Surface Passivation to Improve the Performance of Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials That Result in Low-Dimensional Perovskite
2.1. One-Dimensional Perovskite
2.2. Two-Dimensional Perovskite
3. Small Molecules
3.1. Halides
3.2. Lewis Acids and Bases
3.3. Amines
3.4. Multifunctional Molecules
4. Polymers
5. Passivants for Sn-Based PSCs
6. Conclusions and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, G.; Liang, R.; Ge, M.; Sun, G.; Zhang, Y.; Xing, G. Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2022, 34, 2105635. [Google Scholar] [CrossRef]
- Akman, E.; Akin, S. Poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine-Based Interfacial Passivation Strategy Promoting Efficiency and Operational Stability of Perovskite Solar Cells in Regular Architecture. Adv. Mater. 2020, 33, e2006087. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhang, T.; Liu, W.; Meng, F.; Liu, C.; Chen, N.; Li, Z.; Liu, Z.; Li, X. Recent Progress of Surface Passivation Molecules for Perovskite Solar Cell Applications. J. Renew. Mater. 2023, 11, 1533–1554. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, S.; Zhu, M.; Li, Z.; Cheng, Z.; Xiang, S.; Zhang, Z. The Role of Grain Boundaries in Organic-Inorganic Hybrid Perovskite Solar Cells and Its Current Enhancement Strategies: A Review. Energy Environ. Mater. 2024, 7, e12696. [Google Scholar] [CrossRef]
- Lee, J.-W.; Tan, S.; Han, T.-H.; Wang, R.; Zhang, L.; Park, C.; Yoon, M.; Choi, C.; Xu, M.; Liao, M.E.; et al. Author Correction: Solid-Phase Hetero Epitaxial Growth of α-Phase Formamidinium Perovskite. Nat. Commun. 2020, 11, 5880. [Google Scholar] [CrossRef]
- Kong, J.; Wang, H.; Röhr, J.A.; Fishman, Z.S.; Zhou, Y.; Li, M.; Cotlet, M.; Kim, G.; Karpovich, C.; Antonio, F.; et al. Perovskite Solar Cells with Enhanced Fill Factors Using Polymer-Capped Solvent Annealing. ACS Appl. Energy Mater. 2020, 3, 7231–7238. [Google Scholar] [CrossRef]
- Lee, Y.S.; Do, J.J.; Jung, J.W. A Comparative Study of Surface Passivation of P-i-n Perovskite Solar Cells by Phenethylammonium Iodide and 4-Fluorophenethylammonium Iodide for Efficient and Practical Perovskite Solar Cells with Long-Term Reliability. J. Alloys Compd. 2024, 988, 174060. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, R.; Yu, X.; Li, L.; Lin, P.; Zhang, S.; Gao, S.; Li, X.; Zhang, W.; Zhang, W.; et al. Surface Passivation of Perovskite by Hole-blocking Layer towards Efficient and Stable Inverted Solar Cells. Sol. RRL 2024, 8, 2400158. [Google Scholar] [CrossRef]
- Dong, P.; Chen, B.; Yao, D.; Li, S.; Su, J.; Zhou, B.; Tian, N.; Zheng, G.; Peng, Y.; Long, F. Comprehensive Interface Engineering Based on Target Anchoring Agents Towards Efficient and Stable Inverted Perovskite Solar Cells. J. Mater. Chem. A 2024, 12, 6134–6145. [Google Scholar] [CrossRef]
- Kim, S.-J.; Cho, I.H.; Nguyen, T.-D.; Hong, Y.-K.; Kim, Y.; Yum, J.-H.; Sivula, K.; Kang, J.; Kim, H.-S.; Zakeeruddin, S.M.; et al. Methylammonium Nitrate-Mediated Crystal Growth and Defect Passivation in Lead Halide Perovskite Solar Cells. ACS Energy Lett. 2024, 9, 2137–2144. [Google Scholar] [CrossRef]
