Energy Recovery from Municipal Sewage Sludge: Combustion Kinetics in a Varied Oxygen–Carbon Dioxide Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Sludge Grain Size on the Apparent Rate of the Combustion Reaction
3.2. The Influence of the Heating Rate of Sewage Sludge Derived from TG Analyses
3.3. The Weight Loss of Sewage Sludge in Modified Atmosphere Derived from TG Analyses
4. Conclusions
- The oxygen concentration in the O2/CO2 mixture had a significant impact on the combustion behavior of sewage sludge. Higher oxygen concentrations accelerated the oxidation process, leading to higher reaction rates and greater mass loss at lower temperatures. This highlights the crucial role of oxygen diffusion in determining the overall combustion kinetics.
- The kinetic parameters, including the activation energy (Ea) and pre-exponential factor (Ko), were determined for two different particle sizes. Smaller particles (1 mm) exhibited higher activation energies, suggesting that their combustion is primarily governed by a kinetic mechanism. In contrast, larger particles (2 mm) showed lower activation energies, indicating that oxygen diffusion plays a more dominant role in their combustion.
- While the heating rate influenced the release of volatiles during the initial stages of combustion, it had a limited effect on the oxidation of char. This indicates that char oxidation is primarily diffusion-controlled and the oxygen concentration is a more critical factor than the heating rate in determining the overall reaction rates during this stage.
- The thermogravimetric analysis (TGA) results demonstrated that the combustion process follows a well-defined pattern with distinct stages of moisture evaporation, volatile release and char oxidation. The presence of CO2 in the combustion atmosphere slightly modify the decomposition behavior by promoting the gasification of carbon residues, which influenced the overall reaction kinetics.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alonso, J.M.; Abreu, A.H.M.; Andreoli, C.V.; Teixera, P.C.; Polidoro, J.C.; dos Santos Leles, P.S. Chemical characteristics and valuation of sewage sludge from four different wastewater treatment plants. Environ. Monit. Assess. 2023, 196, 34. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Wu, S.; Sun, L.; Tan, X.; Yu, S.; Zhang, Z. Composition of Waste Sludge from Municipal Wastewater Treatment Plant. Procedia Environ. Sci. 2012, 12, 964–971. [Google Scholar] [CrossRef]
- Canziani, R.; Spinosa, L. Sludge from Wastewater Treatment Plants, Industrial and Municipal Sludge; Butterworth-Heinemann: Oxford, UK, 2019; pp. 3–30. [Google Scholar]
- Nascimento, A.L.; Souza, A.J.; Oliveira, F.C.; Coscione, A.R.; Viana, D.G.; Regitano, J.B. Chemical attributes of sewage sludges: Relationships to sources and treatments, and implications for sludge usage in agriculture. J. Clean. Prod. 2020, 258, 120746. [Google Scholar] [CrossRef]
- Lee, H.S.; Bae, S.K. Combustion kinetics of sewage sludge and combustible wastes. J. Mater. Cycles Waste Manag. 2009, 11, 203–207. [Google Scholar] [CrossRef]
