Pharmaceutical Wastewater and Sludge Valorization: A Review on Innovative Strategies for Energy Recovery and Waste Treatment
Abstract
:1. Introduction
2. Overview of Pharmaceutical Waste
2.1. Types of Pharmaceutical Waste
2.2. Impact on Environment and Human Health
2.3. Conventional Treatment Technologies
3. PW Adsorption under the Circular Economy Paradigm: Biocarbons
4. Photocatalysts Pharmaceutical Wastewater Degradation
4.1. Nanostructured-Based Photocatalysts
4.2. Metal-Based Photocatalysts
4.3. Metal-Organic Photocatalysts
4.4. Non-Metal-Based Photocatalysts
5. Microbial Fuel Cell for PWW Treatment
6. Challenges, Anticipating Actions and Future Perspective of PWM
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mosharaf, M.K.; Gomes, R.L.; Cook, S.; Alam, M.S.; Rasmusssen, A. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. Chemosphere 2024, 364, 143055. [Google Scholar] [CrossRef] [PubMed]
- Vijay Pradhap Singh, M.; Ravi Shankar, K. Next-generation hybrid technologies for the treatment of pharmaceutical industry effluents. J. Environ. Manag. 2024, 353, 120197. [Google Scholar] [CrossRef] [PubMed]
- González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. [Google Scholar] [CrossRef]
- Shan, G.N.M.; Rafatullah, M.; Siddiqui, M.R.; Kapoor, R.T.; Qutob, M. Calcium oxide from eggshell wastes for the removal of pharmaceutical emerging contaminant: Synthesis and adsorption studies. J. Indian Chem. Soc. 2024, 101, 101174. [Google Scholar] [CrossRef]
- Daoud, A.O.; Elattar, H.; Abdelatif, G.; Morsy, K.M.; Peters, R.W.; Mostafa, M.K. Implications of the COVID-19 Pandemic on the Management of Municipal Solid Waste and Medical Waste: A Comparative Review of Selected Countries. Biomass 2024, 4, 555–573. [Google Scholar] [CrossRef]
- Fakhri, B.M.S.; Ghassemi Barghi, N.; Moradnia Mehdikhanmahaleh, M.; Raeis Zadeh, S.M.M.; Mousavi, T.; Rezaee, R.; Daghighi, M.; Abdollahi, M. Pharmaceutical wastewater toxicity: An ignored threat to the public health. Sustain. Environ. 2024, 10, 2322821. [Google Scholar] [CrossRef]
- Mariano, S.M.F.; Angeles, L.F.; Aga, D.S.; Villanoy, C.L.; Jaraula, C.M.B. Emerging pharmaceutical contaminants in key aquatic environments of the Philippines. Front. Earth Sci. 2023, 11, 2296–6463. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, S.; Bajpai, Y.; Chaturvedi, K.; Johri, P.; Tiwari, R.K.; Vivekanand, V.; Trivedi, M. Pharmaceutically active micropollutants: Origin, hazards and removal. Front. Microbiol. 2024, 15, 1339469. [Google Scholar] [CrossRef]
- Ghazal, H.; Koumaki, E.; Hoslett, J.; Malamis, S.; Katsou, E.; Barcelo, D.; Jouhara, H. Insights into current physical, chemical and hybrid technologies used for the treatment of wastewater contaminated with pharmaceuticals. J. Clean. Prod. 2022, 361, 132079. [Google Scholar] [CrossRef]
- Khalidi-idrissi, A.; Madinzi, A.; Anouzla, A.; Pala, A.; Mouhir, L.; Kadmi, Y.; Souabi, S. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. Int. J. Environ. Sci. Technol. 2023, 20, 11719–11740. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Panneerselvam, B.; Dasarahally Huligowda, L.K.; Umesh, M.; Gupta, M.; Muzammil, K.; Zahrani, Y.; Malmutheibi, M. Lignocellulosic biomass for biochar production: A green initiative on biowaste conversion for pharmaceutical and other emerging pollutant removal. Chemosphere 2024, 360, 142312. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.; Mishra, S. Exploring the potential of waste biomass-derived pectin and its functionalized derivatives for water treatment. Int. J. Biol. Macromol. 2024, 275, 133613. [Google Scholar] [CrossRef] [PubMed]
- Varela, C.F.; Moreno-Aldana, L.C.; Agámez-Pertuz, Y.Y. Adsorption of pharmaceutical pollutants on ZnCl2-activated biochar from corn cob: Efficiency, selectivity and mechanism. J. Bioresour. Bioprod. 2024, 9, 58–73. [Google Scholar] [CrossRef]
- Chauhan, S.; Shafi, T.; Dubey, B.K.; Chowdhury, S. Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption. Waste Dispos. Sustain. Energy 2023, 5, 37–62. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Yuan, R.; Chen, H.; Zhou, B.; Zhu, B.; Zhang, C. Application of polyaniline-based photocatalyst in photocatalytic degradation of micropollutants in water: A review. J. Water Process Eng. 2024, 59, 104900. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, S.; Li, X.; Wu, X.; Yang, C.; Zeng, G.; Peng, Y.; Zhou, Q.; Lu, L. Microstructure and performance of Z-scheme photocatalyst of silver phosphate modified by MWCNTs and Cr-doped SrTiO3 for malachite green degradation. Appl. Catal. B Environ. 2018, 227, 557–570. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, A. ADVANCED OXIDATION PROCESS: A remediation technique for organic and non-biodegradable pollutant. Results Surf. Interfaces 2023, 11, 100122. [Google Scholar] [CrossRef]
- Ahmadpour, N.; Nowrouzi, M.; Madadi Avargani, V.; Sayadi, M.H.; Zendehboudi, S. Design and optimization of TiO2-based photocatalysts for efficient removal of pharmaceutical pollutants in water: Recent developments and challenges. J. Water Process Eng. 2024, 57, 104597. [Google Scholar] [CrossRef]
- Din, M.I.; Khalid, R. Photocatalysis of pharmaceuticals and organic dyes in the presence of silver-doped TiO2 photocatalyst—A critical review. Int. J. Environ. Anal. Chem. 2023, 1, 1–25. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, X.; Han, Y.; Yang, C.; Ma, Y.; Du, C.; Teng, Q.; Liu, H.; Zhong, Y. Spatial separation of photogenerated carriers and enhanced photocatalytic performance on Ag3PO4 catalysts via coupling with PPy and MWCNTs. Appl. Catal. B Environ. 2019, 258, 117969. [Google Scholar] [CrossRef]
- Gorin, M.; Shabani, M.; Votat, S.; Lebrun, L.; Foukmeniok Mbokou, S.; Pontié, M. Application of fungal-based microbial fuel cells for biodegradation of pharmaceuticals: Comparative study of individual vs. mixed contaminant solutions. Chemosphere 2024, 363, 142849. [Google Scholar] [CrossRef] [PubMed]
