Pressure Change in a Duct with a Flow of a Homogeneous Gaseous Substance in the Presence of a Point Mass and Momentum Sink of Gas
Abstract
:1. Introduction
2. Flow With and Without Mass Sink—Analyzed Cases
- —mass flow rate of fluid, kg/s,
- p(x)—absolute static pressure of the fluid (the air stream), Pa,
- —cross-sectional area of the duct, m2,
- ρ—density, kg/m3,
- g—gravity, m/s2,
- z(x)—height of the conduit at the coordinate, m,
- —duct’s equivalent resistance per unit, kg−1 m−2,
- ∆pc(ρ)—total pressure increase as a function of density for a working fan, Pa,
- —Dirac delta function distribution, 1/m,
- xw—coordinates of the location of the mechanical energy source, m.
- —equivalent resistance of the entire duct, (kg·m)−1,
- —Heaviside’s function of unit stroke,
- —mass flow rate of fluid at the inlet to the main duct, kg/s.
- —duct’s equivalent resistance per unit, kg−1 m−2.
- —cross-sectional area of the fan outlet (diffuser), m2.
- —cross-sectional area of the fan inlet (suction), m2.
- —specific resistance of the duct, (kg·m)−1.
3. Analysis of Air Mass Flows and Fan Depression in a Duct
3.1. A Duct with Mass and Momentum Sink and a Suction Fan at Its End—A New Form of the Motion Equation
3.2. A Duct with Mass and Momentum Sink and a Blowing Fan at Its End—A New Form of the Motion Equation
3.3. A Duct with Mass and Momentum Sink and a Suction Fan at Its End—The Classic Form of the Motion Equation
- —mass flow rate in the additional source, kg/s.
3.4. A Duct with Mass and Momentum Sink Without a Mechanical Fan
- duct on section <0, a> with air mass flow (kg/s) and a sink with kinetic energy equal to ;
- duct on section <w, a> with air mass flow and a sink with kinetic energy equal to .
4. Distribution of Total and Static Pressure in a Duct
4.1. A Duct Without Mass and Momentum Sink
4.1.1. Case with a Suction Fan at the End of the Duct
4.1.2. Case with a Blowing Fan at the Beginning of the Duct
4.1.3. Case with a Fan Inside
4.2. A Duct with Mass and Momentum Sink
4.2.1. Case Without a Fan
- —loss of mechanical energy of the closed loop 1, Pa,
- —loss of mechanical energy of the closed loop 2, Pa.
4.2.2. Case with a Suction Fan at the End of the Duct
- for the duct section according to Equation (79):
- for the duct section according to Equation (80):
5. Calculation Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
polynomial coefficients, - | |
mass flow rate of local source or outflow of mass, kg/s | |
cross-sectional area of the duct, m2 | |
cross-sectional area of the fan inlet (suction), m2 | |
cross-sectional area of the fan suction nozzle, m2 | |
cross-sectional area of the fan outlet (diffuser), m2 | |
gravity, m/s2 | |
further energy sources, - | |
mass flow rate of fluid, kg/s | |
mass flow rate of fluid at the inlet to the main duct, kg/s | |
mass flow rate in the additional source, kg/s | |
mass stream of air pumped behind the fluid release, kg/s | |
ratio of the resistance of the duct section from its entry to the point where the local source of mass is located and the drag of the entire duct (0 < n < 1) | |
fan working point | |
absolute static pressure of the fluid (the air stream), Pa | |
total pressure of the air stream in the duct at the x coordinate, Pa | |
dynamic pressure of the air stream in the duct, Pa | |
catalog value of the unit distributed resistance, kg/m8 | |
resistance of the duct section, kg−1 m−2 | |
duct’s equivalent resistance per unit, kg−1 m−2 | |
specific resistance of the duct, (kg·m)−1 | |
catalog value of the specific resistance of the duct, kg/m7 | |
equivalent resistance of the entire duct, (kg·m)−1 | |
loss of mechanical energy of the closed loop 1, Pa | |
loss of mechanical energy of the closed loop 2, Pa | |
loss of mechanical energy due to resistance to movement on the section, from its beginning (x = 0) to the x coordinate, Pa | |
coordinate of the location of the mass and momentum sink, m | |
, | coordinate of the location of the mechanical energy source (w–at the inlet, k–at the end), m |
height of the conduit at the coordinate, m | |
total pressure increase as a function of density for a working fan, Pa | |
total pressure increase for a working fan, Pa | |
Dirac delta function distribution, 1/m | |