- Yang, Z.; Wei, J.; Zheng, J.; Zhong, Z.; Du, H.; He, Z.; Liu, L.; Ma, Q.; Yu, X.; Wang, Y.; et al. Crystallization Kinetics of Perovskite Films by a Green Mixture Antisolvent for Efficient NIOX-Based Inverted Solar Cells. ACS Appl. Mater. Interfaces 2024, 16, 19838–19848. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bae, S.; Lee, S.; Wang, A.; Jung, Y.; Lee, D.; Lee, J. Controlled Growth of Uniform and Dense Perovskite Layers on SnO2 via Interface Passivation by PbS Quantum Dots. EcoMat 2024, 6, e12456. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Luo, J.; Wang, M.; Cai, S.; Cai, Q.; Wei, D.; Ji, J.; Zhang, Z.; Li, X. Tailoring Interface and Morphology of TiO2 Electron Transport Layer with Potassium Bitartrate for High-Performance Perovskite Solar Cells. Appl. Surf. Sci. 2024, 662, 160139. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, Y.; Zhang, M.; Ni, Y.; Zhang, F.; Jeong, S.Y.; Huang, T.; Li, X.; Woo, H.Y.; Zhang, J.; et al. Over 18.2% Efficiency of Layer–by–Layer All–Polymer Solar Cells Enabled by Homoleptic Iridium(III) Carbene Complex as Solid Additive. Sci. Bull. 2024, 69, 2862–2869. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Ni, Y.; Zhang, W.; Xu, Y.; Zheng, B.; Jeong, S.Y.; Wu, S.; Ma, Z.; Du, X.; Hao, X.; et al. Over 19.2% Efficiency of Layer-by-Layer Organic Photovoltaics Enabled by a Highly Crystalline Material as an Energy Donor and Nucleating Agent. Energy Environ. Sci. 2024, 17, 5173–5182. [Google Scholar] [CrossRef]
- Chao, L.; Wang, Z.; Xia, Y.; Chen, Y.; Huang, W. Recent Progress on Low Dimensional Perovskite Solar Cells. J. Energy Chem. 2018, 27, 1091–1100. [Google Scholar] [CrossRef]
- Liu, P.; He, X.; Ren, J.; Liao, Q.; Yao, J.; Fu, H. Organic-Inorganic Hybrid Perovskite Nanowire Laser Arrays. ACS Nano 2017, 11, 5766–5773. [Google Scholar] [CrossRef]
- Liu, J.; Xue, Y.; Wang, Z.; Xu, Z.-Q.; Zheng, C.; Weber, B.; Song, J.; Wang, Y.; Lu, Y.; Zhang, Y.; et al. Two-Dimensional CH3NH3PBI3 Perovskite: Synthesis and Optoelectronic Application. ACS Nano 2016, 10, 3536–3542. [Google Scholar] [CrossRef]
- Gao, L.; Hu, P.; Liu, S. Low-Dimensional Perovskite Modified 3D Structures for Higher-Performance Solar Cells. J. Energy Chem. 2023, 81, 389–403. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, F.; Gao, S.; Wei, S.-H. Origin of the Stability of Two-Dimensional Perovskites: A First-Principles Study. J. Mater. Chem. A 2018, 6, 14949–14955. [Google Scholar] [CrossRef]
- Ji, T.; Cao, Y.; Lin, D.; Stolar, M.; Berlinguette, C.P. Molecular Interlayer with Large Cations Supports Efficient, Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2024, 7, 5371–5378. [Google Scholar] [CrossRef]
- Hartono, N.T.P.; Sun, S.; Gélvez-Rueda, M.C.; Pierone, P.J.; Erodici, M.P.; Yoo, J.; Wei, F.; Bawendi, M.; Grozema, F.C.; Sher, M.-J.; et al. The Effect of Structural Dimensionality on Carrier Mobility in Lead-Halide Perovskites. J. Mater. Chem. A 2019, 7, 23949–23957. [Google Scholar] [CrossRef]
- Ge, C.; Xie, L.; Yang, J.; Wei, K.; Wu, T.; Wang, L.; Sun, L.; Zhang, J.; Hua, Y. Holistic Approach to Low-Dimensional Perovskite Enveloping of Internal Interfaces and Grain Boundaries in Perovskite Solar Cells. Adv. Funct. Mater. 2024, 34, 2313688. [Google Scholar] [CrossRef]