- Putri, N.F.; Arbianti, R.; Hidayatullah, I.M.; Muharam, Y.; Utami, T.S.; Yusupandi, F.; Boopathy, R. Microbial fuel cell-mediated bio electrochemical degradation of amoxicillin by native consortium microbes from sewage sludge. Bioresour. Technol. Rep. 2024, 27, 101903. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, P.; Sharma, G.; Dhiman, P.; Mola, G.T.; Farghali, M.; Rashwan, A.K.; Nasr, M.; Osman, A.I.; Wang, T. Simultaneous hydrogen production and photocatalytic pollutant removal: A review. Environ. Chem. Lett. 2024, 22, 2405–2424. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef]
- Mahapatra, S.; Samal, K.; Dash, R.R. Waste Stabilization Pond (WSP) for wastewater treatment: A review on factors, modelling and cost analysis. J. Environ. Manag. 2022, 308, 114668. [Google Scholar] [CrossRef] [PubMed]
- Samal, K.; Mahapatra, S.; Hibzur Ali, M. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus 2022, 6, 100076. [Google Scholar] [CrossRef]
- Massima Mouele, E.S.; Tijani, J.O.; Badmus, K.O.; Pereao, O.; Babajide, O.; Zhang, C.; Shao, T.; Sosnin, E.; Tarasenko, V.; Fatoba, O.O.; et al. Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods—A Review. Int. J. Environ. Res. Public Health 2021, 18, 1683. [Google Scholar] [CrossRef]
- Ali, M.E.M.; Abd El-Aty, A.M.; Badawy, M.I.; Ali, R.K. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 2018, 151, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Taoufik, N.; Boumya, W.; Achak, M.; Sillanpää, M.; Barka, N. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. J. Environ. Manag. 2021, 288, 112404. [Google Scholar] [CrossRef]
- Karungamye, P.; Rugaika, A.; Mtei, K.; Machunda, R. The pharmaceutical disposal practices and environmental contamination: A review in East African countries. HydroResearch 2022, 5, 99–107. [Google Scholar] [CrossRef]
- Sapkota, B.; Pariatamby, A. Pharmaceutical waste management system—Are the current techniques sustainable, eco-friendly and circular? A review. Waste Manag. 2023, 168, 83–97. [Google Scholar] [CrossRef]
- Daughton, C.G. Non-regulated water contaminants: Emerging research. Environ. Impact Assess. Rev. 2004, 24, 711–732. [Google Scholar] [CrossRef]
- Osuoha, J.O.; Anyanwu, B.O.; Ejileugha, C. Pharmaceuticals and personal care products as emerging contaminants: Need for combined treatment strategy. J. Hazard. Mater. Adv. 2023, 9, 100206. [Google Scholar] [CrossRef]
- Akpotu, S.O.; Oseghe, E.O.; Ayanda, O.S.; Skelton, A.A.; Msagati, T.A.M.; Ofomaja, A.E. Photocatalysis and biodegradation of pharmaceuticals in wastewater: Effect of abiotic and biotic factors. Clean Technol. Environ. Policy 2019, 21, 1701–1721. [Google Scholar] [CrossRef]
- Taoufik, N.; Boumya, W.; Janani, F.Z.; Elhalil, A.; Mahjoubi, F.Z.; Barka, N. Removal of emerging pharmaceutical pollutants: A systematic mapping study review. J. Environ. Chem. Eng. 2020, 8, 104251. [Google Scholar] [CrossRef]
- Khasawneh, O.F.S.; Palaniandy, P. Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Saf. Environ. Prot. 2021, 150, 532–556. [Google Scholar] [CrossRef]
- Ruziwa, D.T.; Oluwalana, A.E.; Mupa, M.; Meili, L.; Selvasembian, R.; Nindi, M.M.; Sillanpaa, M.; Gwenzi, W.; Chaukura, N. Pharmaceuticals in wastewater and their photocatalytic degradation using nano-enabled photocatalysts. J. Water Process Eng. 2023, 54, 103880. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, H.; Tratnyek, P.G. Advanced redox processes for sustainable water treatment. Nat. Water 2023, 1, 666–681. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. J. Environ. Manag. 2022, 316, 115295. [Google Scholar] [CrossRef]
- García-López, E.I.; Palmisano, L. Chapter 1—Fundamentals of photocatalysis: The role of the photocatalysts in heterogeneous photo-assisted reactions. In Materials Science in Photocatalysis; García-López, E.I., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–9. [Google Scholar]
- Makki, M.; Hassali, M.A.; Awaisu, A.; Hashmi, F. The Prevalence of Unused Medications in Homes. Pharmacy 2019, 7, 61. [Google Scholar] [CrossRef]
- Banjar, H.; Alrowithi, R.; Alhadrami, S.; Magrabi, E.; Munshi, R.; Alrige, M. An Intelligent System for Proper Management and Disposal of Unused and Expired Medications. Int. J. Environ. Res. Public Health 2022, 19, 2875. [Google Scholar] [CrossRef]
- Brems, Y.; Lapkin, A.; Baeyens, J. Pollution prevention in the pharmaceutical industry. Int. J. Sustain. Eng. 2013, 6, 344–351. [Google Scholar] [CrossRef]
- Kamal, K.; Chiumente, M.; Nakagawa, S.; Giannetti, V.; Marlin, T. Disposal practices for unused and expired medications: Pilot data from three cities in three countries. GMS Health Innov. Technol. 2022, 16, Doc01. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Kahissay, M.H.; Hailu, A.D. Pharmaceuticals wastage and pharmaceuticals waste management in public health facilities of Dessie town, North East Ethiopia. PLoS ONE 2021, 16, e0259160. [Google Scholar] [CrossRef]
- Dekker, H.M.; Stroomberg, G.J.; Prokop, M. Tackling the increasing contamination of the water supply by iodinated contrast media. Insights Imaging 2022, 13, 30. [Google Scholar] [CrossRef]
- Ahmed, J.; Thakur, A.; Goyal, A. Industrial Wastewater and Its Toxic Effects. In Biological Treatment of Industrial Wastewater; Shah, M.P., Ed.; The Royal Society of Chemistry: London, UK, 2021. [Google Scholar]
- Seitz, W.; Weber, W.H.; Jiang, J.-Q.; Lloyd, B.J.; Maier, M.; Maier, D.; Schulz, W. Monitoring of iodinated X-ray contrast media in surface water. Chemosphere 2006, 64, 1318–1324. [Google Scholar] [CrossRef]
- Lai, J.; Luo, Z.; Chen, L.; Wu, Z. Advances in nanotechnology-based targeted-contrast agents for computed tomography and magnetic resonance. Sci. Prog. 2024, 107, 00368504241228076. [Google Scholar] [CrossRef]