Heaviside’s function of unit stroke | |
density, kg/m3 |
References
- McPherson, M.J. Subsurface Ventilation and Environmental Engineering; Chapman & Hall: London, UK, 1992. [Google Scholar]
- Wacławik, J. Wentylacja Kopalń, Tom I, II; Wydawnictwo AGH: Krakow, Poland, 2010. [Google Scholar]
- Wacławik, J. Mechanika Płynów i Termodynamika; Wydawnictwo AGH: Krakow, Poland, 1993. [Google Scholar]
- Janna, W.S. Introduction to Fluid Mechanics, 6th ed.; Taylor & Francis Ltd.: Milton Park, UK, 2020. [Google Scholar]
- Bergander, M.J. Fluid Mechanics Volume 1. Basic Principles; AGH University of Science and Technology Press: Krakow, Poland, 2010. [Google Scholar]
- Pawiński, J.; Roszkowski, J.; Strzemiński, J. Przewietrzanie Kopalń; Śląskie Wydawnictwo Techniczne: Katowice, Poland, 1995. [Google Scholar]
- Ptaszyński, B.; Łuczak, R.; Kuczera, Z.; Życzkowski, P. Influence of local gas sources with variable density and momentum on the flow of the medium in the conduit. Energies 2022, 15, 5834. [Google Scholar] [CrossRef]
- Ptaszyński, B. Charakterystyka przepływowa przewodu transportującego różne media. In Proceedings of the 8 Szkoła Aerologii Górniczej. Sekcja Aerologii Górniczej: Nowoczesne Metody Zwalczania Zagrożeń Aerologicznych w Podziemnych Wyrobiskach Górniczych, Jaworze, Poland, 13–16 October 2015; Dziurzyński, W., Ed.; Główny Instytut Górnictwa: Katowice, Poland, 2015. [Google Scholar]
- Abeysekera, M.; Wu, J.; Jenkins, N.; Rees, M. Steady state analysis of gas networks with distributed injection of alternative gas. Appl. Energy 2016, 164, 991–1002. [Google Scholar] [CrossRef]
- Wiid, A.J.; le Roux, J.D.; Craig, I.K. Modelling of methane-rich gas pipeline networks for simulation and control. J. Process Control 2020, 92, 234–245. [Google Scholar] [CrossRef]
- Raj, A.; Larsson, I.A.S.; Ljung, A.-L.; Forslund, T.; Andersson, R.; Sundström, J.; Lundström, T.S. Evaluating hydrogen gas transport in pipelines: Current state of numerical and experimental methodologies. Int. J. Hydrogen Energy 2024, 67, 136–149. [Google Scholar] [CrossRef]
- Yu, H.; Xu, H.; Fan, J.; Zhu, Y.; Wang, F.; Wu, H. Transport of Shale Gas in Microporous/Nanoporous Media: Molecular to Pore-Scale Simulations. Energy Fuels 2021, 35, 911–943. [Google Scholar] [CrossRef]
- Sidarto, K.A.; Kania, A.; Mucharam, L.; Darmadi, D.; Widhymarmanto, R.A. Determination of Gas Pressure Distribution in a Pipeline Network using the Broyden Method. J. Eng. Technol. Sci. 2017, 49, 750–769. [Google Scholar] [CrossRef]
- Wang, P.; Ao, S.; Yu, B.; Han, D.; Xiang, Y. An Efficiently Decoupled Implicit Method for Complex Natural Gas Pipeline Network Simulation. Energies 2019, 12, 1516. [Google Scholar] [CrossRef]
- Zapukhliak, V.; Poberezhny, L.; Maruschak, P.; Grudz, V., Jr.; Stasiuk, R.; Brezinová, J.; Guzanová, A. Mathematical Modeling of Unsteady Gas Transmission System Operating Conditions under Insufficient Loading. Energies 2019, 12, 1325. [Google Scholar] [CrossRef]
- Zhu, H.; Song, Z.; Hao, Y.; Feng, S. Application of Simulink Simulation for Theoretical Investigation of Nonlinear Variation of Airflow in Ventilation Network. Procedia Eng. 2012, 43, 432–436. [Google Scholar] [CrossRef]
- Osiadacz, A.J.; Gburzyńska, M. Selected Mathematical Models Describing Flow in Gas Pipelines. Energies 2022, 15, 478. [Google Scholar] [CrossRef]
- Herrán-González, A.; De La Cruz, J.M.; De Andrés-Toro, B.; Risco-Martín, J.L. Modeling and simulation of a gas distribution pipeline network. Appl. Math. Model. 2009, 33, 1584–1600. [Google Scholar] [CrossRef]
- Zhou, A.; Du, C.; Wang, K.; Fan, X.; Wang, D.; Zhao, W.; Gao, H. Research on intelligent control theory and strategy of gas drainage pipe network based on graph theory. Fuel 2024, 357, 129867. [Google Scholar] [CrossRef]
- Li, G.; Kocsis, C.; Hardcastle, S. Sensitivity analysis on parameter changes in underground mine ventilation systems. J. Coal Sci. Eng. 2011, 17, 251–255. [Google Scholar] [CrossRef]
- Karagianni, M.; Benardos, A. Ventilation Design Modeling and Optimization for an Underground Bauxite Mine. Mater. Proc. 2021, 5, 29. [Google Scholar] [CrossRef]
- Wang, J.; Jia, M.; Bin, L.; Wang, L.; Zhong, D. Regulation and Optimization of Air Quantity in a Mine Ventilation Network with Multiple Fans. Arch. Min. Sci. 2022, 67, 179–193. [Google Scholar] [CrossRef]
