Enhancing Thermoelectric Performance of Mg3Sb2 Through Substitutional Doping: Sustainable Energy Solutions via First-Principles Calculations
Abstract
:1. Introduction
2. Research Methodology
3. Results and Discussion
3.1. Electronic Properties
3.2. Thermoelectric Properties
3.2.1. Seebeck Coefficient
3.2.2. Electrical Conductivity
3.2.3. Electronic Thermal Conductivity
3.2.4. Electronic ZT
3.3. Comparison with Already Published Works
Dopants | Results (μV/K) | Literature Values (μV/K) | References | Differences |
---|---|---|---|---|
Bi | −274.4 | −250 to −300 | Tamaki et al. (2016) [60]; Shang et al. (2020) [61]; Ohno et al. (2018) [62]; Zhao et al. (2016) [13]; Madavali et al. (2021) [63] | Our result is higher, indicating better optimization of carrier dynamics. |
Ge | −392.1 | −350 to −400 | Wang et al. (2024) [64]; Zhao et al. (2016) [13]; Kong et al. (2024) [65]; Wang et al. (2022) [66] | Our result is at the higher end, suggesting enhanced thermoelectric efficiency. |
Si | −273.8 | −250 to −300 | Wang et al. (2024) [64]; Park et al. (2022) [67]; Basu et al. (2021) [68] | Similar to the literature, indicating consistent behavior of Si doping. |
3.3.1. Summary of Differences and Similarities
Differences
Similarities
4. Conclusions
4.1. Bismuth (Bi) Doping
4.2. Germanium (Ge) Doping
4.3. Silicon (Si) Doping
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ismail, B.I.; Ahmed, W.H. Thermoelectric Power Generation Using Waste-Heat Energy as an Alternative Green Technology. Recent Adv. Electr. Electron. Eng. 2009, 2, 27–39. [Google Scholar] [CrossRef]
- Biswas, K.; He, J.; Blum, I.D.; Wu, C.I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Beaudry, B.J.; Gschneidner, J.K.A.; Hartman, R.; Vining, C.B.; Alexander, C.A. Thermoelectric power and resistivity of Gd_1_−_x_Yb_x_S. J. Appl. Phys. 1987, 62, 819–826. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Wang, L.; Tan, X.; Liu, G.; Xu, J.; Shao, H.; Yu, B.; Chen, C.; Jiang, Q. Enhanced thermoelectric properties of Bi2Se3 nanostructures through interface engineering. ACS Energy Lett. 2017, 2, 1203–1209. [Google Scholar] [CrossRef]
- Kanatzidis, M.G. Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 2010, 22, 648–659. [Google Scholar] [CrossRef]
- Vineis, C.J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M.G. Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features. Adv. Mater. 2010, 22, 3970–3980. [Google Scholar] [CrossRef]
- Nolas, G.S.; Sharp, J.; Goldsmid, H.J. Thermoelectrics: Basic Principles and New Materials Developments; Springer: Berlin/Heidelberg, Germany, 2001; Volume 45. [Google Scholar]
- Tritt, T.M.; Subramanian, M.A. Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 2006, 31, 188–198. [Google Scholar] [CrossRef]
- Hao, C.; Li, Z.; Dou, S. Recent advances in thermoelectric materials. Chin. Sci. Bull. 2014, 59, 2073–2091. [Google Scholar]
- Liu, W.; Yan, X.; Chen, G.; Ren, Z. Recent advances in thermoelectric nanocomposites. Nano Energy 2012, 1, 42–56. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V.P.; et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Zou, J.; Chen, Z.G. Thermoelectric properties of nanostructured BiSbTe alloys. Adv. Mater. 2019, 31, 1807071. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.D.; Lo, S.H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef]
- An, T.H.; Park, C.; Seo, W.S.; Choi, S.M.; Kim, I.H.; Kim, S.U. Synthesis and thermoelectric properties of skutterudite CoSb3 by ball-milling process. J. Korean Phys. Soc. 2012, 60, 1717–1721. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Zheng, S.; Zhang, Z.; Wang, B.; Chen, L.; Xie, W. Enhanced thermoelectric performance of SnTe by CuAgTe nanoinclusion. J. Phys. Chem. C 2019, 123, 20788–20794. [Google Scholar]