- Abate, S.Y.; Jha, S.; Shaik, A.K.; Ma, G.; Emodogo, J.; Pradhan, N.; Gu, X.; Patton, D.; Hammer, N.I.; Dai, Q. Fabrication of 1D/3D Heterostructure Perovskite Layers by Tetrabutylammonium Tetrafluoroborate for High-Performance Devices. Org. Electron. 2024, 125, 106984. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, X.; Wang, F.; Sun, H.; Zhu, Q.; Hu, H. Pyridine Substitution Strategy for One-Dimensional Perovskite: Toward Efficient and Stable Mixed-Dimensional Photovoltaics. Chem. Eng. J. 2024, 493, 152539. [Google Scholar] [CrossRef]
- Cha, J.; Lee, C.B.; Park, S.M.; Baek, D.; Kim, S.; Han, S.G.; Jin, H.; Yang, S.J.; Lim, J.; Kim, K.; et al. Lattice-Matched in-Situ-Formed 1D Perovskite Phase in Multi-Dimensional Solar Cells Achieving High Phase Stability and Favorable Energy Landscape. Chem. Eng. J. 2024, 484, 149280. [Google Scholar] [CrossRef]
- Gu, J.; Sun, X.; Chan, P.F.; Lu, X.; Zeng, P.; Gong, J.; Li, F.; Liu, M. Constructing Low-Dimensional Perovskite Network to Assist Efficient and Stable Perovskite Solar Cells. J. Energy Chem. 2024, 96, 625–632. [Google Scholar] [CrossRef]
- Li, Y.; Duan, Y.; Liu, Z.; Yang, L.; Li, H.; Fan, Q.; Zhou, H.; Sun, Y.; Wu, M.; Ren, X.; et al. In-Situ-Synthesized Low-Dimensional Perovskite for >25% Efficiency Stable MA-Free Perovskite Solar Cells. Adv. Mater. 2024, 36, e2310711. [Google Scholar] [CrossRef]
- Su, J.; Hu, T.; Chen, X.; Zhang, X.; Fang, N.; Hao, J.; Guo, H.; Jiang, S.; Gu, D.; Qiu, J.; et al. Multi-Functional Interface Passivation via Guanidinium Iodide Enables Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2024, 2406324. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M.A.; Eickemeyer, F.T.; Kim, M.; et al. Pseudo-Halide Anion Engineering for α-FAPbI3 Perovskite Solar Cells. Nature 2021, 592, 381–385. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, T.; Wang, J.; Zhu, S.; Zhang, M.; Guo, M. Surface Passivation for Efficient and Stable Perovskite Solar Cells in Ambient Air: The Structural Effect of Amine Molecules. Ceram. Int. 2024, 50, 7528–7537. [Google Scholar] [CrossRef]
- Choi, E.; Lee, J.; Anaya, M.; Mirabelli, A.; Shim, H.; Strzalka, J.; Lim, J.; Yun, S.; Dubajic, M.; Lim, J.; et al. Synergetic Effect of Aluminum Oxide and Organic Halide Salts on Two-Dimensional Perovskite Layer Formation and Stability Enhancement of Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2301717. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, K.; Yang, L.; Feng, W.; Zheng, L.; Shen, L.; Jin, Y.; Fang, Z.; Song, P.; Tian, W.; et al. Dissolved-Cl2 Triggered Redox Reaction Enables High-Performance Perovskite Solar Cells. Nat. Commun. 2023, 14, 3738. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C.S.; Jeon, N.J.; Correa-Baena, J.-P.; et al. Efficient Perovskite Solar Cells via Improved Carrier Management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef]
- Tan, L.; Shen, L.; Song, P.; Luo, Y.; Zheng, L.; Tian, C.; Xie, L.; Yang, J.; Wei, Z. Pure Chloride 2D/3D Heterostructure Passivation for Efficient and Stable Perovskite Solar Cells. Adv. Energy Sustain. Res. 2023, 4. [Google Scholar] [CrossRef]
