Preparation and Performance Study of CaCl2 Composite Adsorbent Based on Rock Wool Board Suitable for Continuous Heat Storage/Release of Trombe Wall
Abstract
:1. Introduction
2. Experiment
2.1. Synthesis of Composite Adsorbent
2.2. Characterisation of Porous Matrix and Salt Composites
- (1)
- Scanning electron microscope test
- (2)
- FTIR
- (3)
- TGA/DSC
- (4)
- Pore analysis
- (5)
- The sorption/desorption performance testing
3. Results and Discussion
3.1. Physicochemical Characterization
3.2. Structural Characteristics
3.3. Salt Content Analysis
3.4. Analysis of Adsorption/Desorption Properties of Composite Adsorbents
3.4.1. Adsorption Performance
3.4.2. Desorption Performance
3.5. Cycle Performance of Composite Adsorbent
3.6. The Energy Density of the Composite Adsorbent
4. Application of Composite Adsorbents in Trombe Walls
5. Conclusions
- The smaller the density and thickness of the matrix, the higher the salt content of the composite adsorbent. Among the eight samples, the YMB55-CaCl2(10) composite adsorbent has the highest salt content, up to 51%. The macroporous structure of the rock wool board is conducive to the loading of CaCl2 and the mass transfer of water vapor. During the experiment, the composite adsorbent had no solution leakage and had good structural stability.
- The high salt content is conducive to improving the adsorption capacity. Under the conditions of 18 ℃-70%RH (temperature ±5 ℃, humidity ±5%RH), the adsorption capacity of YMB55-CaCl2(10) is 0.6 g/g, and the water absorption performance is optimal. The TG-DSC test shows that the heat storage density of YMB55-CaCl2(10) is 838 J/g.
- The water absorption performance of the composite adsorbent was evaluated in the repeated adsorption/desorption cycle, and the results showed that the composite adsorbent had relatively stable adsorption performance.
- The thermal performance test of the Trombe wall experimental device combined with YMB55-CaCl2(10) was carried out. The experimental results showed that the temperature in the experimental device increased by about 3 ℃, and the indoor airflow was promoted to achieve natural ventilation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Cao, X.; Zhang, S.; Lei, Z.; Zhao, K. Dynamic Characteristic and Decoupling Relationship of Energy Consumption on China’s Construction Industry. Buildings 2022, 12, 1745. [Google Scholar] [CrossRef]
- International Energy Agency. Transition to Sustainable Buildings: Strategies and Opportunities to 2050; International Energy Agency: Paris, France, 2013. [Google Scholar]
- Osman, A.I.; Chen, L.; Yang, M.; Msigwa, G.; Farghali, M.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environ. Chem. Lett. 2022, 21, 741–764. [Google Scholar] [CrossRef]
- Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Circular economy strategies for combating climate change and other environmental issues. Environ. Chem. Lett. 2022, 21, 55–80. [Google Scholar] [CrossRef]
- Li, Y.; Guan, B.; Guo, J.; Chen, Y.; Ma, Z.; Zhuang, Z.; Zhu, C.; Dang, H.; Chen, L.; Shu, K.; et al. Renewable synthetic fuels: Research progress and development trends. J. Clean. Prod. 2024, 450, 141849. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, C.Y.; Yan, J. Investigation on the Ca(OH)2/CaO thermochemical energy storage system with potassium nitrate addition. Sol. Energy Mater. Sol. Cells 2020, 215, 110646. [Google Scholar] [CrossRef]
- Zeng, Z.Y.; Zhao, B.C.; Wang, R.Z. Passive day and night heating for zero energy buildings with solar-based adsorption thermal battery. Cell Rep. Phys. Sci. 2021, 2, 100578. [Google Scholar] [CrossRef]