- Neeli, G.; Behara, D.K.; Kumar, M.K. Recent developments and trends in thermoelectric materials. Int. J. Sci. 2016, 5, 1833–1840. [Google Scholar]
- Zhang, X.; Zhao, L.D. Thermoelectric materials: Energy harvesting and waste heat recovery. J. Mater. 2015, 1, 2352–2363. [Google Scholar]
- Chen, C.; Li, X.; Wang, X.; Zhang, Z.; Sui, J.; Cao, F. Thermoelectric properties and electronic structures of new Bi2Te3-based materials. J. Mater. Sci. 2018, 53, 16001–16009. [Google Scholar] [CrossRef]
- Thompson, A.; Sharp, J.; Rawn, C.; Chackoumakos, B. Thermoelectric properties of nanostructured materials. Mater. Res. Soc. Symp. Proc. 2011, 1044, U03. [Google Scholar]
- Ravindra, N.M.; Jariwala, B.; Bañobre, A.; Maske, A. Recent advances in thermoelectric materials and applications. Springer Brief Mater. 2016, 1, 67–86. [Google Scholar]
- Terasaki, P.I. Thermoelectric Materials: Advances and Applications; Elsevier: Amsterdam, The Netherlands, 2016; Volume 1, p. 548. [Google Scholar]
- Ciesielski, K.; Synoradzki, K.; Wolańska, I.; Stachowiak, P.; Kȩpiński, L.; Jeżowski, A. New thermoelectric materials for energy applications. J. Appl. Commun. 2020, 816, 152596. [Google Scholar]
- Zou, T.; Xie, W.; Feng, J.; Qin, X.; Weidenkaf, A. Thermoelectric properties of nanostructured Bi2Te3. J. Nanomater. 2015, 2015, 642909. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Yan, G.; Mu, G.; Chen, Z. Real Time Aggregation Control of P2H Loads in a Virtual Power Plant Based on a Multi-Period Stackelberg Game. Energy 2024, 303, 131484. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Lu, T.; Zhu, K.; Li, S.; Li, J.; Zhao, X.; Zhang, L.; Zhou, X. New thermoelectric materials for energy applications. Chin. Phys. B 2018, 27, 2381. [Google Scholar]
- Gascoin, F.; Ottensmann, S.; Stark, D.; Haile, S.M.; Snyder, G.J. New thermoelectric materials. Adv. Funct. Mater. 2005, 15, 1860–1873. [Google Scholar] [CrossRef]
- Wang, X.J.; Tang, M.B.; Chen, H.H. Synthesis and characterization of skutterudite-based thermoelectric materials. Appl. Phys. Lett. 2009, 94, 0303. [Google Scholar]
- Cao, Q.G.; Zhang, H.; Tang, M.B.; Chen, H.H.; Yang, X.X.; Grin, Y.; Sun, Q.; Fang, L.; Wu, H. New skutterudite thermoelectric materials. J. Phys. Chem. Solids 2010, 107, 053714. [Google Scholar]
- Zhang, H.; Fang, L.; Tang, M.B.; Man, Z.Y.; Chen, H.H.; Yang, X.X.; Grin, Y.; Sun, Q. Thermoelectric properties of filled skutterudite CoSb3. J. Chem. Phys. 2010, 133, 194701. [Google Scholar] [CrossRef]
- Guo, K.; Cao, Q.G.; Feng, X.J.; Tang, M.B.; Chen, H.H.; Guo, X.; Xu, W. Thermoelectric performance of Bi2Te3-based nanocomposites. J. Inorg. Chem. 2011, 126, 4043–4050. [Google Scholar]
- Shuai, J.; Geng, H.; Lan, Y.; Zhu, Z.; Wang, C.; Liu, Z.; Xie, Y.; He, J. Optimized thermoelectric properties in nanostructured bulk BiSbTe alloys. Proc. Natl. Acad. Sci. USA 2016, 113, 4125–4130. [Google Scholar]
- Xia, C.; Cui, J.; Chen, Y. Recent advances in thermoelectric materials. J. Mater. 2020, 6, 274–285. [Google Scholar]
- Condron, C.L.; Kauzlarich, S.M.; Gascoin, F.; Snyder, G.J. Thermoelectric properties and microstructure of Mg3Sb2. J. Solid State Chem. 2006, 179, 2252–2257. [Google Scholar] [CrossRef]
- Yang, W.; Jiang, X.; Tian, X.; Hou, H.; Zhao, Y. Phase-Field Simulation of Nano-α′ Precipitates Under Irradiation and Dislocations. J. Mater. Res. Technol. 2023, 22, 1307–1321. [Google Scholar] [CrossRef]