- Li, M.; Huang, S.; Yu, X.; Zhao, W.; Lyu, S.; Sui, Q. Discharge of pharmaceuticals from a municipal solid waste transfer station: Overlooked influence on the contamination of pharmaceuticals in surface waters. Sci. Total Environ. 2022, 839, 156317. [Google Scholar] [CrossRef]
- Rezaei Adaryani, A.; Keen, O. Occurrence of pharmaceuticals and plasticizers in leachate from municipal landfills of different age. Waste Manag. 2022, 141, 1–7. [Google Scholar] [CrossRef]
- Bexfield, L.M.; Toccalino, P.L.; Belitz, K.; Foreman, W.T.; Furlong, E.T. Hormones and Pharmaceuticals in Groundwater Used As a Source of Drinking Water Across the United States. Environ. Sci. Technol. 2019, 53, 2950–2960. [Google Scholar] [CrossRef]
- Fernando, D.M.; Tun, H.M.; Poole, J.; Patidar, R.; Li, R.; Mi, R.; Amarawansha, G.E.A.; Fernando, W.G.D.; Khafipour, E.; Farenhorst, A.; et al. Detection of Antibiotic Resistance Genes in Source and Drinking Water Samples from a First Nations Community in Canada. Appl. Environ. Microbiol. 2016, 82, 4767–4775. [Google Scholar] [CrossRef]
- González-González, R.B.; Martínez-Zamudio, L.Y.; Hernández, J.A.R.; González-Meza, G.M.; Parra-Saldívar, R.; Iqbal, H.M.N. Pharmaceutical pollution fingerprinting and waterbodies remediation using waste-derived carbon dots as sustainable advanced nanomaterials. Environ. Res. 2023, 238, 117180. [Google Scholar] [CrossRef]
- Khan, A.H.; Aziz, H.A.; Khan, N.A.; Hasan, M.A.; Ahmed, S.; Farooqi, I.H.; Dhingra, A.; Vambol, V.; Changani, F.; Yousefi, M.; et al. Impact, disease outbreak and the eco-hazards associated with pharmaceutical residues: A Critical review. Int. J. Environ. Sci. Technol. 2022, 19, 677–688. [Google Scholar] [CrossRef]
- Gonsioroski, A.; Mourikes, V.E.; Flaws, J.A. Endocrine Disruptors in Water and Their Effects on the Reproductive System. Int. J. Mol. Sci. 2020, 21, 1929. [Google Scholar] [CrossRef]
- Liguori, K.; Keenum, I.; Davis, B.C.; Calarco, J.; Milligan, E.; Harwood, V.J.; Pruden, A. Antimicrobial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality Control. Environ. Sci. Technol. 2022, 56, 9149–9160. [Google Scholar] [CrossRef]
- Duarte, A.C.; Rodrigues, S.; Afonso, A.; Nogueira, A.; Coutinho, P. Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Pharmaceuticals 2022, 15, 393. [Google Scholar] [CrossRef]
- Ahuja, S. Chapter 11—Current status of pharmaceutical contamination in water. In Handbook of Water Purity and Quality, 2nd ed.; Ahuja, S., Ed.; Academic Press: Amsterdam, The Netherlands, 2021; pp. 255–270. [Google Scholar]
- Danner, M.-C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef]
- Ortúzar, M.; Esterhuizen, M.; Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front. Microbiol. 2022, 13, 869332. [Google Scholar] [CrossRef]
- Gworek, B.; Kijeńska, M.; Wrzosek, J.; Graniewska, M. Pharmaceuticals in the Soil and Plant Environment: A Review. Water Air Soil Pollut. 2021, 232, 145. [Google Scholar] [CrossRef]
- Bansod, H.S.; Deshmukh, P. Biomedical Waste Management and Its Importance: A Systematic Review. Cureus 2023, 15, e34589. [Google Scholar] [CrossRef]
- Mansouri, F.; Chouchene, K.; Roche, N.; Ksibi, M. Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: State of the art and trends. Appl. Sci. 2021, 11, 6659. [Google Scholar] [CrossRef]
- Letsoalo, M.R.; Sithole, T.; Mufamadi, S.; Mazhandu, Z.; Sillanpaa, M.; Kaushik, A.; Mashifana, T. Efficient detection and treatment of pharmaceutical contaminants to produce clean water for better health and environmental. J. Clean. Prod. 2023, 387, 135798. [Google Scholar] [CrossRef]
- Van der Bruggen, B. Chapter 2—Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis. In Fundamental Modelling of Membrane Systems; Luis, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 25–70. [Google Scholar]
- Banjerdteerakul, K.; Peng, H.; Li, K. COF-based nanofiltration membrane for effective treatment of wastewater containing pharmaceutical residues. J. Membr. Sci. 2023, 681, 121780. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- Al-sareji, O.J.; Meiczinger, M.; Al-Juboori, R.A.; Grmasha, R.A.; Andredaki, M.; Somogyi, V.; Idowu, I.A.; Stenger-Kovács, C.; Jakab, M.; Lengyel, E.; et al. Efficient removal of pharmaceutical contaminants from water and wastewater using immobilized laccase on activated carbon derived from pomegranate peels. Sci. Rep. 2023, 13, 11933. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Topp, E.; Grenni, P. Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A Review. J. Pharm. Biomed. Anal. 2015, 106, 25–36. [Google Scholar] [CrossRef]
- Martins, M.; Sanches, S.; Pereira, I.A.C. Anaerobic biodegradation of pharmaceutical compounds: New insights into the pharmaceutical-degrading bacteria. J. Hazard. Mater. 2018, 357, 289–297. [Google Scholar] [CrossRef]
- Hakizimana, J.N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination 2017, 404, 1–21. [Google Scholar] [CrossRef]
- Hajalifard, Z.; Mousazadeh, M.; Khademi, S.; Khademi, N.; Jamadi, M.H.; Sillanpää, M. The efficacious of AOP-based processes in concert with electrocoagulation in abatement of CECs from water/wastewater. NPJ Clean. Water 2023, 6, 30. [Google Scholar] [CrossRef]
- Meijide, J.; Lama, G.; Pazos, M.; Sanromán, M.A.; Dunlop, P.S.M. Ultraviolet-based heterogeneous advanced oxidation processes as technologies to remove pharmaceuticals from wastewater: An overview. J. Environ. Chem. Eng. 2022, 10, 107630. [Google Scholar] [CrossRef]
- Hora, P.I.; Novak, P.J.; Arnold, W.A. Photodegradation of pharmaceutical compounds in partially nitritated wastewater during UV irradiation. Environ. Sci. Water Res. Technol. 2019, 5, 897–909. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.; Wu, M.; Zhang, P.; He, L.; Chen, Y.; Pan, B. Heterogeneous compositions of oxygen-containing functional groups on biochars and their different roles in rhodamine B degradation. Chemosphere 2022, 292, 133518. [Google Scholar] [CrossRef]