- Chen, K.; Si, J.; Zhou, F.; Zhang, R.; Shao, H.; Zhao, H. Optimization of air quantity regulation in mine ventilation networks using the improved differential evolution algorithm and critical path method. Int. J. Min. Sci. Technol. 2015, 25, 79–84. [Google Scholar] [CrossRef]
- Sereshki, F.; Saffari, A.; Elah, E. Comparison of Mathematical Approximation Methods for Mine Ventilation Network Analysis. Int. J. Min. Sci. 2016, 2, 1–14. [Google Scholar] [CrossRef]
- Jia, J.; Li, B.; Ke, D.; Wu, Y.; Zhao, D.; Wang, M. Optimization of mine ventilation network feature graph. PLoS ONE 2020, 15, e0242011. [Google Scholar] [CrossRef]
- Semin, M.; Levin, L. Mathematical Modeling of Air Distribution in Mines Considering Different Ventilation Modes. Mathematics 2023, 11, 989. [Google Scholar] [CrossRef]
- Novella-Rodriguez, D.-F.; Witrant, E.; Commault, C. Physical Modeling and Structural Properties of Small-Scale Mine Ventilation Networks. Mathematics 2022, 10, 1253. [Google Scholar] [CrossRef]
- Szmuk, A.; Kuczera, Z.; Badylak, A.; Cheng, J.; Borowski, M. Regulation and control of ventilation in underground workings with the use of VentSim software. In Proceedings of the International Conference on Energy, Resources, Environment and Sustainable Development, Xuzhou, China, 26–27 May 2022; p. 102. [Google Scholar]
- Pritchard, C.; Scott, D.; Frey, G. Case study of controlled recirculation at a Wyoming trona mine. Trans. Soc. Min. Metall. Explor. Inc 2013, 334, 444–448. [Google Scholar] [PubMed]
- Wei, F.; Fangping, Z.; Huiqing, L. The Use of 3D Simulation System in Mine Ventilation Management. Procedia Eng. 2011, 26, 1370–1379. [Google Scholar] [CrossRef]
- Artica, I.; Quispe, G.; Raymundo-Ibañez, C. Ventilation System Simulation Model at a Mine. IOP Conf. Ser. Mater. Sci. Eng. 2019, 689, 012017. [Google Scholar] [CrossRef]
- Maleki, S.; Sotoudeh, F.; Sereshki, F. Application of VENTSIM 3D and mathematical programming to optimize underground mine ventilation network: A case study. J. Min. Environ. 2018, 9, 741–752. [Google Scholar] [CrossRef]
- Nukić, E.; Delić, E. Simulation Analysis of Underground Coal Mine Ventilation Systems Failure. In New Technologies, Development and Application IV. NT 2021; Lecture Notes in Networks and Systems; Karabegović, I., Ed.; Springer: Cham, Switzerland, 2021; Volume 233. [Google Scholar] [CrossRef]
- Dziurzyński, W.; Krawczyk, J. Unsteady flow of gases in a mine ventilation network—A numerical simulation. Arch. Min. Sci. 2001, 46, 119–137. [Google Scholar]
- Dziurzyński, W.; Krach, A.; Pałka, T. Airflow Sensitivity Assessment Based on Underground Mine Ventilation Systems Modeling. Energies 2017, 10, 1451. [Google Scholar] [CrossRef]
- Ptaszyński, B.; Łuczak, R.; Życzkowski, P.; Kuczera, Z. Transport Efficiency of a Homogeneous Gaseous Substance in the Presence of Positive and Negative Gaseous Sources of Mass and Momentum. Energies 2022, 15, 6376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ptaszyński, B.; Łuczak, R.; Kuczera, Z.; Życzkowski, P.; Zwolińska-Glądys, K.; Borowski, M. Pressure Change in a Duct with a Flow of a Homogeneous Gaseous Substance in the Presence of a Point Mass and Momentum Sink of Gas. Energies 2024, 17, 5216. https://doi.org/10.3390/en17205216
Ptaszyński B, Łuczak R, Kuczera Z, Życzkowski P, Zwolińska-Glądys K, Borowski M. Pressure Change in a Duct with a Flow of a Homogeneous Gaseous Substance in the Presence of a Point Mass and Momentum Sink of Gas. Energies. 2024; 17(20):5216. https://doi.org/10.3390/en17205216
Chicago/Turabian StylePtaszyński, Bogusław, Rafał Łuczak, Zbigniew Kuczera, Piotr Życzkowski, Klaudia Zwolińska-Glądys, and Marek Borowski. 2024. "Pressure Change in a Duct with a Flow of a Homogeneous Gaseous Substance in the Presence of a Point Mass and Momentum Sink of Gas" Energies 17, no. 20: 5216. https://doi.org/10.3390/en17205216
APA StylePtaszyński, B., Łuczak, R., Kuczera, Z., Życzkowski, P., Zwolińska-Glądys, K., & Borowski, M. (2024). Pressure Change in a Duct with a Flow of a Homogeneous Gaseous Substance in the Presence of a Point Mass and Momentum Sink of Gas. Energies, 17(20), 5216. https://doi.org/10.3390/en17205216