- Prozuments, A.; Borodinecs, A.; Bebre, G.; Bajare, D. A Review on Trombe Wall Technology Feasibility and Applications. Sustainability 2023, 15, 3914. [Google Scholar] [CrossRef]
- Hei, S.; Zhang, H.; Pan, W. A Novel Combined Trombe Wall System for Village Houses in Cold Regions of China. J. Therm. Sci. 2021, 30, 2254–2266. [Google Scholar] [CrossRef]
- Tatsidjodoung, P.; Le Pierrès, N.; Luo, L. A review of potential materials for thermal energy storage in building applications. Renew. Sustain. Energy Rev. 2013, 18, 327–349. [Google Scholar] [CrossRef]
- Figueiredo, A.; Vicente, R.; Lapa, J.; Cardoso, C.; Rodrigues, F.; Kämpf, J. Indoor thermal comfort assessment using different constructive solutions incorporating PCM. Appl. Energy 2017, 208, 1208–1221. [Google Scholar] [CrossRef]
- Pomianowski, M.; Heiselberg, P.; Zhang, Y. Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 2013, 67, 56–69. [Google Scholar] [CrossRef]
- Oluah, C.; Akinlabi, E.T.; Njoku, H.O. Selection of phase change material for improved performance of Trombe wall systems using the entropy weight and TOPSIS methodology. Energy Build. 2020, 217, 109967. [Google Scholar] [CrossRef]
- Zhu, N.; Deng, R.; Hu, P.; Lei, F.; Xu, L.; Jiang, Z. Coupling optimization study of key influencing factors on PCM trombe wall for year thermal management. Energy 2021, 236, 121470. [Google Scholar] [CrossRef]
- Vanaga, R.; Narbuts, J.; Freimanis, R.; Zundāns, Z.; Blumberga, A. Performance Assessment of Two Different Phase Change Materials for Thermal Energy Storage in Building Envelopes. Energies 2023, 16, 5236. [Google Scholar] [CrossRef]
- Hinojosa, J.F.; Moreno, S.F.; Maytorena, V.M. Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review. Energies 2023, 16, 3078. [Google Scholar] [CrossRef]
- Askari, M.; Jahangir, M.H. Evaluation of thermal performance and energy efficiency of a Trombe wall improved with dual phase change materials. Energy 2023, 284, 128587. [Google Scholar] [CrossRef]
- Peng, S.-H.; Lo, S.-L. Hybrid (Optimal) Selection Model for Phase Change Materials Used in the Cold Energy Storage of Air Conditioning Systems. Energies 2023, 17, 63. [Google Scholar] [CrossRef]
- Peng, S.-H.; Lo, S.-L. An Economic Analysis of Energy Saving and Carbon Mitigation by the Use of Phase Change Materials for Cool Energy Storage for an Air Conditioning System—A Case Study. Energies 2024, 17, 912. [Google Scholar] [CrossRef]
- Al-Ahmed, A.; Sari, A.; Khan, F.; Al-Rasheidi, M.; Hekimoğlu, G.; Afzaal, M.; Alsulami, A.A.; Dafalla, H.; Salhi, B.; Alsulaiman, F.A. A Novel Layered Double Hydroxide and Dodecyl Alcohol Assisted PCM Composite with High Latent Heat Storage Capacity and Thermal Conductivity. J. Therm. Sci. 2022, 33, 537–547. [Google Scholar] [CrossRef]
- N’Tsoukpoe, K.E.; Liu, H.; Le Pierrès, N.; Luo, L. A review on long-term sorption solar energy storage. Renew. Sustain. Energy Rev. 2009, 13, 2385–2396. [Google Scholar] [CrossRef]
- Yu, N.; Wang, R.Z.; Wang, L.W. Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 2013, 39, 489–514. [Google Scholar] [CrossRef]
- Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale. Appl. Energy 2017, 190, 920–948. [Google Scholar] [CrossRef]
- Rashidi, S.; Esfahani, J.A.; Rashidi, A. A review on the applications of porous materials in solar energy systems. Renew. Sustain. Energy Rev. 2017, 73, 1198–1210. [Google Scholar] [CrossRef]
- Solé, A.; Martorell, I.; Cabeza, L.F. State of the art on gas–solid thermochemical energy storage systems and reactors for building applications. Renew. Sustain. Energy Rev. 2015, 47, 386–398. [Google Scholar] [CrossRef]
