Gas Production Prediction Model of Volcanic Reservoir Based on Data-Driven Method
Abstract
:1. Introduction
2. Methodology
2.1. Workflow
2.2. Data Preprocessing
2.2.1. Data Collection
2.2.2. Data Nondimensionalization
2.2.3. Data Accumulation
2.3. Modeling
2.4. Dimension Recovery
3. Field Example
3.1. Data Preprocessing
3.2. Modeling
3.3. Modeling Evaluation
3.3.1. Coefficient of Determination
3.3.2. Significance Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahmanifard, H.; Gates, I. A Comprehensive review of data-driven approaches for forecasting production from unconventional reservoirs: Best practices and future directions. Artif. Intell. Rev. 2024, 57, 213. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Bai, B.; Ding, Z.; Qu, H.; Zeng, S.; Da, X. Impact of cleanup additive on methane desorption on Longmaxi shale. Fuel 2021, 300, 121003. [Google Scholar] [CrossRef]
- Syed, F.I.; Alnaqbi, S.; Muther, T.; Dahaghi, A.K.; Negahban, S. Smart shale gas production performance analysis using machine learning applications. Pet. Res. 2022, 7, 21–31. Available online: https://doaj.org/article/cb883d66b51743e89790c0462cd50902 (accessed on 22 August 2024). [CrossRef]
- Mishra, S.; Lin, L. Application of data analytics for production optimization in unconventional reservoirs: A critical review. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, TX, USA, 24–26 July 2017. [Google Scholar] [CrossRef]
- Mohaghegh, S.D. Reservoir modeling of shale formations. J. Nat. Gas Sci. Eng. 2013, 12, 22–33. [Google Scholar] [CrossRef]
- Li, D.; You, S.; Liao, Q.; Sheng, M.; Tian, S. Prediction of Shale Gas Production by Hydraulic Fracturing in Changning Area Using Machine Learning Algorithms. Transp. Porous Med. 2023, 149, 373–388. [Google Scholar] [CrossRef]
- Mohammadmoradi, P.; Moradi, H.M.; Kantzas, A. Data-driven production forecasting of unconventional wells with apache spark. In Proceedings of the SPE Western Regional Meeting, Garden Grove, CA, USA, 22–26 April 2018. [Google Scholar] [CrossRef]
- Enyioha, C.; Ertekin, T. Performance prediction for advanced well structures in unconventional oil and gas reservoirs using artificial intelligent expert systems. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 9–11 October 2017. [Google Scholar] [CrossRef]
- Wang, S.; Chen, S. Insights to fracture stimulation design in unconventional reservoirs based on machine learning modeling. J. Pet. Sci. Eng. 2019, 174, 682–695. [Google Scholar] [CrossRef]
- Han, D.; Jung, J.; Kwon, S. Comparative study on supervised learning models for productivity forecasting of shale reservoirs based on a data-driven approach. Appl. Sci. 2020, 10, 1267. [Google Scholar] [CrossRef]
- Han, D.; Kwon, S.; Son, H.; Lee, J. Production forecasting for shale gas well in transient flow using machine learning and decline curve analysis. In Proceedings of the Asia Pacific Unconventional Resources Technology Conference, Brisbane, Australia, 18–19 November 2019. [Google Scholar] [CrossRef]