- Wen, C.; Lu, J.; Lin, X.; Ying, Y.; Ma, Y.; Yu, H.; Yu, W.; Huang, Q.; Li, X.; Yan, J. Thermal Behavior Prediction of Sludge Co-Combustion with Coal: Curve Extraction and Artificial Neural Networks. Processes 2023, 11, 2275. [Google Scholar] [CrossRef]
- Soria-Verdugo, A.; Garcia-Hernando, N.; Garcia-Gutierrez, L.M.; Ruiz-Rivas, U. Analysis of biomass and sewage sludge devolatilization using the distributed activation energy model. Energ. Convers. Manag. 2003, 65, 239–244. [Google Scholar] [CrossRef]
- Biagini, E.; Lippi, F.; Petarca, L.; Tognotti, L. Devolatilization rate of biomasses and coal–biomass blends: An experimental investigation. Fuel 2002, 81, 1041–1050. [Google Scholar] [CrossRef]
- Werther, J.; Ogada, T.; Borodulya, V.A.; Dikalenko, V.I. Devolatilisation and combustion kinetic parameters of wet sewage sludge in a bubbling fluidised bed furnace. In The Institute of Energy’s 2nd International Conference on Combustion and Emission Control; Pergamon: London, UK, 1995; pp. 149–158. [Google Scholar]
- Ross, I.B.; Davidson, J.F. Combustion of carbon particles in a fluidized bed. Trans. Chem. Eng. 1982, 60, 108–114. [Google Scholar]
- Basu, P.; Ritchie, C.; Halder, P.K. Burning rate of carbon in circulating fluidized beds. In Proceedings of the First International Conference on Circulating Fluidized Beds, Halifax, NS, Canada, 18–20 November 1985; pp. 229–237. [Google Scholar]
- Rajan, R.R.; Wen, C.Y. A comprehensive model for fluidized bed coal combustor. AIChE J. 1980, 26, 642–665. [Google Scholar] [CrossRef]
- Liu, M.; Mostaghimi, P. Numerical simulation of fluid-fluid-solid reactions in porous media. Int. J. Heat. Mass. Transf. 2018, 120, 194–201. [Google Scholar] [CrossRef]
- Sohn, H.Y. General approach to fluid-solid reaction analysis and modelling. In Fluid-Solid Reactions, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Sohn, H.Y. Review of fluid-solid reaction analysis―Part 3: Complex fluid-solid reactions. Can. J. Chem. Eng. 2019, 97, 2326–2332. [Google Scholar] [CrossRef]
- Barneto, A.G.; Carmona, J.A.; Alfonso, J.E.M.; Blanco, J.D. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. J. Anal. Appl. Pyrolysis 2009, 86, 108–114. [Google Scholar] [CrossRef]
- Folgueras, M.B.; Alonso, M.; Diaz, R.M. Influence of sewage sludge treatment on pyrolysis and combustion of dry sludge. Energy 2013, 55, 426–435. [Google Scholar] [CrossRef]
- Chen, X.; Jeyaseelan, S. Study of sewage sludge pyrolysis mechanism and mathematical modelling. J. Environ. Eng. 2001, 127, 585–593. [Google Scholar] [CrossRef]
- Hayhurst, A.N. The kinetics of the pyrolysis or devolatillisation of sewage sludge and other solid fuels. Combust. Flame 2013, 160, 138–144. [Google Scholar] [CrossRef]
- Conesa, J.A.; Marcilla, A.; Prats, D.; Rodriguez-Pastor, M. Kinetic study of the pyrolysis of sewage sludge. Waste Manag. Res. 1997, 15, 293–305. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Wang, S.; Chen, T.; Gao, B.; Gao, H.; Wang, H. Independent parallel pyrolysis kinetics of model components in sewage sludge analyzed by BPM neural network. Environ. Sci. Pollut. Res. 2023, 30, 97486–97497. [Google Scholar] [CrossRef]
- Liu, T.; Lang, Q.; Xia, Y.; Chen, Z.; Li, D.; Ma, J.; Gai, C.; Liu, Z. Combination of hydrothermal carbonization and oxy-fuel combustion process for sewage sludge treatment: Combustion characteristics and kinetics analysis. Fuel 2019, 242, 265–276. [Google Scholar] [CrossRef]