- Li, Z.; Sun, A.; Zheng, Y.; Zhuang, R.; Wu, X.; Tian, C.; Tang, C.; Liu, Y.; Ouyang, B.; Du, J.; et al. Efficient Charge Transport in Inverted Perovskite Solar Cells via 2D/3D Ferroelectric Heterojunction. Small Methods 2024, 2400425. [Google Scholar] [CrossRef]
- Gong, H.; Song, Q.; Zhu, T.; Zhang, C.; Huang, X.; Jing, X.; You, F.; Liang, C.; He, Z. Forming Enlarged Grain and Fixed Boundary via a Two-Step Surface Modification to Achieve Stable Inverted Perovskite Solar Cells. Chem. Eng. J. 2024, 483, 149382. [Google Scholar] [CrossRef]
- Metrangolo, P.; Canil, L.; Abate, A.; Terraneo, G.; Cavallo, G. Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion. Angew. Chem. Int. Ed. 2022, 61, e202114793. [Google Scholar] [CrossRef]
- Sun, Q.; Meng, X.; Liu, G.; Duan, S.; Hu, D.; Shen, B.; Kang, B.; Silva, S.R.P. SNO2 Surface Modification and Perovskite Buried Interface Passivation by 2,5-Furandicarboxylic Acid for Flexible Perovskite Solar Cells. Adv. Funct. Mater. 2024, 2404686. [Google Scholar] [CrossRef]
- Shao, W.; Wang, H.; Fu, S.; Ge, Y.; Guan, H.; Wang, C.; Wang, C.; Wang, T.; Ke, W.; Fang, G. Tailoring Perovskite Surface Potential and Chelation Advances Efficient Solar Cells. Adv. Mater. 2024, 36, e2310080. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, S.; Liu, Z.; Li, Y.; Shi, J.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. Interfacial Defect Passivation via Imidazolium Bromide for Efficient, Stable Perovskite Solar Cells. J. Mater. Chem. A 2024, 12, 16070–16078. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, L.; Zeng, F.; Bian, S.; Liu, B.; Wang, Y.; Wu, Y.; Shao, Y.; Zhang, H.; Zhang, Y.; et al. Dual Modification Engineering Enabled Efficient Perovskite Solar Cells with High Open-Voltage of 1.233 V. Chem. Eng. J. 2024, 488, 151077. [Google Scholar] [CrossRef]
- Wang, W.-T.; Chiang, C.-H.; Zhang, Q.; Mu, Y.; Wu, C.-G.; Feng, S.-P. Defect-Induced Dipole Moment Change of Passivators for Improving the Performance of Perovskite Photovoltaics. ACS Energy Lett. 2024, 9, 2982–2989. [Google Scholar] [CrossRef]
- Yang, B.; Cai, B.; Zhou, T.; Zheng, X.; Zhang, W.-H. Facile and Sustainable Interface Modulation via a Self-Assembly Phosphonate Molecule for Efficient and Stable Perovskite Photovoltaics. Chem. Eng. J. 2024, 488, 150861. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.; Liu, F.; Li, R.; Jing, Y.; Wang, X.; Wu, J.; Zhang, J.; Lan, Z. 2-Iodoaniline-Modified High-Efficiency Carbon-Based CsPbIBr2 Perovskite Solar Cells. Appl. Surf. Sci. 2024, 658, 159831. [Google Scholar] [CrossRef]
- Kim, H.; Choi, K.; Yoon, G.W.; Kim, D.; Lee, D.H.; Choi, Y.; Jung, H.S.; Song, S.; Park, T. Modulating Molecular Interaction of Zwitterion toward Rational Interface Engineering of Perovskite Solar Cells. Adv. Energy Mater. 2024, 14, 2401263. [Google Scholar] [CrossRef]
- Cheng, C.; Yao, Y.; Li, L.; Zhao, Q.; Zhang, C.; Zhong, X.; Zhang, Q.; Gao, Y.; Wang, K. A Novel Organic Phosphonate Additive Induced Stable and Efficient Perovskite Solar Cells with Efficiency over 24% Enabled by Synergetic Crystallization Promotion and Defect Passivation. Nano Lett. 2023, 23, 8850–8859. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Z.; Chen, A.; Zhang, T.; Chen, X.; Bian, X.; Xu, G.; Chen, T.; Pan, S.; Yu, J.; et al. Surface Passivation with an Electron-Donating Sulfonate Group for High-Performance and Stable Perovskite Solar Cells. J. Mater. Chem. A 2024, 12, 12545–12551. [Google Scholar] [CrossRef]