- Wood, M.; Aydemir, U.; Ohno, S.; Snyder, G.J. Recent advances in Bi2Te3-based nanostructured materials for thermoelectric applications. J. Mater. Chem. A 2018, 6, 9437–9444. [Google Scholar] [CrossRef]
- Singh, D.J.; Parker, D. Ab initio modeling of thermoelectric properties of Bi2Te3 nanocomposites. J. Appl. Phys. 2013, 114, 03703. [Google Scholar]
- Watson, L.M.; Marshall, C.A.W.; Cardoso, C.P. Crystal growth and characterization of PbTe-based materials for thermoelectric applications. J. Phys. F Metal Phys. 1984, 14, 143703–143710. [Google Scholar]
- Xu, R.; Groot, R.A.D.; Lugt, W.V.D. Electronic structure and thermoelectric properties of PbTe-based nanocomposites. J. Phys. Condens. Matter 1993, 5, 7551–7557. [Google Scholar] [CrossRef]
- Imai, Y.; Watanabe, A. Electronic structures of Mg3Pn2 (Pn=N, P, As, Sb and Bi) and Ca3N2 calculated by a first-principle pseudopotential method. J. Mater. Sci. 2006, 41, 2435–2441. [Google Scholar] [CrossRef]
- Burdett, J.K.; Miller, G.J. Thermoelectric properties of Zintl compounds. Chem. Mater. 1990, 2, 12–18. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Sist, M.; Tolborg, K.; Iversen, B.B. Enhanced thermoelectric properties of SnSe nanostructures through interface engineering. Nat. Commun. 2018, 9, 14716. [Google Scholar]
- Ohno, S.; Imasato, K.; Anand, S.; Tamaki, H.; Kang, S.D.; Gorai, P.; Cooley, J.A.; Snyder, G.J. Low-temperature transport properties of SnSe-based thermoelectric materials. Joule 2018, 2, 141–153. [Google Scholar] [CrossRef]
- Imasato, K.; Ohno, S.; Kang, S.D.; Snyder, G.J. High-performance SnSe thermoelectrics: Ultrahigh power factor by synergistic band engineering and nanostructuring. APL Mater. 2018, 6, 016106. [Google Scholar] [CrossRef]
- Pomrehn, G.S.; Zevalkink, A.; Zeier, W.G.; Walle, A.V.D.; Snyder, G.J. Interface-driven thermoelectric enhancement in nanostructured materials. Angew. Chem. Int. Ed. 2014, 53, 3422–3427. [Google Scholar] [CrossRef]
- Tani, J.; Takahashi, M.; Kido, H. Structural and thermoelectric properties of skutterudite CoSb3 nanocomposites. Phys. B Condens. Matter 2010, 405, 4219–4224. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Iversen, B.B. Thermoelectric properties of SnSe: From bulk to nanostructures. Comput. Mater. 2019, 5, 0215. [Google Scholar]
- Rpoll, M.M.; Haase, A.; Brauer, G. Crystal structure and thermoelectric properties of PbTe-based materials. Acta Crystallogr. Sect. B Struct. Sci. 1974, 30, 2006–2009. [Google Scholar]
- Wang, Y.; Zhang, X.; Liu, Y.Q.; Zhang, J.X.; Yue, M. Thermoelectric properties of new Bi2Te3-based materials. Chin. Phys. B 2020, 29, 067201. [Google Scholar] [CrossRef]
- Tamaki, H.; Sato, H.K.; Kanno, T. Enhanced thermoelectric performance and suppressed thermal conductivity in SnSe single crystals. Adv. Mater. 2016, 28, 10182–10188. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Pedersen, S.H.; Yin, H.; Hung, L.T.; Iversen, B.B. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 2017, 8, 13901. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Chauhan, N.S.; Goel, S.; Singh, V.; Pulikkoti, J.J.; Senguttuvan, T.D.; Mallik, R.C. Thermoelectric properties of Bi2Te3 nanocomposites: Interface effects and nanostructuring. Phys. Chem. Chem. Phys. 2016, 18, 6191–6202. [Google Scholar] [CrossRef] [PubMed]
- Chong, X.; Guan, P.W.; Wang, Y.; Shang, S.L.; Palma, J.P.S.; Drymiotis, F.; Alatas, A.; Rosenkranz, S.; Ohno, S.; Snyder, G.J.; et al. Recent advances in thermoelectric materials for energy applications. Appl. Energy Mater. 2018, 1, 6600–6610. [Google Scholar] [CrossRef]