- Li, W.; Luo, X.; Yang, P.; Wang, Q.; Zeng, M.; Markides, C.N. Solar-thermal energy conversion prediction of building envelope using thermochemical sorbent based on established reaction kinetics. Energy Convers. Manag. 2022, 252, 115117. [Google Scholar] [CrossRef]
- Solé, A.; Fontanet, X.; Barreneche, C.; Martorell, I.; Fernández, A.I.; Cabeza, L.F. Parameters to take into account when developing a new thermochemical energy storage system. Energy Procedia 2012, 30, 380–387. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Liu, S.; Wang, Z.; Shen, Y. Development and Characteristics Analysis of Novel Hydrated Salt Composite Adsorbents for Thermochemical Energy Storage. Energies 2023, 16, 6572. [Google Scholar] [CrossRef]
- Wei, S.; Han, R.; Su, Y.; Zhou, W.; Li, J.; Su, C.; Gao, J.; Zhao, G.-B.; Qin, Y. Development of pomegranate-type CaCl2@C composites via a scalable one-pot pyrolysis strategy for solar-driven thermochemical heat storage. Energy Convers. Manag. 2020, 212, 112694. [Google Scholar] [CrossRef]
- Courbon, E.; D’Ans, P.; Permyakova, A.; Skrylnyk, O.; Steunou, N.; Degrez, M.; Frère, M. A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability. Appl. Energy 2017, 190, 1184–1194. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Liu, X.; Yang, F.; Guan, L.; Sani, S.; Sun, C.; Wu, Y. Development of MgSO4/mesoporous silica composites for thermochemical energy storage: The role of porous structure on water adsorption. Energy Rep. 2022, 8, 4913–4921. [Google Scholar] [CrossRef]
- Kremnev, V.; Basok, B.; Timoshchenko, A.; Tymchyshyn, S. Energy Saving in Construction by Wide Application of High-Quality Insulation Based on Basalt Fibers. J. Mod. Phys. 2018, 9, 1724–1734. [Google Scholar] [CrossRef]
- Borner, A.; Panerai, F.; Mansour, N.N. High temperature permeability of fibrous materials using direct simulation Monte Carlo. Int. J. Heat Mass Transf. 2017, 106, 1318–1326. [Google Scholar] [CrossRef]
- Bennici, S.; Dutournié, P.; Cathalan, J.; Zbair, M.; Nguyen, M.H.; Scuiller, E.; Vaulot, C. Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios. Renew. Sustain. Energy Rev. 2022, 158, 112197. [Google Scholar] [CrossRef]
- Chen, H.-J.; Cui, Q.; Tang, Y.; Chen, X.-J.; Yao, H.-Q. Attapulgite based LiCl composite adsorbents for cooling and air conditioning applications. Appl. Therm. Eng. 2008, 28, 2187–2193. [Google Scholar] [CrossRef]
- Jabbari-Hichri, A.; Bennici, S.; Auroux, A. CaCl2-containing composites as thermochemical heat storage materials. Sol. Energy Mater. Sol. Cells 2017, 172, 177–185. [Google Scholar] [CrossRef]
- Casey, S.P.; Elvins, J.; Riffat, S.; Robinson, A. Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage—Selection, synthesis and characterisation of candidate materials. Energy Build. 2014, 84, 412–425. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Zbair, M.; Dutournié, P.; Bennici, S. Thermochemical sorption heat storage: Investigate the heat released from activated carbon beads used as porous host matrix for MgSO4 salt. J. Energy Storage 2023, 59, 106452. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, W.; Han, R.; Li, J.; Gao, J.; Zhao, G.; Qin, Y. Scalable Production of EP/CaCl2 @C Multistage Core–Shell Sorbent for Solar-Driven Sorption Heat Storage Application. Energy Fuels 2021, 35, 6845–6857. [Google Scholar] [CrossRef]
- Li, S.; Tao, Y.; Li, J.; Liu, Y. Study on Pyrolysis Behavior of Phenolic Resin by TG-DSC-FTIR. J. North East Estry Univ. 2007, 35, 56–58. (In Chinese) [Google Scholar]
- Yang, X.; Wang, C.; Liu, J.; Gao, H.; He, C. Effect of calcium chloride hexahydrate-based phase change material on energy storage and thermal insulation performance of rock wool insulation board. J. Lanzhou Univ. Technol. 2024, 50, 27–34. (In Chinese) [Google Scholar]
