, S.; Xuanyou, Z.; Rendong, Z.; Zhihao, Z.; Yan, Z.; Gaojun, Z.; Caimeng, Y.; Dwi, H.; Mi, Y. Hydrothermal carbonization of food waste after oil extraction pre-treatment: Study on hydrochar fuel characteristics, combustion behavior, and removal behavior of sodium and potassium-ScienceDirect. Sci. Total Environ. 2020, 754, 142192. [Google Scholar] [CrossRef]
- Jin, C.; Sun, S.; Yang, D.; Sheng, W.; Ma, Y.; He, W.; Li, G. Anaerobic digestion: An alternative resource treatment option for food waste in China. Sci. Total Environ. 2021, 779, 146397. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, T.; Wei, X. Main performance analysis of kitchen waste gasification in a small-power horizontal plasma jet reactor. J. Energy Inst. 2019, 93, 367–376. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Li, J. Enhanced split-phase resource utilization of kitchen waste by thermal pre-treatment. Energy 2016, 98, 155–167. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Li, J.; Chen, Y.; Gong, Y.; Li, Y.; Zhang, J. Current Situation and Development of Kitchen Waste Treatment in China. Procedia Environ. Sci. 2016, 31, 40–49. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, B.; Li, A.; Zhang, L.; Li, R.; Yang, T.; Xing, W. Mechanism of process imbalance of long-term anaerobic digestion of food waste and role of trace elements in maintaining anaerobic process stability-ScienceDirect. Bioresour. Technol. 2019, 275, 172–182. [Google Scholar] [CrossRef]
- Yuan, J.; Li, Y.; Wang, G.; Zhang, D.; Shen, Y.; Ma, R.; Li, D.; Li, S.; Li, G. Biodrying performance and combustion characteristics related to bulking agent amendments during kitchen waste biodrying. Bioresour. Technol. 2019, 284, 56–64. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, S.; Guo, J.; Zhou, J.; Dong, R. Performance and kinetic evaluation of semi-continuously fed anaerobic digesters treating food waste: Role of trace elements. Bioresour. Technol. 2015, 178, 297–305. [Google Scholar] [CrossRef]
- Chen, J.; Huang, M. Pollutants emission and calorific value effect during kitchen waste co-combustion with different combustible fuel. Environ. Prot. Technol. 2017, 23, 6. [Google Scholar]
- Guo, J. Research on the Combustion Characteristic of Municipal Solid Waste. Master’s Thesis, North China Electric Power University, Hebei, China, 2008. [Google Scholar]
- Hong, N.; Yu, H.; Xue, X.; Wang, P.; Zhan, S. Study on pyrolysis liquefaction characteristics of typical components of kitchen trash. Chin. J. Environ. Eng. 2010, 6. [Google Scholar]
- Jin, T.; Yan, J.; Michael, B.; Moritz, M.; Cao, X.; Lu, H. Experimental study on making bio-coal from food waste by hydrothermal carbonization. Renew. Energy Resour. 2014, 32, 7. [Google Scholar]
- Liu, L.; Li, H.; Chen, M.; Wu, H.; Ou, F. Study on combustion characteristics and kinetics of kitchen waste for degreased under different oxygen concentrations. Chin. J. Environ. Eng. 2015, 9, 929–933. [Google Scholar]
- Qu, Z.; Liu, Z.; Zhu, Z.; Li, B.; Zhang, Y. Bio-crude Production from Kitchen Waste through Hydrothermal Liquefaction. Acta Energiae Solaris Sin. 2016, 37, 7. [Google Scholar]
- Wang, T. Study of Mechanism for Hydrothermal Carbonization of Food Waste and the Clean and Enhanced Pelletization Properties of Hydrochar. Ph.D. Thesis, Hunan University, Changsha, China, 2019. [Google Scholar]
- Xia, M. Physical and Chemical Characteristics Analysis of the Kitchen Waste in Shanghai. J. Anhui Agric. Sci. 2015, 43, 3. [Google Scholar]
- Yi, R. An Experimental Research on Catalytic Pyrolysis of Municipal Solid Waste. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2007. [Google Scholar]
- Zhang, J.; Wang, D.; Jiang, B.; Wei, Y. Hydrothermal liquefaction of kitchen waste for bio-oil production. CIESC J. 2016, 67, 8. [Google Scholar]
- Zhang, X.; Xing, X.; Mi, M.; Li, Y.; Ma, P. Study on Combustion Characteristics and Kinetics of Food Waste and Its Hydrochars. Acta Energiae Solaris Sin. 2020, 41, 8. [Google Scholar]
- Zhang, Z.; Yuan, J.; Wang, G.; Zhang, D.; Li, B.; Li, G. Effects of bulking agent amendments on the combustion properties of biological drying products of kitchen waste. Chin. J. Environ. Eng. 2020, 14, 11. [Google Scholar]
- Zhao, X.; He, D.; Wang, L. Study on Combustion Characteristics of Kitchen Waste. Sichuan Environ. 2019, 38, 4. [Google Scholar]
- Zhao, Y.; Liu, J.; Li, R.; Nie, Y. De-volatilization kinetics of the combustible components in municipal solid waste. J. Tsinghua Univ. (Sci. Technol.) 2007, 47, 5. [Google Scholar]
- Wang, K. Study on Models for Predicting Heat Value of Municipal Solid Waste. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2007. [Google Scholar]
- EuropeDay. Available online: https://europeday.europa.eu/index_en (accessed on 15 December 2023).