- Yuan, X.; Ling, X.; Wang, H.; Shen, C.; Li, R.; Deng, Y.; Chen, S. Modulation on Electrostatic Potential to Build a Firm Bridge at NiO /Perovskite Interface for Efficient and Stable Perovskite Solar Cells. J. Energy Chem. 2024, 96, 249–258. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, J.; Liu, Z.; Li, A.; Miyasaka, T.; Wang, X. Zwitterion Dual-Modification Strategy for High-Quality NIOX and Perovskite Films for Solar Cells. Small 2024, 20, e2400356. [Google Scholar] [CrossRef]
- Yu, T.; Ma, Z.; Huang, Z.; Li, Y.; Tan, J.; Li, G.; Hou, S.; Du, Z.; Liu, Z.; Li, Y.; et al. Amino Pyridine Iodine as an Additive for Defect-Passivated Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 55813–55821. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Cui, A.; Liu, S.; Yang, S. Guanidine Carbonate Modified TIO2/Perovskite Interface for Efficient and Stable Planar Perovskite Solar Cells. Org. Electron. 2024, 130, 107063. [Google Scholar] [CrossRef]
- Wu, C.; Wang, R.; Lin, Z.; Yang, N.; Wu, Y.; Ouyang, X. Simultaneous Dual-Interfaces Modification Based on Mixed Cations for Efficient Inverted Perovskite Solar Cells with Excellent Stability. Chem. Eng. J. 2024, 493, 152899. [Google Scholar] [CrossRef]
- Liu, C.; Shi, P.; Li, C.; Huang, W.; Yang, X.; Yavuz, I.; Xue, J.; Liu, R.; Wang, R. Manipulating the Interfacial Dipole toward High-Performance Perovskite Solar Cells via Conjugated Organic Ammonium. ACS Sustain. Chem. Eng. 2024, 12, 8923–8929. [Google Scholar] [CrossRef]
- Jeong, J.; Chawanpunyawat, T.; Kim, M.; Sláma, V.; Lempesis, N.; Agosta, L.; Carnevali, V.; Zhang, Q.; Eickemeyer, F.T.; Pfeifer, L.; et al. Carbazole Treated Waterproof Perovskite Films with Improved Solar Cell Performance. Adv. Energy Mater. 2024, 2401965. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface Passivation of Perovskite Film for Efficient Solar Cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Ma, Y.; Li, F.; Gong, J.; Wang, L.; Tang, X.; Zeng, P.; Chan, P.F.; Zhu, W.; Zhang, C.; Liu, M. Bi-Molecular Kinetic Competition for Surface Passivation in High-Performance Perovskite Solar Cells. Energy Environ. Sci. 2024, 17, 1570–1579. [Google Scholar] [CrossRef]
- Shi, Z.; Guo, R.; Luo, R.; Wang, X.; Ma, J.; Feng, J.; Niu, X.; Alvianto, E.; Jia, Z.; Guo, X.; et al. “T-Shaped” Carbazole Alkylammonium Cation Passivation in Perovskite Solar Cells. ACS Energy Lett. 2024, 9, 419–427. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Zhao, J.; Lu, S.; Lu, J.; Sun, J.; Wu, S.; Zheng, X.; Zheng, X.; Tang, X.; et al. Unraveling the Molecular Size Effect on Surface Engineering of Perovskite Solar Cells. Small Methods 2024, 2400043. [Google Scholar] [CrossRef]