- Aidabulov, M.; Zhakupov, D.; Zhunussova, K.; Temireyeva, A.; Shah, D.; Sarbassov, Y. Thermal Characterization, Kinetic Analysis and Co-Combustion of Sewage Sludge Coupled with High Ash Ekibastuz Coal. Energies 2023, 16, 6634. [Google Scholar] [CrossRef]
- Hernandez, A.B.; Okonta, F.; Freeman, N. Thermal decomposition of sewage sludge under N2, CO2 and air: Gas characterization and kinetics analysis. J. Environ. Manag. 2017, 196, 560–568. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Perez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Galwey, A.K.; Brown, M.E. Isothernal kinetic analysis of solid-state reactions using plots of rate against derivative function of the rate equation. Thermochim. Acta 1995, 267/270, 1–25. [Google Scholar] [CrossRef]
- Sorensen, L.; Saastamoinen, J.; Hustad, J. Evaluation of char reactivity data by different shrinking-core models. Fuel 1996, 75, 1294–1300. [Google Scholar] [CrossRef]
- Liu, K.; Ma, C.Q.; Xiao, H.M. Experimental and kinetic modelling of oxygen-enriched air combustion of paper mill sludge. Waste Manag. 2010, 30, 1206–1211. [Google Scholar] [CrossRef]
- Ciao, H.; Ma, X.; Liu, K. Co-combustion kinetics of sewage sludge with coal and coal gangud under different atmospheres. Energy Convers. Manag. 2010, 51, 1976–1980. [Google Scholar]
- Hu, Y.Q.; Nikzat, H.; Nawata, M.; Kobayashi, N.; Hasatani, M. The characteristics of coal-char oxidation under high partial pressure of oxygen. Fuel 2001, 80, 2111–2116. [Google Scholar] [CrossRef]
- Chen, C.; Lu, Z.; Ma, X.; Long, J.; Peng, Y.; Hu, L. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresour. Technol. 2013, 144, 563–571. [Google Scholar] [CrossRef]
- Zhou, Z.; Hu, X.; You, Z.; Wang, Z.; Zhou, J.; Cen, K. Oxy-fuel combustion characteristics and kinetic parameters of lignite coal from thermogravimetric data. Thermochima Acta 2013, 553, 54–59. [Google Scholar] [CrossRef]
- Lai, Z.; Ma, X.; Tang, Y.; Lin, H. A study on municipal solid waste MSW combustion in N2/O2 and CO2/O2 atmosphere from the perspective of TGA. Energy 2011, 36, 819–824. [Google Scholar] [CrossRef]
- Yi, B.; Zhang, L.; Mao, Z.; Huang, F.; Zheng, C. Effect of the particle size on combustion characteristics of pulverized coal in an O2/CO2 atmosphere. Fuel Process Technol. 2014, 128, 17–27. [Google Scholar] [CrossRef]
Technical Analysis | Elemental Analysis | ||
---|---|---|---|
Gross calorific value | 14,095 kJ/kg | Carbon (C) | 34.83% |
Net calorific value | 12,848 kJ/kg | Sulphur (S) | 1.36% |
Moisture (W) | 6.65% | Hydrogen (H) | 4.99% |
Ash (A) | 35.35% | Nitrogen (N) | 3.44% |
Volatile matter (V) | 49.35% | Oxygen (O) (by difference) | 13.38% |
Coke (by difference) | 8.65% |
Sewage Sludge | Ash | ||
---|---|---|---|
Al2O3 | 4% | Al2O3 | 6.1% |
SiO2 | 10% | SiO2 | 17% |
P2O5 | 14% | P2O5 | 17.2% |
SO3 | 9.41% | SO3 | 3% |
K2O | 0.66% | K2O | 0.75% |
CaO | 19.2% | CaO | 20.4% |
TiO2 | 1.2% | TiO2 | 1.12% |
V2O5 | 0.04% | V2O5 | 0.04% |
Cr2O3 | 0.25% | Cr2O3 | 0.23% |
MnO | 0.17% | MnO | 0.16% |
Fe2O3 | 37.79% | Fe2O3 | 32.36% |
NiO | 0.12% | NiO | 0.089% |
CuO | 0.23% | CuO | 0.16% |
ZnO | 1.52% | ZnO | 1.12% |