- N’Tsoukpoe, K.E.; Rammelberg, H.U.; Lele, A.F.; Korhammer, K.; Watts, B.A.; Schmidt, T.; Ruck, W.K.L. A review on the use of calcium chloride in applied thermal engineering. Appl. Therm. Eng. 2015, 75, 513–531. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, W.; Han, R.; Gao, J.; Zhao, G.; Qin, Y.; Wang, C. Influence of minerals with different porous structures on thermochemical heat storage performance of CaCl2-based composite sorbents. Sol. Energy Mater. Sol. Cells 2022, 243, 111769. [Google Scholar] [CrossRef]
- Duan, S.; Wang, L.; Zhao, Z.; Zhang, C. Experimental study on thermal performance of an integrated PCM Trombe wall. Renew. Energy 2021, 163, 1932–1941. [Google Scholar] [CrossRef]
Composite Adsorbents | Matrix | Salt | Salt Content (wt%) | Water Uptake (g/g) | Energy Storage Density (J/g) | Ref. |
---|---|---|---|---|---|---|
Powdered | Activated carbon | MgSO4 | 30 | 0.52 | 1324 | [34] |
Attapulgite | LiCl | 30 | 0.49 | 1140 | [35] | |
Silica | CaCl2 | 13.84 | 0.27 | 746 | [36] | |
Granular | Vermiculite | CaCl2 | 56 | 1.40 | 364 | [37] |
Volcanic | CaCl2 | 29.13 | 0.25 | 983 | [28] | |
Bead activated carbon | MgSO4 | 7.6 | 0.37 | 920 | [38] |
Samples | Actual Density (kg/m3) | Thickness (mm) | Salt Content (%) |
---|---|---|---|
YMB-61 kg/m3 | 61 | 10 | 0 |
YMB-96 kg/m3 | 96 | 10 | 0 |
YMB55-CaCl2(10) | 55 | 10 | 51 |
YMB74-CaCl2(10) | 74 | 10 | 33 |
YMB97-CaCl2(10) | 97 | 10 | 32 |
YMB120-CaCl2(10) | 120 | 10 | 14 |
YMB55-CaCl2(15) | 55 | 15 | 42 |
YMB77-CaCl2(15) | 77 | 15 | 23 |
YMB100-CaCl2(15) | 100 | 15 | 19 |
YMB68-CaCl2(20) | 68 | 20 | 26 |
YMB71-CaCl2(20) | 71 | 20 | 22 |
YMB95-CaCl2(20) | 95 | 20 | 14 |
YMB65-CaCl2(30) | 65 | 30 | 21 |
YMB95-CaCl2(30) | 95 | 30 | 15 |
YMB116-CaCl2(30) | 116 | 30 | 14 |
Sample | Average Pore Size (μm) | Pore Volume (cm3·g−1) | Porosity (%) |
---|---|---|---|
YMB-61 kg/m3 | 62.54 | 5.18 | 87.52 |
YMB-96 kg/m3 | 60.78 | 5.62 | 91.28 |
YMB55-CaCl2(10) | 60.75 | 4.04 | 88.74 |
YMB97-CaCl2(10) | 67.63 | 5.13 | 88.54 |
Composite Adsorbents | T1 (°C) | T2 (°C) | (J/g) | (J/g) | |
---|---|---|---|---|---|
YMB55-CaCl2(10) | 46 | 140 | 82 | 756 | 838 |
YMB97-CaCl2(10) | 45 | 140 | 32 | 222 | 254 |
Times (h) | Wind Speed at Upper Vent (m/s) | Wind Speed at Lower Vent (m/s) |
---|---|---|
1 | 0.45 | 0.20 |
2 | 0.40 | 0.25 |
3 | 0.40 | 0.35 |
4 | 0.35 | 0.25 |
5 | 0.20 | 0.15 |
6 | 0.30 | 0.15 |
7 | 0.35 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Wei, S.; Yang, Y.; Wang, C.; Peng, S. Preparation and Performance Study of CaCl2 Composite Adsorbent Based on Rock Wool Board Suitable for Continuous Heat Storage/Release of Trombe Wall. Energies 2024, 17, 5033. https://doi.org/10.3390/en17205033
Xiao Y, Wei S, Yang Y, Wang C, Peng S. Preparation and Performance Study of CaCl2 Composite Adsorbent Based on Rock Wool Board Suitable for Continuous Heat Storage/Release of Trombe Wall. Energies. 2024; 17(20):5033. https://doi.org/10.3390/en17205033
Chicago/Turabian StyleXiao, Yutong, Siyu Wei, Yuanyi Yang, Chunhao Wang, and Shanbi Peng. 2024. "Preparation and Performance Study of CaCl2 Composite Adsorbent Based on Rock Wool Board Suitable for Continuous Heat Storage/Release of Trombe Wall" Energies 17, no. 20: 5033. https://doi.org/10.3390/en17205033
APA StyleXiao, Y., Wei, S., Yang, Y., Wang, C., & Peng, S. (2024). Preparation and Performance Study of CaCl2 Composite Adsorbent Based on Rock Wool Board Suitable for Continuous Heat Storage/Release of Trombe Wall. Energies, 17(20), 5033. https://doi.org/10.3390/en17205033