- Liao, L.; Zeng, Y.; Liang, Y.; Zhang, H. Data mining: A novel strategy for production forecast in tight hydrocarbon resource in Canada by random forest analysis. In Proceedings of the International Petroleum Technology Conference, Dhahran, Kingdom of Saudi Arabia, 13–15 January 2020. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Vyas, A. Application of machine learning in predicting oil rate decline for Bakken shale oil wells. Sci. Rep. 2022, 12, 16154. [Google Scholar] [CrossRef]
- Zhou, Q.; Dilmore, R.; Kleit, A.; Wang, J.Y. Evaluating gas production performances in marcellus using data mining technologies. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 25–27 August 2014; pp. 20–36. [Google Scholar] [CrossRef]
- Grujic, O.; Da Silva, C.; Caers, J. Functional approach to data mining, forecasting, and uncertainty quantification in unconventional reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, Texas, USA, 28–30 September 2015; pp. 1704–1720. [Google Scholar] [CrossRef]
- Lolon, E.; Hamidieh, K.; Weijers, L.; Mayerhofer, M.; Melcher, H.; Oduba, O. Evaluating the relationship between well parameters and production using multivariate statistical models: A middle Bakken and three forks case history. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 9–11 February 2016. [Google Scholar] [CrossRef]
- Khanal, A.; Khoshghadam, M.; Lee, W.J.; Nikolaou, M. New forecasting method for liquid rich shale gas condensate reservoirs with data driven approach using principal component analysis. J. Nat. Gas Sci. Eng. 2017, 38, 621–637. [Google Scholar] [CrossRef]
- Xue, L.; Liu, Y.; Xiong, Y.; Liu, Y.; Cui, X.; Lei, G. A data-driven shale gas production forecasting method based on the multi-objective random forest regression. J. Pet. Sci. Eng. 2021, 196, 107801. [Google Scholar] [CrossRef]
- Johan, D.C.; Shukla, P.; Shrivastava, K.; Koley, M. Data-Driven Completion Optimization for Unconventional Assets. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 13–15 June 2023; p. 3504. [Google Scholar] [CrossRef]
- Ghadami, A.; Epureanu, B.I. Data-driven prediction in dynamical systems: Recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2022, 380, 1429–1442. [Google Scholar] [CrossRef] [PubMed]
- Mohaghegh, S.D. Shale Analytics: Data-Driven Analytics in Unconventional Resources, 1st ed.; Springer: Cham, Switerland, 2017. [Google Scholar]
- Ma, H.; Zhao, W.; Zhao, Y.; He, Y. A data-driven oil production prediction method based on the gradient boosting decision tree regression. Comput. Model. Eng. Sci. 2023, 134, 1773–1790. [Google Scholar] [CrossRef]
- De Oliveira Werneck, R.; Prates, R.; Moura, R.; Goncalves, M.M.; Castro, M.; Soriano-Vargas, A.; Junior, P.R.; Hossain, M.M.; Zampieri, M.F.; Ferreira, A.; et al. Data-driven deep-learning forecasting for oil production and pressure. J. Pet. Sci. Eng. 2022, 210, 109937. [Google Scholar] [CrossRef]
- Gryzlov, A.; Safonov, S.; Arsalan, M. Intelligent Production Monitoring with Continuous Deep Learning Models. SPE J. 2022, 27, 1304–1320. [Google Scholar] [CrossRef]