- Puga, A.; Moreira, M.M.; Pazos, M.; Figueiredo, S.A.; Sanromán, M.Á.; Delerue-Matos, C.; Rosales, E. Continuous adsorption studies of pharmaceuticals in multicomponent mixtures by agroforestry biochar. J. Environ. Chem. Eng. 2022, 10, 106977. [Google Scholar] [CrossRef]
- Asati, H.; Mondal, R.; Tripathi, K.M. Green synthesis of a disordered N-doped carbonaceous aerogel from waste for the removal of over-the-counter drugs and environmental assessment. RSC Appl. Interfaces 2024, 1, 580–590. [Google Scholar] [CrossRef]
- Ai, T.; Jiang, X.; Zhong, Z.; Li, D.; Dai, S. Methanol-modified ultra-fine magnetic orange peel powder biochar as an effective adsorbent for removal of ibuprofen and sulfamethoxazole from water. Adsorpt. Sci. Technol. 2020, 38, 304–321. [Google Scholar] [CrossRef]
- Escudero-Curiel, S.; Acevedo-García, V.; Sanromán, M.Á.; Pazos, M. Eco-approach for pharmaceutical removal: Thermochemical waste valorisation, biochar adsorption and electro-assisted regeneration. Electrochim. Acta 2021, 389, 138694. [Google Scholar] [CrossRef]
- Ndoun, M.C.; Elliott, H.A.; Preisendanz, H.E.; Williams, C.F.; Knopf, A.; Watson, J.E. Adsorption of pharmaceuticals from aqueous solutions using biochar derived from cotton gin waste and guayule bagasse. Biochar 2021, 3, 89–104. [Google Scholar] [CrossRef]
- Akkouche, F.; Boudrahem, F.; Yahiaoui, I.; Vial, C.; Audonnet, F.; Aissani-Benissad, F. Cotton textile waste valorization for removal of tetracycline and paracetamol alone and in mixtures from aqueous solutions: Effects of H3PO4 as an oxidizing agent. Water Environ. Res. 2021, 93, 464–478. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Anil, A.G.; Kapoor, D.; Khasnabis, S.; Shekar, S.; Pavithra, N.; Samuel, J.; Subramanian, S.; Singh, J.; et al. Adsorption and detoxification of pharmaceutical compounds from wastewater using nanomaterials: A review on mechanism, kinetics, valorization and circular economy. J. Environ. Manag. 2021, 300, 113569. [Google Scholar] [CrossRef]
- Torres, F.G.; Dioses-Salinas, D.C.; Pizarro-Ortega, C.I.; De-la-Torre, G.E. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Sci. Total Environ. 2021, 757, 143875. [Google Scholar] [CrossRef]
- Lago, A.; Silva, B.; Tavares, T. Biowaste valorization on pharmaceuticals and pesticides abatement in aqueous environments. Sustain. Mater. Technol. 2024, 39, e00792. [Google Scholar] [CrossRef]
- Liu, H.; Xu, G.; Li, G. Autocatalytic sludge pyrolysis by biochar derived from pharmaceutical sludge for biogas upgrading. Energy 2021, 229, 120802. [Google Scholar] [CrossRef]
- Villamil, J.A.; Diaz, E.; de la Rubia, M.A.; Mohedano, A.F. Potential Use of Waste Activated Sludge Hydrothermally Treated as a Renewable Fuel or Activated Carbon Precursor. Molecules 2020, 25, 3534. [Google Scholar] [CrossRef]
- Khan, M.M. Chapter 1—Principles and mechanisms of photocatalysis. In Photocatalytic Systems by Design; Sakar, M., Balakrishna, R.G., Do, T.-O., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–22. [Google Scholar]
- Rani, B.; Nayak, A.K.; Sahu, N.K. 1—Fundamentals principle of photocatalysis. In Nanostructured Materials for Visible Light Photocatalysis; Nayak, A.K., Sahu, N.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–22. [Google Scholar]
- Anucha, C.B.; Altin, I.; Bacaksiz, E.; Stathopoulos, V.N. Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chem. Eng. J. Adv. 2022, 10, 100262. [Google Scholar] [CrossRef]
- Luque-Morales, P.A.; Lopez-Peraza, A.; Nava-Olivas, O.J.; Amaya-Parra, G.; Baez-Lopez, Y.A.; Orozco-Carmona, V.M.; Garrafa-Galvez, H.E.; Chinchillas-Chinchillas, M.J. ZnO Semiconductor Nanoparticles and Their Application in Photocatalytic Degradation of Various Organic Dyes. Materials 2021, 14, 7537. [Google Scholar] [CrossRef]
- Samuel, O.; Othman, M.H.D.; Kamaludin, R.; Sinsamphanh, O.; Abdullah, H.; Puteh, M.H.; Kurniawan, T.A. WO3–based photocatalysts: A review on synthesis, performance enhancement and photocatalytic memory for environmental applications. Ceram. Int. 2022, 48, 5845–5875. [Google Scholar] [CrossRef]
- Hitam, C.N.C.; Jalil, A.A. A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. J. Environ. Manag. 2020, 258, 110050. [Google Scholar] [CrossRef]
- Luciano-Velázquez, J.; Xin, Y.; Su, Y.-f.; Quiles-Vélez, C.I.; Cruz-Romero, S.A.; Torres-Mejías, G.E.; Rivera-De Jesús, J.; Bailón-Ruiz, S.J. Synthesis, characterization, and photocatalytic activity of ZnS and Mn-doped ZnS nanostructures. MRS Adv. 2021, 6, 252–258. [Google Scholar] [CrossRef]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565. [Google Scholar] [CrossRef]
- Sahu, P.K.; Champati, A.; Pradhan, A.; Naik, B. Design and development of nanostructured photocatalysts for large-scale solar green hydrogen generation. Sustain. Energy Fuels 2024, 8, 1872–1917. [Google Scholar] [CrossRef]
- Sharma, A.; Sharotri, N.; Kandwal, P.; Sharma, R.K.; Sud, D.; Rai, R.; Hnydiuk-Stefan, A. Exploring the twin potential of nanostructured TiO2:SeO2 as a promising visible light photocatalyst and selective fluorosensing platform. Sci. Rep. 2024, 14, 13677. [Google Scholar] [CrossRef] [PubMed]
- Sinha, T.K. 14—Morphology-dependent visible light photocatalysis. In Nanostructured Materials for Visible Light Photocatalysis; Nayak, A.K., Sahu, N.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 375–412. [Google Scholar]
- Hassaan, M.A.; El-Nemr, M.A.; Elkatory, M.R.; Ragab, S.; Niculescu, V.-C.; El Nemr, A. Principles of Photocatalysts and Their Different Applications: A Review. Top. Curr. Chem. 2023, 381, 31. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.B.; Nawaz, T.; Nabi, G.; Sagir, M.; Khan, M.I.; Malik, N. Role of nanophotocatalysts for the treatment of hazardous organic and inorganic pollutants in wastewater. Int. J. Environ. Anal. Chem. 2022, 102, 491–515. [Google Scholar] [CrossRef]