- Zhao, S.; Li, X.; Cai, Z.; Zhao, Z. Study on the status quo and countermeasures of urban and rural living garbage classification and treatment in China. Resour. Econ. Environ. Prot. 2022, 118–121. [Google Scholar]
- Chakraborty, M.; Sharma, C.; Pandey, J.; Gupta, P.K. Assessment of Energy Generation Potentials of MSW in Delhi under Different Technological Options. Energy Convers. Manag. 2013, 75, 249–255. [Google Scholar] [CrossRef]
- 2021 China Refuse Incineration Power Generation Market Status and Development Prospect Forecast Analysis. 2021. Available online: www.askci.com (accessed on 10 December 2023).
- Ma, T.; Wang, X.; Hong, T.; Chen, D.; Zhang, W. Temporal and Spatial Variation & Influence Factors Analysis of Waste–to–energy Utilization Potential for Municipal Solid Waste in China. Energy Conserv. Technol. 2021, 039, 99–106. [Google Scholar]
- Pramanik, S.K.; Suja, F.B.; Zain, S.M.; Pramanik, B.K. The Anaerobic Digestion Process of Biogas Production from Food Waste: Prospects and Constraints. Bioresour. Technol. Rep. 2019, 8, 100310. [Google Scholar] [CrossRef]
- Porteous, A. Why energy from waste incineration is an essential component of environmentally responsible waste management. Waste Manag. 2005, 25, 459. [Google Scholar]
Regions | EC | NC | NEC | CC | SC | SWC | NWC | Nationwide | ||
---|---|---|---|---|---|---|---|---|---|---|
Component | ||||||||||
Paper, % | 8.93 | 13.73 | 6.99 | 6.62 | 10.15 | 9.12 | 7.13 | 9.76 | ||
Plastic, rubber, % | 11.75 | 15.74 | 10.40 | 12.09 | 20.92 | 13.66 | 8.95 | 13.13 | ||
Textile, % | 2.47 | 1.83 | 2.94 | 2.00 | 6.40 | 3.57 | 2.57 | 2.65 | ||
Wood, % | 1.47 | 3.19 | 1.36 | 5.24 | 4.00 | 1.77 | 3.75 | 2.40 | ||
Kitchen waste, % | 60.15 | 58.03 | 57.73 | 57.72 | 51.72 | 58.72 | 50.33 | 58.31 | ||
Glass, % | 1.80 | 1.49 | 4.45 | 3.07 | 1.93 | 1.18 | 3.28 | 1.87 | ||
Metal, % | 0.54 | 0.50 | 1.69 | 0.76 | 0.63 | 1.04 | 1.48 | 0.70 | ||
Other waste, % | 10.16 | 5.97 | 13.64 | 16.25 | 4.24 | 9.10 | 22.50 | 10.44 |
Regions | EC | NC | NEC | CC | SC | SWC | NWC | Nationwide |
---|---|---|---|---|---|---|---|---|
Moisture, % | 53.30 | 52.68 | 55.07 | 45.77 | 52.06 | 53.43 | 40.58 | 51.62 |
Regions | EC | NC | NEC | CC | SC | SWC | NWC | Nationwide | |
---|---|---|---|---|---|---|---|---|---|
Elements | |||||||||
C, % | 15.99 | 14.89 | 16.44 | 15.06 | 17.47 | 15.26 | 9.63 | 15.80 | |
H, % | 2.24 | 1.64 | 2.30 | 1.99 | 2.35 | 2.01 | 1.47 | 2.13 | |
O, % | 8.70 | 13.07 | 10.17 | 9.42 | 11.00 | 12.06 | 6.02 | 10.70 | |
N, % | 0.42 | 0.40 | 0.58 | 0.43 | 0.43 | 0.63 | 0.22 | 0.46 | |
S, % | 0.09 | 0.12 | 0.11 | 2.30 | 0.09 | 0.13 | 0.09 | 0.09 | |
Cl, % | 0.69 | 0.46 | 0.26 | - | 0.76 | 0.47 | - | 0.55 | |
Moisture, % | 51.87 | 46.04 | 49.53 | 47.32 | 49.78 | 52.85 | 24.95 | 51.12 | |
Ash, % | 24.90 | 22.82 | 13.86 | 28.27 | 20.39 | 10.91 | 59.52 | 23.000 |
