Fixed-Time Backstepping Sliding-Mode Control for Interleaved Boost Converter in DC Microgrids
Abstract
:1. Introduction
2. Dynamical Modeling
Dynamical Modeling of IBC Feeding CPL in DC Microgrid
3. Controller Design
3.1. Preparatory Knowledge
3.2. Coordinate Transformation
3.3. Fixed-Time Disturbance Observer
3.4. Fixed-Time Backstepping Sliding-Mode Controller Design
3.5. Stability Analysis
3.6. Current-Sharing Compensator
4. Simulation and Experimentation
4.1. Selection of Parameters
4.2. Effectiveness of the FxTDO
4.3. Effectiveness of the CSC
4.4. Effectiveness of the FTBSMC
4.5. Simulation Comparison
4.6. Experimental Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jithin, K.; Haridev, P.P.; Mayadevi, N.; Harikumar, R.P.; Mini, V.P. A review on challenges in DC microgrid planning and implementation. J. Mod. Power Syst. Clean Energy 2022, 11, 1375–1395. [Google Scholar] [CrossRef]
- Xu, Q.; Jiang, W.; Blaabjerg, F.; Zhang, C.; Zhang, X.; Fernando, T. Backstepping control for large signal stability of high boost ratio interleaved converter interfaced DC microgrids with constant power loads. IEEE Trans. Power Electron. 2019, 35, 5397–5407. [Google Scholar] [CrossRef]
- Kumar, R.; Behera, P.K.; Pattnaik, M. A comparative analysis of two-phase and three-phase interleaved bidirectional dc-dc converter. In Proceedings of the 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 18–19 February 2023; pp. 1–5. [Google Scholar]
- Xu, Q.; Vafamand, N.; Chen, L.; Dragičević, T.; Xie, L.; Blaabjerg, F. Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 1205–1221. [Google Scholar] [CrossRef]
- Cespedes, M.; Xing, L.; Sun, J. Constant-power load system stabilization by passive damping. IEEE Trans. Power Electron. 2011, 26, 1832–1836. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, D.; Wu, H. The Active Damping Method for Improving the Stability of DC Microgrid. Trans. China Electrotech. Soc. 2018, 33, 370–379. [Google Scholar]
- Gao, Z.; Lin, H.; Zhang, X. Exact Linearization and Optimal Tracking Control of Boost Converter with Constant Power Loads. Proc. CSEE 2007, 27, 70–75. [Google Scholar]
- Boker, A.M.; Khalil, H.K. Semi-global output feedback stabilization of non-minimum phase nonlinear systems. IEEE Trans. Autom. Control 2016, 62, 4005–4010. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiao, W.; Ha, D. A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads. IEEE Trans. Ind. Appl. 2013, 50, 1448–1458. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, L. Backstepping sliding mode control based on exact feedback linearization for bi-directional DC converter in DC microgrid. Power Syst. Prot. Control 2018, 46, 43–49. [Google Scholar]
- Cespedes, M.; Xing, L.; Sun, J. Non-linear disturbance observer-based back-stepping control for airbreathing hypersonic vehicles with mismatched disturbances. IET Control Theory Appl. 2014, 8, 1852–1865. [Google Scholar]
- Sun, J.; Yi, J.; Pu, Z.; Tan, X. Fixed-time sliding mode disturbance observer-based nonsmooth backstepping control for hypersonic vehicles. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 4377–4386. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, C.; Wen, C.; Wang, P. A novel composite nonlinear controller for stabilization of constant power load in DC microgrid. IEEE Trans. Smart Grid 2017, 10, 752–761. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Q.; Sun, C.; Zhang, H.; Gui, Y.; Wang, P. Vehicle-vehicle energy interaction converter of electric vehicles: A disturbance observer based sliding mode control algorithm. IEEE Trans. Veh. Technol. 2021, 70, 9910–9921. [Google Scholar] [CrossRef]