- Fan, G.; Peng, H.; Zhang, J.; Zheng, X.; Zhu, G.; Wang, S.; Hong, L. Degradation of acetaminophen in aqueous solution under visible light irradiation by Bi-modified titanate nanomaterials: Morphology effect, kinetics and mechanism. Catal. Sci. Technol. 2018, 8, 5906–5919. [Google Scholar] [CrossRef]
- Fan, G.; Ning, R.; Luo, J.; Zhang, J.; Hua, P.; Guo, Y.; Li, Z. Visible-light-driven photocatalytic degradation of naproxen by Bi-modified titanate nanobulks: Synthesis, degradation pathway and mechanism. J. Photochem. Photobiol. A Chem. 2020, 386, 112108. [Google Scholar] [CrossRef]
- Pattnaik, A.; Sahu, J.N.; Poonia, A.K.; Ghosh, P. Current perspective of nano-engineered metal oxide based photocatalysts in advanced oxidation processes for degradation of organic pollutants in wastewater. Chem. Eng. Res. Des. 2023, 190, 667–686. [Google Scholar] [CrossRef]
- Krishnan, A.; Swarnalal, A.; Das, D.; Krishnan, M.; Saji, V.S.; Shibli, S.M.A. A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. J. Environ. Sci. 2024, 139, 389–417. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Non-Noble Plasmonic Metal-Based Photocatalysts. Chem. Rev. 2022, 122, 10484–10537. [Google Scholar] [CrossRef]
- Fang, M.; Tan, X.; Liu, Z.; Hu, B.; Wang, X. Recent Progress on Metal-Enhanced Photocatalysis: A Review on the Mechanism. Research 2021, 2021, 9794329. [Google Scholar] [CrossRef]
- Medina-Ramírez, I.; Hernández-Ramírez, A.; Maya-Treviño, M.L. Synthesis Methods for Photocatalytic Materials. In Photocatalytic Semiconductors: Synthesis, Characterization, and Environmental Applications; Hernández-Ramírez, A., Medina-Ramírez, I., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 69–102. [Google Scholar]
- Salimi, M.; Behbahani, M.; Sobhi, H.R.; Gholami, M.; Jonidi Jafari, A.; Rezaei Kalantary, R.; Farzadkia, M.; Esrafili, A. A new nano-photocatalyst based on Pt and Bi co-doped TiO2 for efficient visible-light photo degradation of amoxicillin. New J. Chem. 2019, 43, 1562–1568. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Yilmaz, M.; Ramírez-Coronel, A.A.; Al-Awsi, G.R.L.; Alwaily, E.R.; Asghari, A.; Balarak, D. Degradation of amoxicillin under a UV or visible light photocatalytic treatment process using Fe2O3/bentonite/TiO2: Performance, kinetic, degradation pathway, energy consumption, and toxicology studies. Optik 2023, 272, 170230. [Google Scholar] [CrossRef]
- Fallahizadeh, S.; Gholami, M.; Rahimi, M.R.; Esrafili, A.; Farzadkia, M.; Kermani, M. Enhanced photocatalytic degradation of amoxicillin using a spinning disc photocatalytic reactor (SDPR) with a novel Fe3O4@void@CuO/ZnO yolk-shell thin film nanostructure. Sci. Rep. 2023, 13, 16185. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Nutakki, T.U.K.; Abdullaev, S.; Yan, C.; Fouad, Y.; Alzubaidi, L.H.; Mahariq, I. Pollutant removal from aqueous solutions and effective photocatalytic H2 generation by enhanced visible-light-driven S-scheme composite: Response surface methodology optimization and electron transfer pathways. J. Mol. Liq. 2024, 411, 125709. [Google Scholar] [CrossRef]
- Chatterjee, M.; Mondal, M.; Sukul, T.; Ghosh, K.; Pradhan, S.K. First-rate photocatalytic degradation of wastewater pollutants and antibacterial activities and H2 evolution of hierarchical WO3 embedded BiOCl/g-C3N4 nanocomposites. J. Ind. Eng. Chem. 2023, 127, 390–405. [Google Scholar] [CrossRef]
- Mirzaei, A.; Yerushalmi, L.; Chen, Z.; Haghighat, F.; Guo, J. Enhanced photocatalytic degradation of sulfamethoxazole by zinc oxide photocatalyst in the presence of fluoride ions: Optimization of parameters and toxicological evaluation. Water Res. 2018, 132, 241–251. [Google Scholar] [CrossRef]
- Lien, E.; Sahu, R.S.; Chen, W.-L.; Shih, Y.-H. Effective photocatalytic degradation of sulfamethoxazole using tunable CaCu3Ti4O7 perovskite. Chemosphere 2022, 294, 133744. [Google Scholar] [CrossRef]
- Machín, A.; Morant, C.; Soto-Vázquez, L.; Resto, E.; Ducongé, J.; Cotto, M.; Berríos-Rolón, P.J.; Martínez-Perales, C.; Márquez, F. Synergistic Effects of Co3O4-gC3N4-Coated ZnO Nanoparticles: A Novel Approach for Enhanced Photocatalytic Degradation of Ciprofloxacin and Hydrogen Evolution via Water Splitting. Materials 2024, 17, 1059. [Google Scholar] [CrossRef]
- Antos, J.; Piosik, M.; Ginter-Kramarczyk, D.; Zembrzuska, J.; Kruszelnicka, I. Tetracyclines contamination in European aquatic environments: A comprehensive review of occurrence, fate, and removal techniques. Chemosphere 2024, 353, 141519. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Venkateswarlu, K.; Megharaj, M. Tetracycline and fluoroquinolone antibiotics contamination in agricultural soils fertilized long-term with chicken litter: Trends and ravages. Sci. Total Environ. 2024, 946, 174286. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Wang, C.; Shen, L.; Wang, H.; Lian, Y.; Zhang, H.; Ma, H.; Zhang, Y.; Zhang, J.Z. α-NiS/g-C3N4 Nanocomposites for Photocatalytic Hydrogen Evolution and Degradation of Tetracycline Hydrochloride. Catalysts 2023, 13, 983. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, C.; Niu, Q.; Luo, S. Interfacial Charge Transfer between Silver Phosphate and W2N3 Induced by Nitrogen Vacancies Enhances Removal of -Lactam Antibiotics. Adv. Funct. Mater. 2022, 32, 2108814. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, C.; Wu, S.; Li, X.; Chen, Y.; Yang, W.L. Construction of Built-In Electric Field within Silver Phosphate Photocatalyst for Enhanced Removal of Recalcitrant Organic Pollutants. Adv. Funct. Mater. 2020, 30, 2002918. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, H.; Yang, C.; Wu, X.; Du, C.; Jiang, L.; Zhong, Y. Gama-graphyne as photogenerated electrons transfer layer enhances photocatalytic performance of silver phosphate. Appl. Catal. B Environ. 2020, 264, 118479. [Google Scholar] [CrossRef]