- Yang, P.; Wu, J.; Yang, J.; Ke, C.; Lin, W.; Huang, Y.; Tian, J.; Wang, Y.; Sun, W.; Lan, Z.; et al. Effective Passivation of Defects in High-Performance Tin Oxide-Based Perovskite Solar Cells Using Guanidinium Phosphate Additives. Surf. Interfaces 2024, 44, 103700. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, X.; Cui, Q.; Yao, Y.; Su, H.; She, Y.; Zhu, Y.; Li, D.; Liu, S. Manipulating the Crystallization of Perovskite via Metal-Free DABCO-NH4CL3 Addition for High Efficiency Solar Cells. Adv. Funct. Mater. 2024, 34, 2400043. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, J.; Li, M.; Qi, M.; Zhang, G.; Chen, R.; Hu, J.; Liu, X.; Qin, C.; Xiao, L.; et al. 4-Methoxy Phenethylammonium Halide Salts for Surface Passivation of Perovskite Films towards Efficient and Stable Solar Cells. Chem. Eng. J. 2024, 494, 152955. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Song, J.; Ye, J.; Cao, J.; Yin, X.; Su, Z.; Jin, Y.; Hu, L.; Zuilhof, H.; et al. Ethyl Thioglycolate Assisted Multifunctional Surface Modulation for Efficient and Stable Inverted Perovskite Solar Cells. Adv. Funct. Mater. 2024, 34, 2402632. [Google Scholar] [CrossRef]
- Guo, T.; Liang, Z.; Liu, B.; Huang, Z.; Xu, H.; Tao, Y.; Zhang, H.; Zheng, H.; Ye, J.; Pan, X. Designing Surface Passivators through Intramolecular Potential Manipulation for Efficient and Stable Perovskite Solar Cells. Small 2024, 20, 2402197. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, S.; Kong, F.; Shen, Z.; Chen, C.; Pan, X.; Zhao, C.; Zhang, J.; Ghadari, R.; Bao, M.; et al. Synergistic Resonant Molecular Passivator of Various Defects for High-Performance Perovskite Solar Cells. Mater. Today Energy 2024, 40, 101511. [Google Scholar] [CrossRef]
- Qi, D.; Cao, Y.; Feng, X.; Ge, J.; Yan, N.; Yuan, Y.; Zhang, J.; Song, F.; Wang, K.; Liu, S.; et al. Implementation of a Multi-Functional-Group Strategy for Enhanced Performance of Perovskite Solar Cells through the Incorporation of 3-Amino-4-Phenylbutyric Acid Hydrochloride. Small 2024, 20, e2401487. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, H.; Lee, C.; Kim, B.; Kwon, N.; Son, T.; Lee, J.; Sin, J.; Shin, T.; Yang, J.; et al. Enhancing Performance of Two-step Fabricated Perovskite Solar Cells with Sulfonium Triflate-based Additive. EcoMat 2024, 6, e12446. [Google Scholar] [CrossRef]
- Gu, S.; He, J.; Wang, S.; Li, D.; Liu, H.; Li, X. In-Situ Reaction Modification of Isocyanate Derivatives with Hole-Transport Units on Perovskite Film Surface for Efficient and Stable Solar Cells. Nano Energy 2024, 127, 109715. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Zhu, S.; Ma, T.; Zhang, M.; Guo, M. Hydrogen Bond Network for Efficient and Stable Fully Ambient Air-Processed Perovskite Solar Cells with Over 21% Efficiency. ACS Sustain. Chem. Eng. 2023, 11, 14559–14571. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Xie, L.; Yang, S.; Meng, Y.; Li, M.; Xiao, C.; Zhu, J.; Do, H.; Zhang, J.; et al. Alkyl Chains Tune Molecular Orientations to Enable Dual Passivation in Inverted Perovskite Solar Cells. Angew. Chem. Int. Ed. 2024, 63, e202403610. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Y.; Eickemeyer, F.T.; Pan, L.; Ren, D.; Ruiz-Preciado, M.A.; Carlsen, B.; Yang, B.; Dong, X.; Wang, Z.; et al. Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency. Adv. Mater. 2020, 32, e1907757. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, C.; Gao, F.; Li, Y.; Shi, B.; Cai, X.; Yang, F.; Zhang, J.; Liu, S. 2-Amino-5-Chlorobenzophenone Passivating Perovskite Films Using Multiple Functional Groups towards High-Performance Solar Cells. J. Mater. Chem. C 2023, 11, 4393–4403. [Google Scholar] [CrossRef]