SrO | 0.092% | Rb2O | 0.01% |
ZrO2 | 0.063% | SrO | 0.062% |
RuO2 | 0.92% | ZrO2 | 0.044% |
BaO | 0.2% | BaO | 0.24% |
Eu2O3 | 0.23% | HgO | 0.02% |
Symbol | Function Form f(α) | Reaction Model |
---|---|---|
A2 | 2(1−α)[−ln(1−α)]1/2 | Two-dimensional nucleation growth, Avrami–Erofeev equation |
A3 | 3(1−α)[−ln(1−α)]2/3 | Three-dimensional nucleation growth, Avrami–Erofeev equation |
An* 1 | n(1−α)[−ln(1−α)](n−1)/n | n-dimensional nucleation growth, Avrami–Erofeev equation |
B1 | (1−α)α | Autocatalytic reaction, Prout–Tompkins equation |
F1 | (1−α) | First-order reaction |
F2 | (1−α)2 | Second-order reaction |
Fn* 1 | (1−α)n | n-th order reaction |
R2 | 2(1−α)1/2 | Two-dimensional phase boundary movement reaction |
R3 | 3(1−α)2/3 | Three-dimensional phase boundary movement reaction |
D1 | 1/2α | One-dimensional diffusion |
D2 | 1/[−ln(1−α)] | Two-dimensional diffusion |
D3 | 3(1−α)2/3/2[1−(1−α)1/3] | Three-dimensional diffusion, Jander’s equation |
D4 | 3/2[(1−α)−1/3−1] | Three-dimensional diffusion, Ginstling–Brounshtein equation |
873 K | 973 K | 1073 K | 1173 K | 1273 K | |
---|---|---|---|---|---|
20% O2 | 0.137 | 0.147 | 0.154 | 0.161 | 0.167 |
40% O2 | 0.275 | 0.293 | 0.309 | 0.323 | 0.335 |
60% O2 | 0.412 | 0.440 | 0.463 | 0.484 | 0.502 |
80% O2 | 0.549 | 0.586 | 0.618 | 0.645 | 0.669 |
100% O2 | 0.687 | 0.733 | 0.772 | 0.806 | 0.837 |
[°C/min] | T1 1 [°C] | D1 [% min−1] | T2 [°C] | D2 [% min−1] | T3 [°C] | D3 [% min−1] | Tmax [°C] | Dmax [% min−1] | WR [%] |
---|---|---|---|---|---|---|---|---|---|
20%O2/80%CO2 | |||||||||
10 | 288 | 3.12 | 418 | 2.17 | - | - | 288 | 3.12 | 36.38 |
20 | 281 | 6.08 | 417 | 4.46 | - | - | 281 | 6.08 | 35.37 |
40 | 287 | 10.25 | 425 | 7.52 | - | - | 287 | 10.25 | 36.70 |
40%O2/60%CO2 | |||||||||
10 | 275 | 3.89 | 375 | 1.97 | - | - | 275 | 3.89 | 33.89 |
20 | 263 | 11.41 | 384 | 4.41 | - | - | 262 | 11.41 | 37.21 |
40 | 262 | 17.47 | 370 | 11.41 | - | - | 263 | 17.47 | 36.26 |
60%O2/40%CO2 | |||||||||
10 | 252 | 5.20 | - | - | - | - | 252 | 5.20 | 36.33 |
20 | 249 | 19.35 | 334 | 4.15 | - | - | 249 | 19.35 | 34.76 |
40 | 247 | 24.80 | 338 | 20.21 | - | - | 247 | 24.80 | 36.54 |
80%O2/20%CO2 | |||||||||
10 | 255 | 35.31 | - | - | - | - | 255 | 35.31 | 35.76 |
20 | 251 | 40.13 | - | - | - | - | 251 | 40.13 | 35.70 |
40 | 245 | 44.66 | - | - | - | - | 245 | 44.66 | 35.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bień, J.; Bień, B. Energy Recovery from Municipal Sewage Sludge: Combustion Kinetics in a Varied Oxygen–Carbon Dioxide Atmosphere. Energies 2024, 17, 5382. https://doi.org/10.3390/en17215382
Bień J, Bień B. Energy Recovery from Municipal Sewage Sludge: Combustion Kinetics in a Varied Oxygen–Carbon Dioxide Atmosphere. Energies. 2024; 17(21):5382. https://doi.org/10.3390/en17215382
Chicago/Turabian StyleBień, Jurand, and Beata Bień. 2024. "Energy Recovery from Municipal Sewage Sludge: Combustion Kinetics in a Varied Oxygen–Carbon Dioxide Atmosphere" Energies 17, no. 21: 5382. https://doi.org/10.3390/en17215382
APA StyleBień, J., & Bień, B. (2024). Energy Recovery from Municipal Sewage Sludge: Combustion Kinetics in a Varied Oxygen–Carbon Dioxide Atmosphere. Energies, 17(21), 5382. https://doi.org/10.3390/en17215382