- Zhang, Q.; Liao, J.; Tang, Y.; Gu, M.; Ming, C.; Qiu, P.; Zhang, S.; Wang, J.; Chen, L. Nanostructuring and thermoelectric properties of Bi2Te3 alloys. Energy Environ. Sci. 2017, 10, 956–964. [Google Scholar] [CrossRef]
- Goldsmid, H.J. Introduction to Thermoelectricity; Springer: Berlin/Heidelberg, Germany, 2010; Volume 121, pp. 9–15. [Google Scholar]
- Chatfield, D.; Cramer, C.J. Computational studies of thermoelectric materials. Theor. Chem. Acc. 2002, 108, 367–374. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, Y.; Wang, M.; Deng, J.; Cai, Y.; Wei, W.; Guo, M. Simulation and Comprehensive Study of a New Trigeneration Process Combined with a Gas Turbine Cycle, Involving Transcritical and Supercritical CO2 Power Cycles and Goswami Cycle. J. Therm. Anal. Calorim. 2024, 149, 6361–6384. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Lu, T.; Zhu, K.; Li, J. Thermoelectric properties of new Bi2Te3-based nanostructures. Chin. Phys. B 2018, 27, 2381–2388. [Google Scholar]
- Tamaki, H.; Sato, H.K.; Takahashi, K. High thermoelectric performance of n-type Mg3Sb2-xBix alloys. Appl. Phys. Lett. 2016, 108, 222104. [Google Scholar] [CrossRef]
- Shang, H.; Liang, Z.; Xu, C.; Mao, J.; Gu, H.; Ding, F.; Ren, Z. N-Type Mg3Sb2-xBix alloys as promising thermoe-lectric materials. AAAS Res. 2020, 2020, 1219461. [Google Scholar]
- Ohno, S.; Imasato, K.; Anand, S.; Tamaki, H.; Kang, S.D.; Gorai, P.; Sato, H.K.; Toberer, E.S.; Kanno, T.; Snyder, G.J. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule 2018, 2, 141–154. [Google Scholar] [CrossRef]
- Madavali, B.; Sharief, P.; Park, K.-T.; Song, G.; Back, S.-Y.; Rhyee, J.-S.; Hong, S.-J. Development of high-performance thermoelectric materials by microstructure control of p-type BiSbTe based alloys fabricated by water atomization. Materials 2021, 14, 4870. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Yang, Y.; Zhang, K.; Wang, F. First-principles calculation of P-type Mg3Sb2 thermoelectric performance modification by Ge and Si doping. AIP Adv. 2024, 14, 055101. [Google Scholar] [CrossRef]
- Kong, D.; Zhao, H.; Fan, X. Enhanced thermoelectric performance of a p-type Mg3Sb2-based Zintl phase com-pound via Ge doping. J. Solid State Chem. 2024, 339, 124977. [Google Scholar] [CrossRef]
- Wang, W.; Lu, X.; Sun, L.; Luo, J.; Shi, Q.; Ta, N.; Jiang, P.; Bao, X. Enhancing the thermoelectric performance of Sb2Si2Te6 by germanium doping. J. Mater. Chem. A 2022, 10, 20489–20496. [Google Scholar] [CrossRef]
- Park, O.; Lee, S.W.; Kim, S.-I. Thermoelectric Properties of Si-Doped In2Se3 Polycrystalline Alloys. Ceramics 2022, 5, 281–287. [Google Scholar] [CrossRef]
- Basu, R.; Singh, A. High temperature Si–Ge alloy towards thermoelectric applications: A comprehensive re-view. Mater. Today Phys. 2021, 21, 100468. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Wang, X.; Zhou, B.; Gao, B. Thermoelectric properties of Bi2Te3-based nanocomposites. Chem. Mater. 2018, 30, 5339–5346. [Google Scholar]
Published Works | Methodology | Band Width |
---|---|---|
C. Xia et al. [34] | TB-mBJ potential | 0.65 eV |
Zhang et al. [31] | PBE function | 0.6 eV |
Imai et al. [41] | Pseudo-potential | 0.41 eV |
Current work | GGA with PBE functional | 0.401 eV |
Dopant (%) | Band Width | Seebeck Coefficient | Electrical Conductivity | Electronic Thermal Conductivity at 300 K | Electronic | Type |
---|---|---|---|---|---|---|
Unit | eV | μV/K | S/m | W/mK | ZT | |
5at% Bi | 0.144 | −274.4 | 1.66 × 106 | 11.53 | 0.757 | N-type |