- Lu, C.; Wu, Y.; Gao, F.; Li, Y.; Shi, B.; Cai, X.; Zhang, J.; Yang, F.; Liu, S.F. 3-Ethoxy-4-Hydroxybenzadehyde Surface Passivation of Perovskite Films Enables Exceeding 24% Efficiency in Solar Cells. ACS Appl. Energy Mater. 2023, 6, 6981–6992. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, T.; Li, J.; Su, Z.; Jin, C.; Su, J.; Li, W.; Yuan, Y.; Tong, J.; Peng, Y.; et al. Surface Passivation with Tailoring Organic Potassium Salt for Efficient FAPbI3 Perovskite Solar Cells and Modules. Adv. Funct. Mater. 2024, 34, 2401945. [Google Scholar] [CrossRef]
- Bian, S.; Wang, Y.; Zeng, F.; Liu, Z.; Liu, B.; Wu, Y.; Shao, L.; Shao, Y.; Zhang, H.; Liu, S.; et al. Multifunctional Interfacial Molecular Bridge Enabled by an Aggregation-Induced Emission Strategy for Enhancing Efficiency and UV Stability of Perovskite Solar Cells. J. Energy Chem. 2024, 95, 588–595. [Google Scholar] [CrossRef]
- Zuo, L.; Guo, H.; deQuilettes, D.W.; Jariwala, S.; De Marco, N.; Dong, S.; DeBlock, R.; Ginger, D.S.; Dunn, B.; Wang, M.; et al. Polymer-Modified Halide Perovskite Films for Efficient and Stable Planar Heterojunction Solar Cells. Sci. Adv. 2017, 3, e1700106. [Google Scholar] [CrossRef]
- Jia, S.; Yang, J.; Wang, T.; Pu, X.; Chen, H.; He, X.; Feng, G.; Chen, X.; Bai, Y.; Cao, Q.; et al. In Situ Polymerization of Water-induced 1,3-phenylene Diisocyanate for Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells. Interdiscip. Mater. 2024, 3, 316–325. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Y.; Yin, C.; Zhang, J.; You, J.; Wang, J.; Wang, J.; Zhang, J. Manipulating Crystal Growth and Secondary Phase PbI2 to Enable Efficient and Stable Perovskite Solar Cells with Natural Additives. Nano-Micro Lett. 2024, 16, 183. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, C.; Chen, S.; Ye, Y.; Sun, L.; Gao, L.; Sulaiman, Y.; Ma, T.; Chen, M. Interfacial Defect Passivation by Multiple-Effect Molecule for Efficient and Stable Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2023, 262, 112499. [Google Scholar] [CrossRef]
- Shi, C.; Li, J.; Xiao, S.; Wang, Z.; Xiang, W.; Wu, R.; Liu, Y.; Zhou, Y.; Ke, W.; Fang, G.; et al. Alcohol-Dispersed Polymer Complex as an Effective and Durable Interface Modifier for n-i-p Perovskite Solar Cells. J. Energy Chem. 2024, 93, 243–252. [Google Scholar] [CrossRef]
- Li, M.; Yue, Z.; Ye, Z.; Li, H.; Luo, H.; Yang, Q.; Zhou, Y.; Huo, Y.; Cheng, Y. Improving the Efficiency and Stability of MAPBI3 Perovskite Solar Cells by Dipeptide Molecules. Small 2024, 20, e2311400. [Google Scholar] [CrossRef] [PubMed]
- Na, H.; Li, M.Q.; Cha, J.; Kim, S.; Jin, H.; Baek, D.; Kim, M.K.; Sim, S.; Lee, M.; Kim, M.; et al. Passivating Detrimental Grain Boundaries in Perovskite Films with Strongly Interacting Polymer for Achieving High-Efficiency and Stable Perovskite Solar Cells. Appl. Surf. Sci. 2023, 626, 157209. [Google Scholar] [CrossRef]