- Li, X.; Dong, C.; Zhao, X.; Deng, F.; Wu, X.; Jia, H. Large-signal Stabilization Control Strategy of Portable High-gain DC-DC Converter for Electric Vehicles: An Observ-er-based Backstepping Technique. Proc. CSEE 2023, 43, 2790–2802. [Google Scholar]
- Alipour, M.; Zarei, J.; Razavi-Far, R.; Saif, M.; Mijatovic, N.; Dragicevic, T. Observer-based backstepping sliding mode control design for microgrids feeding a constant power load. IEEE Trans. Ind. Electron. 2022, 70, 465–473. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, X.; Guo, F.; Chen, J.; Wang, P.; Koh, L.H. Large-signal stability of interleave boost converter system with constant power load using sliding-mode control. IEEE Trans. Ind. Electron. 2019, 67, 9450–9459. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, C.; Xu, Z.; Lin, P.; Wang, P. A composite finite-time controller for decentralized power sharing and stabilization of hybrid fuel cell/supercapacitor system with constant power load. IEEE Trans. Ind. Electron. 2020, 68, 1388–1400. [Google Scholar] [CrossRef]
- Sarrafan, N.; Zarei, J.; Razavi-Far, R.; Saif, M.; Khooban, M.-H. A novel on-board DC/DC converter controller feeding uncertain constant power loads. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 1233–1240. [Google Scholar] [CrossRef]
- Sarrafan, N.; Zarei, J.; Horiyat, N.; Razavi-Far, R.; Saif, M.; Mijatovic, N.; Dragicevic, T. A novel fast fixed-time backstepping control of DC microgrids feeding constant power loads. IEEE Trans. Ind. Electron. 2022, 70, 5917–5926. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Tang, S.; Qi, S. Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle. ISA Trans. 2019, 88, 233–245. [Google Scholar] [CrossRef]
- Ni, J.; Wu, Z.; Liu, L.; Liu, C. Fixed-time adaptive neural network control for nonstrict-feedback nonlinear systems with deadzone and output constraint. ISA Trans. 2020, 97, 458–473. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Tie, L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 2016, 47, 1366–1375. [Google Scholar] [CrossRef]
- Ni, J.; Liu, L.; Chen, M.; Liu, C. Fixed-time disturbance observer design for Brunovsky systems. IEEE Trans. Circuits Syst. II Express Briefs 2017, 65, 341–345. [Google Scholar] [CrossRef]
- Basin, M.; Yu, P.; Shtessel, Y. Finite-and fixed-time differentiators utilising HOSM techniques. IET Control Theory Appl. 2017, 11, 1144–1152. [Google Scholar] [CrossRef]
Parameters | Symbol | Value |
---|---|---|
Reference voltage DC bus | Vref | 400 V |
Input voltage | Vin | 200 V |
Capacitance | Cf | |
Interleaved inductor | L1/L2/L3 | 1.5 mH |
Switching frequency | fs | 20 kHz |
Constant power load | PCPL | 10 kW |
Parameters | Symbol | Value |
---|---|---|
Output voltage reference | Vref | 30 V |
Input voltage | Vin | 15 V |
Capacitance | Cf | |
Interleaved inductor | L1/L2/L3 | 0.66 mH |
Switching frequency | fs | 20 kHz |
Constant power load | PCPL | 80 W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Dong, Y.; He, G.; Song, W. Fixed-Time Backstepping Sliding-Mode Control for Interleaved Boost Converter in DC Microgrids. Energies 2024, 17, 5377. https://doi.org/10.3390/en17215377
Wang H, Dong Y, He G, Song W. Fixed-Time Backstepping Sliding-Mode Control for Interleaved Boost Converter in DC Microgrids. Energies. 2024; 17(21):5377. https://doi.org/10.3390/en17215377
Chicago/Turabian StyleWang, Hang, Yanfei Dong, Guofeng He, and Wenbin Song. 2024. "Fixed-Time Backstepping Sliding-Mode Control for Interleaved Boost Converter in DC Microgrids" Energies 17, no. 21: 5377. https://doi.org/10.3390/en17215377
APA StyleWang, H., Dong, Y., He, G., & Song, W. (2024). Fixed-Time Backstepping Sliding-Mode Control for Interleaved Boost Converter in DC Microgrids. Energies, 17(21), 5377. https://doi.org/10.3390/en17215377