- Wang, K.; Shao, X.; Zhang, K.; Wang, J.; Wu, X.; Wang, H. 0D/3D Bi3TaO7/ZnIn2S4 heterojunction photocatalyst towards degradation of antibiotics coupled with simultaneous H2 evolution: In situ irradiated XPS investigation and S-scheme mechanism insight. Appl. Surf. Sci. 2022, 596, 153444. [Google Scholar] [CrossRef]
- Shang, Q.; Wang, J.; Yang, J.; Wang, Z.; Wang, G.; Wang, K.; Wu, X.; Li, J. Photocatalytic hydrogen evolution coupled with tetracycline photodegradation over S-scheme BaTiO3/Ag2S dual-function nanofibers: Performance and mechanism. Appl. Surf. Sci. 2023, 635, 157760. [Google Scholar] [CrossRef]
- Kong, C.; Liu, Y.; Zeng, H.; Zhang, L.; Wang, W.; Li, J.; Wu, H.; Wu, K.; Guo, J. Facile synthesis of NiFe-CO32--LDH/Sn4+-β-Bi2O3 microsphere S-Scheme heterojunction for efficient tetracycline photodegradation and hydrogen production. J. Environ. Chem. Eng. 2023, 11, 111551. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Li, Z.; Yang, S.; Garcia, H. Metal–organic framework heterojunctions for photocatalysis. Chem. Soc. Rev. 2024, 53, 3002–3303. [Google Scholar] [CrossRef]
- Cai, C.; Fan, G.; Du, B.; Chen, Z.; Lin, J.; Yang, S.; Lin, X.; Li, X. Metal–organic-framework-based photocatalysts for microorganism inactivation: A review. Catal. Sci. Technol. 2022, 12, 3767–3777. [Google Scholar] [CrossRef]
- Belousov, A.S.; Suleimanov, E.V. Application of metal–organic frameworks as an alternative to metal oxide-based photocatalysts for the production of industrially important organic chemicals. Green Chem. 2021, 23, 6172–6204. [Google Scholar] [CrossRef]
- Younis, S.A.; Kwon, E.E.; Qasim, M.; Kim, K.-H.; Kim, T.; Kukkar, D.; Dou, X.; Ali, I. Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Prog. Energy Combust. Sci. 2020, 81, 100870. [Google Scholar] [CrossRef]
- Ali, F.D.; Ammar, S.H.; Ali, N.D.; Abdulmajeed, Y.R.; Jabbar, Z.H. Synthesis of AgCl/ZIF-8/C–TiO2 heterojunction photocatalysts for enhanced degradation of levofloxacin under visible-light. Mater. Sci. Semicond. Process. 2024, 172, 108100. [Google Scholar] [CrossRef]
- Wang, A.; Liang, H.; Chen, F.; Tian, X.; Jing, S.; Tsiakaras, P. Preparation and characterization of novel Niln2S4/UiO-66 photocatalysts for the efficient degradation of antibiotics in water. Chemosphere 2022, 307, 135699. [Google Scholar] [CrossRef] [PubMed]
- Solís, R.R.; Gómez-Avilés, A.; Belver, C.; Rodriguez, J.J.; Bedia, J. Microwave-assisted synthesis of NH2-MIL-125(Ti) for the solar photocatalytic degradation of aqueous emerging pollutants in batch and continuous tests. J. Environ. Chem. Eng. 2021, 9, 106230. [Google Scholar] [CrossRef]
- Lin, Y.; Zou, J.; Wu, X.; Tong, S.; Niu, Q.; He, S.; Luo, S.; Yang, C. Efficient Proton Transfer and Charge Separation within Covalent Organic Frameworks via Hydrogen-Bonding Network to Boost H2O2 Photosynthesis. Nano Lett. 2024, 24, 6302–6311. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Cheng, M.; Lai, C.; Li, L.; Yang, X.; Du, L.; Zhang, G.; Wang, G.; Yang, L. Recent progress in the applications of non-metal modified graphitic carbon nitride in photocatalysis. Coord. Chem. Rev. 2023, 474, 214846. [Google Scholar] [CrossRef]
- You, J.; Xiao, M.; Wang, Z.; Wang, L. Non-noble metal-based cocatalysts for photocatalytic CO2 reduction. J. CO2 Util. 2022, 55, 101817. [Google Scholar] [CrossRef]
- Costa e Silva, R.; Oliveira da Silva, L.; de Andrade Bartolomeu, A.; Brocksom, T.J.; de Oliveira, K.T. Recent applications of porphyrins as photocatalysts in organic synthesis: Batch and continuous flow approaches. Beilstein J. Org. Chem. 2020, 16, 917–955. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, D.; Han, J.; Liu, C.; Ding, Y.; Wang, Z.; Wang, A. Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies. Chem. Eng. J. 2020, 382, 123017. [Google Scholar] [CrossRef]
- Balarak, D.; Mengelizadeh, N.; Rajiv, P.; Chandrika, K. Photocatalytic degradation of amoxicillin from aqueous solutions by titanium dioxide nanoparticles loaded on graphene oxide. Environ. Sci. Pollut. Res. 2021, 28, 49743–49754. [Google Scholar] [CrossRef]
- Hazaraimi, M.H.; Goh, P.S.; Lau, W.J.; Ismail, A.F.; Wu, Z.; Subramaniam, M.N.; Lim, J.W.; Kanakaraju, D. The state-of-the-art development of photocatalysts for the degradation of persistent herbicides in wastewater. Sci. Total Environ. 2022, 843, 156975. [Google Scholar] [CrossRef]
- Al-Nuaim, M.A.; Alwasiti, A.A.; Shnain, Z.Y. The photocatalytic process in the treatment of polluted water. Chem. Pap. 2023, 77, 677–701. [Google Scholar] [CrossRef] [PubMed]
- Hanh, N.T.; Khai, N.M.; Anh, T.N.; Vinh, L.T.; Huan, N.H.; Pham, T.-D. TiO2 Deposited on Activated Sewage Sludge for Effective Photocatalytic Degradation of Tetracycline. Chem. Eng. Technol. 2022, 45, 1969–1975. [Google Scholar] [CrossRef]
- Guz, R.; Barreto-Rodrigues, M. Integration of heterogeneous photocatalysis (TiO2/UV) and activated sludge system operated in air lift reactor for the treatment of industrial effluent red water. J. Environ. Sci. Health Part A 2022, 57, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Lemus, I.L.; Cobos-Reyes, C.; Figueroa-Torres, M.; Escobar-Morales, B.; Aruna, K.K.; Akash, P.; Fernández-Luqueño, F.; Rodríguez-Varela, J. Green Power Generation by Microbial Fuel Cells Using Pharmaceutical Wastewater as Substrate and Electroactive Biofilms (Bacteria/Biocarbon). J. Chem. 2022, 2022, 1963973. [Google Scholar] [CrossRef]
- Thapa, B.S.; Pandit, S.; Patwardhan, S.B.; Tripathi, S.; Mathuriya, A.S.; Gupta, P.K.; Lal, R.B.; Tusher, T.R. Application of Microbial Fuel Cell (MFC) for Pharmaceutical Wastewater Treatment: An Overview and Future Perspectives. Sustainability 2022, 14, 8379. [Google Scholar] [CrossRef]