- Pu, X.; Zhao, J.; Li, Y.; Zhang, Y.; Loi, H.-L.; Wang, T.; Chen, H.; He, X.; Yang, J.; Ma, X.; et al. Stable NiOx-Based Inverted Perovskite Solar Cells Achieved by Passivation of Multifunctional Star Polymer. Nano Energy 2023, 112, 108506. [Google Scholar] [CrossRef]
- Sun, C.; Yang, P.; Nan, Z.; Tian, C.; Cai, Y.; Chen, J.; Qi, F.; Tian, H.; Xie, L.; Meng, L.; et al. Well-Defined Fullerene Bisadducts Enable High-Performance Tin-Based Perovskite Solar Cells. Adv. Mater. 2023, 35, e2205603. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Song, Z.; Yan, Y. From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives. Adv. Mater. 2019, 31, e1803792. [Google Scholar] [CrossRef]
- Cao, J.; Liu, C.; Xu, Y.; Loi, H.; Wang, T.; Li, M.G.; Liu, L.; Yan, F. High-Performance Ideal Bandgap SN-PB Mixed Perovskite Solar Cells Achieved by MXENE Passivation. Small 2024, 2403920. [Google Scholar] [CrossRef]
- Ricciarelli, D.; Meggiolaro, D.; Ambrosio, F.; De Angelis, F. Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation. ACS Energy Lett. 2020, 5, 2787–2795. [Google Scholar] [CrossRef]
- Chan, P.F.; Qin, M.; Su, C.; Ye, L.; Wang, X.; Wang, Y.; Guan, X.; Lu, Z.; Li, G.; Ngai, T.; et al. ISO-BAI Guided Surface Recrystallization for over 14% Tin Halide Perovskite Solar Cells. Adv. Sci. 2024, 11, e2309668. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, H.; Huang, J.; Liu, Z.; Sun, Q.; Li, X.; Dai, L.; Shen, Y.; Wang, M. Over 12% Efficient CsSnI3 Perovskite Solar Cells Enabled by Surface Post-Treatment with Bi-Functional Polar Molecules. Chem. Eng. J. 2024, 490, 151561. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Bi, H.; Wang, L.; Shen, Q.; Hayase, S. Over 14% Efficiency of Highly Reproducible Sn Perovskite Solar Cell via Defect Passivation and Morphology Repairment. Chem. Eng. J. 2024, 483, 149345. [Google Scholar] [CrossRef]
- Song, T.; Jang, H.; Seo, J.; Roe, J.; Song, S.; Kim, J.W.; Yeop, J.; Lee, Y.; Lee, H.; Cho, S.; et al. Enhancing Performance and Stability of Sn–Pb Perovskite Solar Cells with Oriented Phenyl-C61-Butyric Acid Methyl Ester Layer via High-Temperature Annealing. ACS Nano 2024, 18, 2992–3001. [Google Scholar] [CrossRef] [PubMed]
PSCs | JSC [mA cm−2] | VOC [V] | FF [%] | PCE [%] |
---|---|---|---|---|
Control | 24.69 | 1.132 | 81.01 | 22.66 |
DACl | 24.80 | 1.174 | 82.11 | 23.91 |
DABr | 24.97 | 1.165 | 81.76 | 23.78 |
DAI | 24.79 | 1.163 | 81.29 | 23.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Li, D. Surface Passivation to Improve the Performance of Perovskite Solar Cells. Energies 2024, 17, 5282. https://doi.org/10.3390/en17215282
Lee H, Li D. Surface Passivation to Improve the Performance of Perovskite Solar Cells. Energies. 2024; 17(21):5282. https://doi.org/10.3390/en17215282
Chicago/Turabian StyleLee, Hayeon, and Dawen Li. 2024. "Surface Passivation to Improve the Performance of Perovskite Solar Cells" Energies 17, no. 21: 5282. https://doi.org/10.3390/en17215282
APA StyleLee, H., & Li, D. (2024). Surface Passivation to Improve the Performance of Perovskite Solar Cells. Energies, 17(21), 5282. https://doi.org/10.3390/en17215282