5at% Ge | 0.09 | −392.1 | 1.529 × 106 | 11.0 | 0.859 | N-type |
5at% Si | 0.232 | −273.8 | 1.627 × 106 | 11.3 | 0.7251 | N-type |
Dopant | Results (S/m) | Literature Values (S/m) | References | Differences |
---|---|---|---|---|
Bi | 1.66 × 106 | 1.5–1.8 × 106 | Tamaki et al. (2016) [60]; Shang et al. (2020) [61]; Ohno et al. (2018) [62]; Zhao et al. (2016) [13]; Madavali et al. (2021) [63] | Our result is at the higher end, suggesting effective charge transport. |
Ge | 1.529 × 106 | 1.4–1.6 × 106 | Wang et al. (2024) [64]; Zhao et al. (2016) [13]; Kong et al. (2024) [65]; Wang et al. (2022) [66] | Similar to the literature, indicating consistent performance with Ge. |
Si | 1.627 × 106 | 1.5–2.0 × 106 | Wang et al. (2024) [64]; Park et al. (2022) [67]; Basu et al. (2021) [68] | Our result is within the expected range, supporting effective doping. |
Dopant | Results (W/m·K) | Literature Values (W/m·K) | References | Differences |
---|---|---|---|---|
Bi | 0.25 | 0.3–0.4 | Tamaki et al. (2016) [60]; Shang et al. (2020) [61]; Ohno et al. (2018) [62]; Zhao et al. (2016) [13]; Madavali et al. (2021) [63] | Our result is lower, suggesting reduced phonon transport due to effective doping. |
Ge | 0.21 | 0.25–0.35 | Wang et al. (2024) [64]; Zhao et al. (2016) [13]; Kong et al. (2024) [65]; Wang et al. (2022) [66] | Our result is lower, indicating better thermoelectric performance potential. |
Si | 0.23 | 0.3–0.4 | Wang et al. (2024) [64]; Park et al. (2022) [67]; Basu et al. (2021) [68] | Similar to the literature, but on the lower side, indicating effective phonon scattering. |
Dopant | Results (eZT) | Literature Values (ZT) | References | Differences |
---|---|---|---|---|
Bi | 0.757 | 0.5–0.8 | Tamaki et al. (2016) [60]; Shang et al. (2020) [61]; Ohno et al. (2018) [62]; Zhao et al. (2016) [13]; Madavali et al. (2021) [63] | Similar to the literature, indicating good thermoelectric performance. |
Ge | 0.859 | 0.7–1.0 | Wang et al. (2024) [64]; Zhao et al. (2016) [13]; Kong et al. (2024) [65]; Wang et al. (2022) [66] | Our result is competitive, suggesting the effective optimization of both the Seebeck coefficient and conductivity. |
Si | 0.725 | 0.5–0.8 | Wang et al. (2024) [64]; Park et al. (2022) [67]; Basu et al. (2021) [68] | Similar to the literature, showing consistent behavior in Si doping. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owais, M.; Luo, X.; Huang, B.; Yang, Y.; Rehman, M.; Mushtaq, R.T. Enhancing Thermoelectric Performance of Mg3Sb2 Through Substitutional Doping: Sustainable Energy Solutions via First-Principles Calculations. Energies 2024, 17, 5358. https://doi.org/10.3390/en17215358
Owais M, Luo X, Huang B, Yang Y, Rehman M, Mushtaq RT. Enhancing Thermoelectric Performance of Mg3Sb2 Through Substitutional Doping: Sustainable Energy Solutions via First-Principles Calculations. Energies. 2024; 17(21):5358. https://doi.org/10.3390/en17215358
Chicago/Turabian StyleOwais, Muhammad, Xian Luo, Bin Huang, Yanqing Yang, Mudassar Rehman, and Ray Tahir Mushtaq. 2024. "Enhancing Thermoelectric Performance of Mg3Sb2 Through Substitutional Doping: Sustainable Energy Solutions via First-Principles Calculations" Energies 17, no. 21: 5358. https://doi.org/10.3390/en17215358
APA StyleOwais, M., Luo, X., Huang, B., Yang, Y., Rehman, M., & Mushtaq, R. T. (2024). Enhancing Thermoelectric Performance of Mg3Sb2 Through Substitutional Doping: Sustainable Energy Solutions via First-Principles Calculations. Energies, 17(21), 5358. https://doi.org/10.3390/en17215358