- Nayak, J.K.; Ghosh, U.K. Microalgae Cultivation for Pretreatment of Pharmaceutical Wastewater Associated with Microbial Fuel Cell and Biomass Feed Stock Production. In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability, Proceedings of the 2nd WaterEnergyNEXUS Conference, Salerno, Italy, 14–17 November 2018; Springer: Berlin/Heidelberg, Germany, 2020; pp. 383–387. [Google Scholar]
- Ucar, D.; Zhang, Y.; Angelidaki, I. An Overview of Electron Acceptors in Microbial Fuel Cells. Front. Microbiol. 2017, 8, 643. [Google Scholar] [CrossRef]
- Bagchi, S.; Behera, M. 6—Pharmaceutical wastewater treatment in microbial fuel cell. In Integrated Microbial Fuel Cells for Wastewater Treatment; Abbassi, R., Yadav, A.K., Khan, F., Garaniya, V., Eds.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 135–155. [Google Scholar]
- Ismail, Z.Z.; Habeeb, A.A. Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers. Renew. Energy 2017, 101, 1256–1265. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Li, J.; Ly, Q.V.; Nguyen, T.A.H.; Tran, V.S. Applying a new pomelo peel derived biochar in microbial fell cell for enhancing sulfonamide antibiotics removal in swine wastewater. Bioresour. Technol. 2020, 318, 123886. [Google Scholar] [CrossRef]
- Xu, W.; Yang, B.; Wang, H.; Zhang, L.; Dong, J.; Liu, C. Simultaneous removal of antibiotics and nitrogen by microbial fuel cell-constructed wetlands: Microbial response and carbon–nitrogen metabolism pathways. Sci. Total Environ. 2023, 893, 164855. [Google Scholar] [CrossRef]
- Al-Ansari, M.M.; Benabdelkamel, H.; Al-Humaid, L. Degradation of sulfadiazine and electricity generation from wastewater using Bacillus subtilis EL06 integrated with an open circuit system. Chemosphere 2021, 276, 130145. [Google Scholar] [CrossRef]
- Wang, L.; Liang, D.; Shi, Y. Profiling of co-metabolic degradation of tetracycline by the bio-cathode in microbial fuel cells. RSC Adv. 2022, 12, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Elmaadawy, K.; Liu, B.; Hassan, G.K.; Wang, X.; Wang, Q.; Hu, J.; Hou, H.; Yang, J.; Wu, X. Microalgae-assisted fixed-film activated sludge MFC for landfill leachate treatment and energy recovery. Process Saf. Environ. Prot. 2022, 160, 221–231. [Google Scholar] [CrossRef]
- Gu, W.; Wang, Y.; Hu, X.; Deng, F. MFC-residual sludge coupled treatment for simulated chromium(VI) wastewater: Electricity production performance and microbial communities. J. Water Process Eng. 2024, 67, 106097. [Google Scholar] [CrossRef]
- Rastogi, A.; Tiwari, M.K.; Ghangrekar, M.M. A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). J. Environ. Manag. 2021, 300, 113694. [Google Scholar] [CrossRef] [PubMed]
- Morovati, R.; Hoseini, M.; Azhdarpoor, A.; Dehghani, M.; Baghapour, M.A.; Yousefinejad, S. Removal of Diclofenac Sodium from Wastewater in Microbial Fuel Cell by Anode Modified with MnCo2O4. Sustainability 2022, 14, 13907. [Google Scholar] [CrossRef]
- Qiu, B.; Hu, Y.; Liang, C.; Wang, L.; Shu, Y.; Chen, Y.; Cheng, J. Enhanced degradation of diclofenac with Ru/Fe modified anode microbial fuel cell: Kinetics, pathways and mechanisms. Bioresour. Technol. 2020, 300, 122703. [Google Scholar] [CrossRef]
- Tan, W.H.; Chong, S.; Fang, H.-W.; Pan, K.-L.; Mohamad, M.; Lim, J.W.; Tiong, T.J.; Chan, Y.J.; Huang, C.-M.; Yang, T.C. Microbial Fuel Cell Technology—A Critical Review on Scale-Up Issues. Processes 2021, 9, 985. [Google Scholar] [CrossRef]
- Yan, W.; Guo, Y.; Xiao, Y.; Wang, S.; Ding, R.; Jiang, J.; Gang, H.; Wang, H.; Yang, J.; Zhao, F. The changes of bacterial communities and antibiotic resistance genes in microbial fuel cells during long-term oxytetracycline processing. Water Res. 2018, 142, 105–114. [Google Scholar] [CrossRef]
- Zhang, E.; Yu, Q.; Zhai, W.; Wang, F.; Scott, K. High tolerance of and removal of cefazolin sodium in single-chamber microbial fuel cells operation. Bioresour. Technol. 2018, 249, 76–81. [Google Scholar] [CrossRef]
- Miran, W.; Jang, J.; Nawaz, M.; Shahzad, A.; Lee, D.S. Biodegradation of the sulfonamide antibiotic sulfamethoxazole by sulfamethoxazole acclimatized cultures in microbial fuel cells. Sci. Total Environ. 2018, 627, 1058–1065. [Google Scholar] [CrossRef]
- Aguilera Flores, M.M.; Ávila Vázquez, V.; Medellín Castillo, N.A.; Cardona Benavides, A.; Carranza Álvarez, C.; Ocampo Pérez, R. Biodegradation of carbamazepine and production of bioenergy using a microbial fuel cell with bioelectrodes fabricated from devil fish bone chars. J. Environ. Chem. Eng. 2021, 9, 106692. [Google Scholar] [CrossRef]
- Amari, S.; Boshrouyeh Ghandashtani, M. Non-steroidal anti-inflammatory pharmaceutical wastewater treatment using a two-chambered microbial fuel cell. Water Environ. J. 2020, 34, 413–419. [Google Scholar] [CrossRef]
- Xie, B.; Liang, H.; You, H.; Deng, S.; Yan, Z.; Tang, X. Microbial community dynamic shifts associated with sulfamethoxazole degradation in microbial fuel cells. Chemosphere 2021, 274, 129744. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Jiang, J.; Zhang, S.; Wang, X.; Guo, X.; Li, F. Enzymatic response and antibiotic resistance gene regulation by microbial fuel cells to resist sulfamethoxazole. Chemosphere 2023, 325, 138410. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jiang, J.; Ho, S.-H.; Zhang, S.; Zeng, W.; Li, F. Sustainable conversion of antibiotic wastewater using microbial fuel cells: Energy harvesting and resistance mechanism analysis. Chemosphere 2023, 313, 137584. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Liang, D.; Wang, X.; Guo, H. Tetracycline hydrochloride degradation in polarity inverted microbial fuel cells: Performance, mechanisms and microbiology. Chemosphere 2024, 349, 140902. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-L.; Zhang, C.; Lu, Y.-X.; Li, H.; Shao, Y.; Yang, Y.-L. Enhanced removal of antibiotics and antibiotic resistance genes in a soil microbial fuel cell via in situ remediation of agricultural soils with multiple antibiotics. Sci. Total Environ. 2022, 829, 154406. [Google Scholar] [CrossRef]