Elements | C | H | N | O | S | Cl | Moisture (M) |
---|---|---|---|---|---|---|---|
Kitchen-waste composition (dry basis), % | 43.23 | 6.26 | 2.84 | 36.53 | 0.37 | 0.37 | 66.743 |
Elementals | C | H | N | O | S | Cl | Moisture (M) | |
---|---|---|---|---|---|---|---|---|
Regions | ||||||||
EC | 26.87 | 3.61 | - | 5.10 | 0.06 | 2.46 | 29.43 | |
NC | 19.24 | 1.28 | - | 17.71 | 0.15 | 1.28 | 17.41 | |
NEC | 36.19 | 4.88 | 0.14 | 14.01 | 0.15 | 1.06 | 26.02 | |
CC | 30.45 | 3.55 | - | 10.86 | 10.04 | 0.00 | 20.81 | |
SC | 24.20 | 3.07 | - | 11.37 | 0.06 | 1.79 | 31.60 | |
SWC | 22.77 | 2.63 | 0.25 | 16.45 | 0.21 | 1.51 | 33.08 | |
NWC | 10.68 | 1.88 | - | - | 0.13 | - | - | |
Nationwide | 25.86 | 3.18 | - | 12.61 | 0.07 | 1.83 | 29.26 |
Elemental range, % | C | H | O | N |
12.75~18.37 | 1.75~2.50 | 7.95~13.10 | 0.39~0.59 | |
Elemental range, % | S | Cl | Ash | Moisture |
0.07~0.15 | 0.27~0.69 | 16.01~30.00 | 46.96~56.65 | |
Calorific value, kJ/kg | 2674.50~7511.70 |
Parameters | MSW Removal in Different Regions | ERP | PGP | |
---|---|---|---|---|
Regions | kt | GWh | GW | |
EC | 43,898 | 264,897.70 | 2759.57 | |
NC | 45,310 | 183,349.06 | 1910.04 | |
NEC | 20,208 | 122,436.12 | 1275.48 | |
CC | 43,344 | 240,400.32 | 2504.37 | |
SC | 50,427 | 320,017.95 | 3333.79 | |
SWC | 29,476 | 139,028.14 | 1448.33 | |
NWC | 16,029 | 61,324.23 | 638.85 | |
Nationwide | 248,692 | 1,272,724.55 | 13,258.61 |
Parameters | MSW Removal in Different Regions | ERP | PGP | |
---|---|---|---|---|
Regions | kt | GWh | GW | |
EC | 43,898 | 384,077.53 | 4331.42 | |
NC | 45,310 | 239,209.81 | 2820.86 | |
NEC | 20,208 | 211,079.75 | 2344.86 | |
CC | 43,344 | 410,664.17 | 4591.03 | |
SC | 50,427 | 396,976.57 | 4461.79 | |
SWC | 29,476 | 196,264.97 | 2261.09 | |
NWC | 16,029 | 96,669.42 | 1107.97 | |
Nationwide | 248,692 | 1,841,267.39 | 20,896.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; An, D.; Shi, Y.; Bai, R.; Du, S. A Review of the Physical and Chemical Characteristics and Energy-Recovery Potential of Municipal Solid Waste in China. Energies 2024, 17, 491. https://doi.org/10.3390/en17020491
Li J, An D, Shi Y, Bai R, Du S. A Review of the Physical and Chemical Characteristics and Energy-Recovery Potential of Municipal Solid Waste in China. Energies. 2024; 17(2):491. https://doi.org/10.3390/en17020491
Chicago/Turabian StyleLi, Jinsong, Donghai An, Yuetao Shi, Ruxue Bai, and Shanlin Du. 2024. "A Review of the Physical and Chemical Characteristics and Energy-Recovery Potential of Municipal Solid Waste in China" Energies 17, no. 2: 491. https://doi.org/10.3390/en17020491
APA StyleLi, J., An, D., Shi, Y., Bai, R., & Du, S. (2024). A Review of the Physical and Chemical Characteristics and Energy-Recovery Potential of Municipal Solid Waste in China. Energies, 17(2), 491. https://doi.org/10.3390/en17020491