- Chi, L.; Su, H.; Zio, E.; Qadrdan, M.; Li, X.; Zhang, L.; Fan, L.; Zhou, J.; Yang, Z.; Zhang, J. Data-driven reliability assessment method of Integrated Energy Systems based on probabilistic deep learning and Gaussian mixture Model-Hidden Markov Model. Renew. Energy 2021, 174, 952–970. [Google Scholar] [CrossRef]
- Chen, D.; Huang, C.; Wei, M. Shale Gas Production Prediction Based on PCA-PSO-LSTM Combination Model. J. Circuits Syst. Comput. 2024, 33, 2450176. [Google Scholar] [CrossRef]
- He, Y.W.; He, Z.Y.; Tang, Y.; Xu, Y.J.; Long, J.C.; Sepehrnoori, K. Shale gas production evaluation framework based on data-driven models. Pet. Sci. 2023, 20, 1659–1675. [Google Scholar] [CrossRef]
- Meng, J.; Zhou, Y.J.; Ye, T.R.; Xiao, Y.T.; Lu, Y.Q.; Zheng, A.W.; Liang, B. Hybrid data-driven framework for shale gas production performance analysis via game theory, machine learning, and optimization approaches. Pet. Sci. 2023, 20, 277–294. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Qian, S.; Qiu, X.; Shen, W.; Zhang, X.; Lyu, B.; Cui, J. Data-driven framework for prediction and optimization of gas turbine blade film cooling. Phys. Fluids 2024, 36, 035160. [Google Scholar] [CrossRef]
- Brilliant, L.S.; Dulkarnaev, M.R.; Danko, M.Y.; Lisheva, A.O.; Nabiev, D.K.; Khutornaya, A.I.; Malkov, I.N. Oil production management based on neural network optimization of well operation at the pilot project site of the Vatyeganskoe field (Territorial Production Enterprise Povkhneftegaz). Georesursy 2022, 24, 3–15. [Google Scholar] [CrossRef]
- Bahaloo, S.; Mehrizadeh, M.; Najafi-Marghmaleki, A. Review of application of artificial intelligence techniques in petroleum operations. Pet. Res. 2023, 8, 167–182. [Google Scholar] [CrossRef]
Time /Year | Q(t) /×108 m3 | U1(t) /Well | U2(t) /×103 h | U3(t) /m | U4(t) /×108 m3 | U5(t) /×108 m3/km2 | U6(t) /MPa | U7(t) /- |
---|---|---|---|---|---|---|---|---|
2008 | 0.05 | 3 | 0.89 | 91.30 | 18.4 | 15.51 | 46.61 | 9.43 |
2009 | 1.15 | 8 | 26.65 | 94.64 | 22.6 | 15.41 | 45.05 | 9.46 |
2010 | 1.94 | 11 | 50.49 | 86.99 | 25.2 | 15.25 | 43.49 | 8.81 |
2011 | 1.96 | 13 | 57.51 | 80.92 | 32.3 | 15.09 | 41.92 | 8.31 |
2012 | 1.77 | 15 | 68.45 | 81.56 | 36.0 | 14.94 | 40.36 | 7.83 |
2013 | 2.27 | 17 | 85.78 | 86.77 | 43.3 | 14.75 | 38.80 | 9.01 |
2014 | 2.35 | 15 | 86.99 | 91.13 | 69.3 | 14.56 | 37.30 | 9.83 |
2015 | 2.71 | 17 | 96.56 | 89.47 | 77.1 | 14.33 | 35.90 | 9.61 |
2016 | 2.5 | 20 | 98.74 | 89.93 | 82.9 | 14.12 | 34.50 | 9.95 |
2017 | 2.66 | 21 | 107.23 | 86.47 | 90.1 | 13.90 | 33.10 | 9.38 |
2018 | 2.39 | 21 | 97.42 | 87.00 | 95.7 | 13.70 | 31.80 | 9.50 |
Time/Year | ||||||||
---|---|---|---|---|---|---|---|---|
2008 | 0.002 | 0.017 | 0.001 | 0.087 | 0.027 | 0.089 | 0.101 | 0.085 |
2009 | 0.047 | 0.044 | 0.030 | 0.090 | 0.033 | 0.088 | 0.098 | 0.086 |
2010 | 0.079 | 0.061 | 0.057 | 0.083 | 0.036 | 0.087 | 0.095 | 0.080 |
2011 | 0.080 | 0.072 | 0.064 | 0.077 | 0.047 | 0.086 | 0.091 | 0.075 |
2012 | 0.072 | 0.083 | 0.077 | 0.077 | 0.052 | 0.085 | 0.088 | 0.071 |
2013 | 0.093 | 0.094 | 0.096 | 0.082 | 0.062 | 0.084 | 0.084 | 0.081 |
2014 | 0.096 | 0.083 | 0.097 | 0.087 | 0.100 | 0.083 | 0.081 | 0.089 |