- Wu, Y.C.; Fu, H.Y.; Wen, H.; Chen, F.D.; Dai, Z.N.; Yang, A.L. Degradation of Diclofenac Sodium in Microbial fuel cells. IOP Conf. Ser. Earth Environ. Sci. 2019, 369, 012011. [Google Scholar] [CrossRef]
- Asare, W.; Oduro–Kwarteng, S.; Donkor, E.A.; Rockson, M.A.D. Cost-effectiveness of incentive schemes for waste material resource recovery. Clean. Waste Syst. 2022, 2, 100019. [Google Scholar] [CrossRef]
- Derhab, N.; Elkhwesky, Z. A systematic and critical review of waste management in micro, small and medium-sized enterprises: Future directions for theory and practice. Environ. Sci. Pollut. Res. 2023, 30, 13920–13944. [Google Scholar] [CrossRef]
- Li, F.; Cao, X.; Sheng, P. Impact of pollution-related punitive measures on the adoption of cleaner production technology: Simulation based on an evolutionary game model. J. Clean. Prod. 2022, 339, 130703. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Wang, F.; Xie, Y.; Liu, S.; Ao, Z.; Li, C. Hydrogen generation from photocatalytic treatment of wastewater containing pharmaceuticals and personal care products by Oxygen-doped crystalline carbon nitride. Sep. Purif. Technol. 2022, 296, 121425. [Google Scholar] [CrossRef]
- Zoppi, G.; Pipitone, G.; Pirone, R.; Bensaid, S. Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catal. Today 2022, 387, 224–236. [Google Scholar] [CrossRef]
Advanced Oxidation Processes (AOPs) | |||
---|---|---|---|
Ozone | Chemical | Electricity-Based | Photo Assisted |
Ozone in an alkaline medium | Fenton oxidation process | Electrochemical oxidation | Photo-assisted Fenton Process |
Ozone with H2O2 | Persulfate with heat | Electrocoagulation | Persulfate with UV |
Ozone with UV and H2O2 | Persulfate with Fe (II) | Electro-Fenton | Ozone with UV |
Catalytic ozonation | Oxidation of persulfate | Peroxide with UV, Photocatalysis, Photoelectrocatalysis |
Type of Drug | MFC Configuration | Treatment Efficiency | Reference |
---|---|---|---|
Oxytetracycline | Dual-chamber MFC with carbon felt anode and cathode | 99% elimination | [158] |
Cefazolin sodium | Single-chamber MFC with activated carbon air cathode and carbon felt anode. | >70% elimination | [159] |
Ibuprofen | Dual-chamber MFC with PANI@CNT-coated stainless steel mesh anode and CuInS photocathode. | 75.94% removal | [145] |
Sulfamethoxazole | Dual-chamber MFC with carbon felt anode and carbon cloth cathode loaded with 20% Pt. | 83.3% | [160] |
Carbamazepine | Single-chamber MFC, with carbon cloth cathode in air atmosphere, the anodes consisted of fish bone biocarbon synthesized in air atmosphere (BCA) and another in nitrogen atmosphere (BCN) supported on a stainless-steel mesh. | BCA: 77.88% BCN: 79.58% | [161] |
Wastewater from non-steroidal anti-inflammatory drug-producing industry | Dual-chamber MFC; stainless steel anode and Pd-coated Ti or Pd/Ir-coated Ti cathode. | 93% COD removal using the Pt-coated Ti cathode and 91% COD removal using the Pd/Ir-coated Ti cathode | [162] |
Synthetic water with diclofenac sodium | Dual-chamber MFC; stainless steel anode and Pd-coated Ti or Pd/Ir-coated Ti cathode. | 78% COD removal using the Pt-coated Ti cathode and 71% COD removal using the Pd/Ir-coated Ti cathode. | [162] |
Sulfamethoxazole | Dual-chamber MFC, graphite fiber anode and stainless-steel cathode with activated carbon. | 98.4% | [163] |
Sulfamethoxazole | Single-chamber, carbon fiber mesh as anode and carbon cloth coated with Pt/C as cathode. | 95.7% at 40 mg L−1 drug concentration | [164] |
Tetracycline | Single-chamber air cathode, anode was a carbon fiber washed with acetone, cathode carbon cloth coated with Pt/C. | 84.9% containing 10 mg L10 drug | [165] |
Tetracycline hydrochloride | Dual-chamber microbial fuel cell configuration, carbon felt as anode and cathode. | >94% | [166] |
Sulfadiazine and sulfamethoxazole | Single-chambered cylindrical soil MFCs, granular activated carbon and carbon felt as anode and cathode. | >57% | [167] |
Sulfamethoxazole | Microbial fuel cell-constructed wetlands, Coke layer as anode and cathode. | 93.6% | [149] |
Diclofenac sodium | Two-chamber MFC, anode and cathode of graphite felt. | Up to 30.73% removal in only two weeks of operation | [168] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pech-Rodríguez, W.J.; Meléndez-González, P.C.; Hernández-López, J.M.; Suarez-Velázquez, G.G.; Sarabia-Castillo, C.R.; Calles-Arriaga, C.A. Pharmaceutical Wastewater and Sludge Valorization: A Review on Innovative Strategies for Energy Recovery and Waste Treatment. Energies 2024, 17, 5043. https://doi.org/10.3390/en17205043
Pech-Rodríguez WJ, Meléndez-González PC, Hernández-López JM, Suarez-Velázquez GG, Sarabia-Castillo CR, Calles-Arriaga CA. Pharmaceutical Wastewater and Sludge Valorization: A Review on Innovative Strategies for Energy Recovery and Waste Treatment. Energies. 2024; 17(20):5043. https://doi.org/10.3390/en17205043
Chicago/Turabian StylePech-Rodríguez, W. J., P. C. Meléndez-González, J. M. Hernández-López, G. G. Suarez-Velázquez, César R. Sarabia-Castillo, and C. A. Calles-Arriaga. 2024. "Pharmaceutical Wastewater and Sludge Valorization: A Review on Innovative Strategies for Energy Recovery and Waste Treatment" Energies 17, no. 20: 5043. https://doi.org/10.3390/en17205043
APA StylePech-Rodríguez, W. J., Meléndez-González, P. C., Hernández-López, J. M., Suarez-Velázquez, G. G., Sarabia-Castillo, C. R., & Calles-Arriaga, C. A. (2024). Pharmaceutical Wastewater and Sludge Valorization: A Review on Innovative Strategies for Energy Recovery and Waste Treatment. Energies, 17(20), 5043. https://doi.org/10.3390/en17205043