2015 | 0.111 | 0.094 | 0.108 | 0.085 | 0.111 | 0.082 | 0.078 | 0.087 |
2016 | 0.102 | 0.110 | 0.110 | 0.085 | 0.120 | 0.081 | 0.075 | 0.090 |
2017 | 0.109 | 0.116 | 0.120 | 0.082 | 0.130 | 0.079 | 0.072 | 0.085 |
2018 | 0.098 | 0.116 | 0.109 | 0.083 | 0.138 | 0.078 | 0.069 | 0.086 |
2019 | 0.110 | 0.110 | 0.131 | 0.083 | 0.144 | 0.077 | 0.066 | 0.086 |
Time/Year | ||||||||
---|---|---|---|---|---|---|---|---|
2008 | 0.002 | 0.017 | 0.001 | 0.087 | 0.027 | 0.089 | 0.101 | 0.085 |
2009 | 0.049 | 0.061 | 0.031 | 0.177 | 0.059 | 0.177 | 0.200 | 0.171 |
2010 | 0.128 | 0.122 | 0.087 | 0.259 | 0.096 | 0.264 | 0.294 | 0.250 |
2011 | 0.209 | 0.193 | 0.152 | 0.336 | 0.142 | 0.350 | 0.385 | 0.326 |
2012 | 0.281 | 0.276 | 0.228 | 0.413 | 0.194 | 0.435 | 0.473 | 0.396 |
2013 | 0.374 | 0.370 | 0.324 | 0.496 | 0.257 | 0.519 | 0.558 | 0.478 |
2014 | 0.470 | 0.453 | 0.422 | 0.582 | 0.357 | 0.603 | 0.639 | 0.567 |
2015 | 0.581 | 0.547 | 0.530 | 0.667 | 0.468 | 0.684 | 0.717 | 0.654 |
2016 | 0.683 | 0.657 | 0.640 | 0.753 | 0.588 | 0.765 | 0.792 | 0.744 |
2017 | 0.792 | 0.773 | 0.760 | 0.835 | 0.718 | 0.844 | 0.864 | 0.829 |
2018 | 0.890 | 0.890 | 0.869 | 0.917 | 0.856 | 0.923 | 0.934 | 0.914 |
2019 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Time/Year | ||||||||
---|---|---|---|---|---|---|---|---|
2008 | 0.002 | 0.017 | 0.001 | 0.087 | 0.027 | 0.089 | 0.101 | 0.085 |
2009 | 0.051 | 0.077 | 0.032 | 0.263 | 0.086 | 0.265 | 0.301 | 0.256 |
2010 | 0.180 | 0.199 | 0.119 | 0.522 | 0.181 | 0.529 | 0.595 | 0.507 |
2011 | 0.388 | 0.392 | 0.271 | 0.858 | 0.323 | 0.879 | 0.981 | 0.832 |
2012 | 0.669 | 0.669 | 0.499 | 1.272 | 0.518 | 1.314 | 1.454 | 1.229 |
2013 | 1.043 | 1.039 | 0.823 | 1.768 | 0.774 | 1.833 | 2.012 | 1.707 |
2014 | 1.514 | 1.492 | 1.245 | 2.350 | 1.131 | 2.436 | 2.651 | 2.273 |
2015 | 2.095 | 2.039 | 1.775 | 3.017 | 1.599 | 3.120 | 3.368 | 2.927 |
2016 | 2.778 | 2.696 | 2.415 | 3.770 | 2.186 | 3.886 | 4.160 | 3.671 |
2017 | 3.570 | 3.470 | 3.175 | 4.605 | 2.904 | 4.730 | 5.025 | 4.499 |
2018 | 4.460 | 4.359 | 4.044 | 5.522 | 3.759 | 5.653 | 5.958 | 5.414 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Pu, J.; Zhang, L.; Deng, H.; Yu, J.; Xie, Y.; Tong, X.; Man, X.; Liu, Z. Gas Production Prediction Model of Volcanic Reservoir Based on Data-Driven Method. Energies 2024, 17, 5461. https://doi.org/10.3390/en17215461
Zhang H, Pu J, Zhang L, Deng H, Yu J, Xie Y, Tong X, Man X, Liu Z. Gas Production Prediction Model of Volcanic Reservoir Based on Data-Driven Method. Energies. 2024; 17(21):5461. https://doi.org/10.3390/en17215461
Chicago/Turabian StyleZhang, Haijie, Junwei Pu, Li Zhang, Hengjian Deng, Jihao Yu, Yingming Xie, Xiaochang Tong, Xiangjie Man, and Zhonghua Liu. 2024. "Gas Production Prediction Model of Volcanic Reservoir Based on Data-Driven Method" Energies 17, no. 21: 5461. https://doi.org/10.3390/en17215461
APA StyleZhang, H., Pu, J., Zhang, L., Deng, H., Yu, J., Xie, Y., Tong, X., Man, X., & Liu, Z. (2024). Gas Production Prediction Model of Volcanic Reservoir Based on Data-Driven Method. Energies, 17(21), 5461. https://doi.org/10.3390/en17215461